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Incomplete generalized Fibonacci and Lucas
polynomials

José L. Ramirez*

Abstract

In this paper, we define the incomplete h(z)-Fibonacci and h(x)-Lucas
polynomials, we study the recurrence relations, some properties of these
polynomials and the generating function of the incomplete Fibonacci
and Lucas polynomials.
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1. Introduction

Fibonacci numbers and their generalizations have many interesting properties and
applications in many fields of science and art (see, e.g., [7]). The Fibonacci numbers F),
are defined by the recurrence relation

FO:07 F1:17 F, = n71+Fn727 n > 1.

The incomplete Fibonacci and Lucas numbers were introduced by Filipponi [6]. The
incomplete Fibonacci numbers Fy, (k) and the incomplete Lucas numbers L, (k) are de-
fined by

Fn(k):i<njl_j> (n:1,2,3,...;0§k§ V;ID

and
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Is is easily seen that [7]

F, Q"; 1J) —F, and L, QgD = L.

Pintér and Srivastava [9] determined the generating functions of the incomplete Fibonacci
and Lucas numbers. Djordjevi¢ [1] introduced the incomplete generalized Fibonacci and
Lucas numbers. Djordjevi¢ and Srivastava [2] defined incomplete generalized Jacobsthal
and Jacobsthal-Lucas numbers. Tasci and Cetin Firengiz [14] defined the incomplete
Fibonacci and Lucas p-numbers. Tasci et al. [15] defined the incomplete bivariate Fi-
bonacci and Lucas p-polynomials. Ramirez [11] introduced the incomplete k-Fibonacci
and k-Lucas numbers, the bi-periodic incomplete Fibonacci sequences [10]. Ramirez and
Sirvent introduced the incomplete tribonacci numbers and polynomials [12].

A large classes of polynomials can also be defined by Fibonacci-like recurrence relations
such yield Fibonacci numbers. Such polynomials are called Fibonacci polynomials [7].
They were studied in 1883 by Catalan and Jacobsthal. The polynomials F,(x) studied
by Catalan are defined by the recurrence relation

Fo(z) =0, Fi(z)=1, Fopi(z)=zF.(z)+ Foo1(z), n> 1.

The Fibonacci polynomials studied by Jacobsthal are defined by
Jo(z) =1, Ji(z)=1, Jpt1(z)=Jn(x)+xJp-1(z), n>1.

The Lucas polynomials Ly (x), originally studied in 1970 by Bicknell, are defined by
Lo(z) =2, Li(z) ==, Lnyi1(x) =xLln(x)+ Ln-1(z), n>1.

Nalli and Haukkanen [8] introduced the h(z)-Fibonacci polynomials that generalize Cata-
lan’s Fibonacci polynomials F),(z) and the k-Fibonacci numbers Fy , [5]. Let h(z) be
a polynomial with real coefficients. The h(z)-Fibonacci polynomials {Fp n(2)}nen are
defined by the recurrence relation

(1.1) Fro(z) =0, Fri(z) =1, Fhnt1(z) = h(x)Fhn(x) + Fon-1(z), n > 1.

For h(z) = = we obtain Catalan’s Fibonacci polynomials, and for h(z) = k we obtain
k-Fibonacci numbers. For k = 1 and k = 2 we obtain the usual Fibonacci numbers and
the Pell numbers.

Let h(x) be a polynomial with real coefficients. The h(z)-Lucas polynomials {Lp () }nen
are defined by the recurrence relation

Lyo(z) =2, Lpi(z) = h(x), Lnnyi(x) = h(z)Lon(z) + Lhpn-1(x),n > 1.

For h(z) = z we obtain the Lucas polynomials, and for h(z) = k we have the k-Lucas
numbers [3]. For & = 1 we obtain the usual Lucas numbers. Nalli and Haukkanen [§]
obtained some relations for these polynomials sequences. In particular, they found an
explicit formula to h(z)-Fibonacci polynomials and h(x)-Lucas polynomials respectively

L= n—1—1 i
(1.2)  Fpalz) = Z ( ; )hn—%—l(ac),

L

(L3)  Lia(@) =) —"— <” - Z) W% (@),

=0

.

<

L

vl

From Equations (1.2) and (1.3), we introduce the incomplete h(z)-Fibonacci and h(z)-
Lucas polynomials and we obtain new recurrence relations, new identities and the gen-
erating function of the incomplete h(x)-Fibonacci and h(z)-Lucas polynomials.



2. Some Properties of h(x)-Fibonacci and h(z)-Lucas Polynomials

The characteristic equation associated with the recurrence relation (1.1) is v* =

h(z)v + 1. The roots of this equation are

afx) = MO TVIEEAL g 2

Then we have the following basic identities:
a(z) + pB(z) = h(z),  alz) - B(r) = Vh(@)* +4, a(z)f(z) = —1.

