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Incomplete generalized Fibonacci and Lucas
polynomials
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Abstract
In this paper, we define the incomplete h(x)-Fibonacci and h(x)-Lucas
polynomials, we study the recurrence relations, some properties of these
polynomials and the generating function of the incomplete Fibonacci
and Lucas polynomials.
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1. Introduction
Fibonacci numbers and their generalizations have many interesting properties and

applications in many fields of science and art (see, e.g., [7]). The Fibonacci numbers Fn

are defined by the recurrence relation

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n > 1.

The incomplete Fibonacci and Lucas numbers were introduced by Filipponi [6]. The
incomplete Fibonacci numbers Fn(k) and the incomplete Lucas numbers Ln(k) are de-
fined by

Fn(k) =

k∑
j=0

(
n− 1− j

j

) (
n = 1, 2, 3, . . . ; 0 ≤ k ≤

⌊
n− 1

2

⌋)
,

and

Ln(k) =

k∑
j=0

n

n− j

(
n− j
j

) (
n = 1, 2, 3, . . . ; 0 ≤ k ≤

⌊n
2

⌋)
.
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Is is easily seen that [7]

Fn

(⌊
n− 1

2

⌋)
= Fn and Ln

(⌊n
2

⌋)
= Ln.

Pintér and Srivastava [9] determined the generating functions of the incomplete Fibonacci
and Lucas numbers. Djordjević [1] introduced the incomplete generalized Fibonacci and
Lucas numbers. Djordjević and Srivastava [2] defined incomplete generalized Jacobsthal
and Jacobsthal-Lucas numbers. Tasci and Cetin Firengiz [14] defined the incomplete
Fibonacci and Lucas p-numbers. Tasci et al. [15] defined the incomplete bivariate Fi-
bonacci and Lucas p-polynomials. Ramírez [11] introduced the incomplete k-Fibonacci
and k-Lucas numbers, the bi-periodic incomplete Fibonacci sequences [10]. Ramírez and
Sirvent introduced the incomplete tribonacci numbers and polynomials [12].

A large classes of polynomials can also be defined by Fibonacci-like recurrence relations
such yield Fibonacci numbers. Such polynomials are called Fibonacci polynomials [7].
They were studied in 1883 by Catalan and Jacobsthal. The polynomials Fn(x) studied
by Catalan are defined by the recurrence relation

F0(x) = 0, F1(x) = 1, Fn+1(x) = xFn(x) + Fn−1(x), n > 1.

The Fibonacci polynomials studied by Jacobsthal are defined by

J0(x) = 1, J1(x) = 1, Jn+1(x) = Jn(x) + xJn−1(x), n > 1.

The Lucas polynomials Ln(x), originally studied in 1970 by Bicknell, are defined by

L0(x) = 2, L1(x) = x, Ln+1(x) = xLn(x) + Ln−1(x), n > 1.

Nalli and Haukkanen [8] introduced the h(x)-Fibonacci polynomials that generalize Cata-
lan’s Fibonacci polynomials Fn(x) and the k-Fibonacci numbers Fk,n [5]. Let h(x) be
a polynomial with real coefficients. The h(x)-Fibonacci polynomials {Fh,n(x)}n∈N are
defined by the recurrence relation

Fh,0(x) = 0, Fh,1(x) = 1, Fh,n+1(x) = h(x)Fh,n(x) + Fh,n−1(x), n > 1.(1.1)

For h(x) = x we obtain Catalan’s Fibonacci polynomials, and for h(x) = k we obtain
k-Fibonacci numbers. For k = 1 and k = 2 we obtain the usual Fibonacci numbers and
the Pell numbers.

Let h(x) be a polynomial with real coefficients. The h(x)-Lucas polynomials {Lh,n(x)}n∈N
are defined by the recurrence relation

Lh,0(x) = 2, Lh,1(x) = h(x), Lh,n+1(x) = h(x)Lh,n(x) + Lh,n−1(x), n > 1.

For h(x) = x we obtain the Lucas polynomials, and for h(x) = k we have the k-Lucas
numbers [3]. For k = 1 we obtain the usual Lucas numbers. Nalli and Haukkanen [8]
obtained some relations for these polynomials sequences. In particular, they found an
explicit formula to h(x)-Fibonacci polynomials and h(x)-Lucas polynomials respectively

Fh,n(x) =

bn−1
2 c∑

i=0

(
n− i− 1

i

)
hn−2i−1(x),(1.2)

Lh,n(x) =

bn2 c∑
i=0

n

n− i

(
n− i
i

)
hn−2i(x).(1.3)

From Equations (1.2) and (1.3), we introduce the incomplete h(x)-Fibonacci and h(x)-
Lucas polynomials and we obtain new recurrence relations, new identities and the gen-
erating function of the incomplete h(x)-Fibonacci and h(x)-Lucas polynomials.



2. Some Properties of h(x)-Fibonacci and h(x)-Lucas Polynomials

The characteristic equation associated with the recurrence relation (1.1) is v2 =
h(x)v + 1. The roots of this equation are

α(x) =
h(x) +

√
h(x)2 + 4

2
, β(x) =

h(x)−
√
h(x)2 + 4

2
.

Then we have the following basic identities:

α(x) + β(x) = h(x), α(x)− β(x) =
√
h(x)2 + 4, α(x)β(x) = −1.

The h(x)-Fibonacci polynomials and the h(x)-Lucas numbers verify the following prop-
erties (see [8] for the proofs).

• Binet formula: Fh,n(x) = (α(x)n − β(x)n)/(α(x) − β(x)), Lh,n(x) = α(x)n +
β(x)n.

• Generating function: gf (t) = t/(1− h(x)t− t2).
• Relation with h(x)-Fibonacci polynomials:

Lh,n(x) = Fh,n−1(x) + Fh,n+1(x), n > 1.

3. The incomplete h(x)-Fibonacci Polynomials
3.1. Definition. The incomplete h(x)-Fibonacci polynomials are defined by

F l
h,n(x) =

l∑
i=0

(
n− 1− i

i

)
hn−2i−1(x), 0 ≤ l ≤

⌊
n− 1

2

⌋
.(3.1)

In Table 1, some polynomials of incomplete h(x)-Fibonacci polynomials are provided.

n \ l 0 1 2 3

1 1
2 h
3 h2 h2 + 1
4 h3 h3 + 2h
5 h4 h4 + 3