The h(z)-Fibonacci polynomials and the h(x)-Lucas numbers verify the following prop-
erties (see [8] for the proofs).

e Binet formula: Fpn(z) = (a(x)” — B(z)")/(a(z) — B(x)), Lnn(z) = alz)™ +

Bla)".
o Generating function: g;(t) = t/(1 — h(z)t — t?).
e Relation with h(z)-Fibonacci polynomials:

Lh,n(x) = Fh,nfl(I) + Fh,n+1($)7 n > 1.

3. The incomplete h(z)-Fibonacci Polynomials

3.1. Definition. The incomplete h(z)-Fibonacci polynomials are defined by

~(n—1=i\), e n—1
(3.1) F,i,n(x)_z< ) )h (z), oglg{ . J

: 7
=0

In Table 1, some polynomials of incomplete h(x)-Fibonacci polynomials are provided.

n\l| 0 1 2 3
1 1
2 h
3 | h?| K241
4 || K +2h
5 | h* | R*+3r% | R*+3r2+1
6 | h® | h® +4h® | B® +4h® + 3R
7 | RS | RS +5n* | RS +5R* +6R% | RS +5RT+6RZ+1
Table 1. The polynomials F,lln(a:)7 for1<n<T.
Note that
n—1

For h(z) = 1, we get incomplete Fibonacci numbers [6]. If h(z) = k we obtained
incomplete k-Fibonacci numbers [11].



Some special cases of (3.1) are

"He) 4+ (n = 2)h" (@), (n 2 3);

F () = 07 @) 4 (0= () + A s > 5,
FLE7 @) = Fun@), (0> 1);

FLHQSJ( ) Fpn(z) — "hz(z), if n > 3 and even;
) =
" Frpn(z)—1, if n > 3 and odd.

3.2. Proposition. The recurrence relation of the incomplete h(x)-Fibonacci polynomials
FL () is

(32)  Ftl,(x) = h(@)FLh (o) + Fa(@), 0<1< {”‘ZJ.

The relation (3.2) can be transformed into the non-homogeneous recurrence relation

(33)  Flpio(@) = h(@)FL pir (@) + Fln(z) — (” - ll - l) 12 ).

Proof. From Definition 3.1 we get
h(2)Fyl (@) + Fy ()

- : Lfn—i-1 :
L n—i Hll n—1 ;
_ Z ( )hn 2'L+1( ) + . <Z B 1> hn727,+1(x)

I+1 . .
1+1
= fl ( o 1>h”_2i+l(m) 0

= Fh,n+2 (CL‘)

3.3. Proposition. The following equality holds:

s

(3.4) VR i (@) = Bl (@), 0<1< 225D
7 2

i=0



Proof. We proceed by induction on s. The sum (3.4) clearly holds for s = 0 and s = 1;
see (3.2). Now suppose that the result is true for all j < s+ 1. We prove it for s+ 1:

s+1 s+ 1 " ; s+1 s s
> () Eser@ =S | (5] + (0,
" s+1 s ) ) s«&j; s ) )
D HEERCIEES ol (N EENETE

s S s s - S 2 7
= F;L:Fn+2s(x) + (8 4 1) F}lzfnis{kl(x)h +1(37) + Z <Z> Fflbj:lil{kl(m)h +1(CL')

1=—1

s ° S i i S
- +0+ 3 (3 A o+ ()t
=0

=0

s > S i i
it e 3 () L) 0

l I+s+1 I+s+1
= FhT:—!—Qs (3”) + h(x)Fths_:'23+1(:r) = Fh:'—ns-i—Qs-ﬁ»Q(x)'

O

3.4. Proposition. Forn > 2]+ 2,
s—1
l s—1—1 l s 13
(335) Y Fhmsi@h (@) = Fhl (@) — (@) P (@),
i=0

Proof. We proceed by induction on s. The sum (3.5) clearly holds for s = 1; see (3.2).
Now suppose that the result is true for all j < s. We prove it for s:

s s—1
Z Fhnsi(z)h* " (z) = h(z) Z Fronsi(@)h" 77N (@) + Fy o)
i=0 i=0

= h(@) (Fillan (@) = @B @) + Flongs (@)
= (M@ P s (@) + By (@)) = 1 @) B ()
= F}llﬁ3+s+2($) - hSH(m)F}lL;lH(I)‘

d

3.5. Lemma. The following equality holds:

(3.6) Fj, . (x) = K (2) (nLhn(il(;)hlehn(x)) .

Proof. By deriving into the Binet’s formula it is obtained:

nfa" M z) — (—a(2) " o ()

Fonle) = o) T ola) "

[a"(z) — (—a()) "] (1 — a2 (@) (x)
[a(z) + o=t (2))? ’




where a(z) = (h(z) + /h2(z) +4)/2. Then o'(z) = (W (z)a(x))/(a(x) + " (z)), 1 —
a”%(z) = h(z)/a(z). Therefore

n[a"(z) + (—e(x)) "] W (2)

F;L,n(x) = — D)
[a(z) + a=!(z)]
0@ = (—a@) ] k@ ()
a(z) +a~i(z) [a(a) + a1 (z)]*
On the other hand, Fy nt1(z) + Fhno1(z) = () + 8%(x) = o™ (z) + (—a(z))™" =
Lh n\T).
Fr(;ng V)vhere, after some algebra Equation (3.6) is obtained. O

Lemma 3.5 generalizes Proposition 13 of [4].

3.6. Lemma. The following equality holds:

[“5* .
(3.7) z(” - l) R ()
i=0

7

((h(ac)2 +4)n — 4)Fh n(z) — nh(x)Lpn ()
2(h?(z) +4) ’

Proof. From Equation (1.2) we have

Lz n—1-—i ;
h(z) Fyn(z) = Z( . )hnzz(x).

1=0

By deriving into the above equation:

L5 .
B (z)Fpon(z) + h(z)Fy, 0 (z Z n—22< Z,l_z>h"2i1(:c)h'(ac)

From Lemma 3.5

B (@) Frn (@) + hla)h (@) ("L”’"(f;(;? - th’”(m))

] .
=nkF, n —92 Z ( i Z) hniziil(.@)h’(l‘).

From where, after some algebra Equation (3.7) is obtained.

3.7. Proposition. The following equality holds:

|25 4Fh n(z) + nh(x) Ly (z)

_ 2(h?(x) +4) ’
(38) Y Finl2) = (h*(z) + 8)Fn.n(z) + nh(z) L. ()
2(h2(z) + 4) :

if n is even;

if n is odd.



Proof. We have

- Q”g IJ + 1> Fhn(z) — LnilJ z(” _il - Z) R ().

i=0

From Lemma 3.6 the Equation (3.8) is obtained.

4. The incomplete h(z)-Lucas Polynomials

4.1. Definition. The incomplete h(x)-Lucas polynomials are defined by

(4D Lz’n(x):iniic;i)h”Zi(x), o<i<|3].

1=0

In Table 2, some polynomials of incomplete h(z)-Lucas polynomials are provided.
Note that



n\l] 0 1 2 3
1 h
2 | K2 KZ42
3 | h| R*+3h
4 | Bt | Bt +4n? ht* +4h% +2
5 | hS | RS +5R3 | A5 +5h3+5h
6 | h® | hS+6n* | KRS +6R*+9h% | KS+6R*+9h%+2
7T L RT | AT+ TR | BT+ TRD +14R3 | BT+ TR + 14R3 + Th

Table 2. The polynomials L}, ,(z), for 1 <n < 7.

Some special cases of (4.1) are
Lyn(x) = h"(x), (n21);
ﬁA)—MuHmm”wLmz%

L (@) = B (@) + nh" () + "D i), (> a,
Lt @) = Lia(@), (0> 1);
| 252 Lpn(x) — 2, if n > 2 and even;
Lp,s “(@)=9," .
’ Ly n(z) —nh(z), ifn>2and odd.

4.2. Proposition. The following equality holds:
(42)  Lha(@) = B, @) + R @) 0<i< | 2]
Proof. Applying Definition 3.1 to the right-hand side (RHS) of (4.2) results

-1 . 1 .
(RHS):Z<TL_Z-2_Z> B2 zl(m +Z<n > W 21(1:)

=0

(g
Sl (5)

=3 nﬁz <” 5 ’) K" (@) + 0 = Li . (2).

i=0
O
4.3. Proposition. The recurrence relation of the incomplete h(x)-Lucas polynomials
L}, . (x) is
n
(43)  Lifbpa(®) = h@)Li5ha @) + Lha(e), 0<1< |5

The relation (4.3) can be transformed into the non-homogeneous recurrence relation

(14)  Lhsa(®) = h(@) Lhpa () + L a(e) = " (n - l) W)

Proof. 1t is clear from (4.2) and (3.2). O



4.4. Proposition. The following equality holds:

_ n—1
h(@)Liy 0 (2) = Fjy pya(z) — 2 5(x), 0<1< { 5 J )

Proof. By (4.2),

Fflz,n+2 (.’E) = LiL,n#»l(:C) - FflLTnl (.’E) and F}l7.,7n2—2(x) = Llh:ri—l(x) - F}ijnl (ZC),

whence, from (4.3)

Fhnta(@) = FL20(@) = L (@) = Ly a1 (2) = h(z) Liy o (@)

4.5. Proposition. The following equality holds:

i I+s n—s
< ) lh+n+z ( ) = thn+25(x)7 0 S l S 2 N

Proof. Using (4.2) and (3.4), we get

( )Lif;ﬂ @) = () (Bl a@) + Bl @)] h @)

1=0

. i i . S i 7
( >F}ll+n+zl 1(“3)}1 (“3) + Z <i)F%lL+n+z+1( )h (m)
1=0 =0
fl;nljlirzs( )+ Ffll+7f+1+25( ) = Llfjri+2s(x)«
O

4.6. Proposition. Forn > 2l +1,
ZLh i@ T (@) = L (@) = B @) LY ).

The proof can be done by using (4.3) and induction on s.

4.7. Lemma. The following equality holds:
5] .n n—1\ n_2; n
Z i A h (z) = 3 [Lin(z) — h(x)Fpn(z)].

c n—1
=0

The proof is similar to Lemma 3.6.
4.8. Proposition. The following equality holds:
(45) LZJ L () = {?Z’z(x) P el s e
5 (Linn(x) + nh(x)Fyn(x)), ifnis odd.
Proof. An argument analogous to that of the proof of Proposition 3.7 yields
) i 3
S hate) = (3] 41) ot - 3 (1)

From Lemma 4.7 the Equation (4.5) is obtained. O



5. Generating functions of the incomplete h(z)-Fibonacci and h(z)-
Lucas polynomials

In this section, we give the generating functions of incomplete h(x)-Fibonacci and
h(z)-Lucas polynomials.

5.1. Lemma. (See [9], p. 592). Let {sn},., be a complex sequence satisfying the
followin non-homogeneous recurrence relation:

Sp = aSp—1 + bsn—2 + Tn, n > 1,

where a and b are complex numbers and {rn} is a given complex sequence. Then the
generating function U(t) of the sequence {sn} is
G(t) + So —To =+ (81 — Soa — Tl)t

1 — at — bt? ’

U(t) =
where G(t) denotes the generating function of {rn}.

5.2. Theorem. The generating function of the incomplete h(x)-Fibonacci polynomials
F;lhn(x) is given by

= ¢! [Fh,21+1(93) + (Fr,2142(x) — h(x) Fr,2141(2)) t
.2

A @y h(m)t)m] [1—h(z)t—t7]

Proof. Let | be a fixed positive integer. From (3.1) and (3.3), F}. ,(z) =0 for 0 < n <
2041, Fjy 2141 (2) = Fr2041(2), and Fj 51 4.5(2) = Fp2142(2), and that

—1

F (@) = h(2)Fl 1 (&) + Fh () (” o) l) a©)

Now let

S0 = Filb,2l+1(m)731 = Filb,2z+2($5)7 and s, = Fflr,,n+2l+1(w)'

Also let 7o = r1 = 0, and

_ n+171 n—2
"rn< "9 >h (z).

The generating function of the sequence {r,} is G(t) = t*/(1 —h(z)t)'™"; see [13, p. 355].
Thus, from Lemma 5.1, we get the generating function Rp,i(x) of sequence {sn}. O

5.3. Theorem. The generating function of the incomplete h(x)-Lucas polynomials Lj, ,,(x)
is given by

' [Ln21(z) + (Lnair1 () — h(x)Ln 2 (7)) t
t2(2 — t)

“a—h@oe | I i

— h(x)t — t°]



Proof. The proof is similar to the proof of Theorem 5.2. Let [ be a fixed positive integer.
From (4.1) and (4.4), L}, ,,(z) = 0 for 0 <n < 2, L}, () = Lp,21(2), and L}, 544 () =
Lj,2141(z), and that

! _ ! ! ~on=2 (n=2-10\ , 2 %
Lhn(z) = h(x)Lhn1(z) + Lhn—a(z) n—2_1 (n _9_ 2l> h (2).

Now let
S0 = Liz,?l(m)7 81 = L2,2z+1(x)7 and  sn = szn“l(m)‘

Also let 7o = r1 = 0, and

n+20—2\ i
n = h .
" ( n+l—2 > (@)
The generating function of the sequence {r,} is G(t) = t*(2 — t)/(1 — h(z)t)'™; see
[13, p. 355]. Thus, from Lemma 5.1, we get the generating function Sp () of sequence
{sn}. O
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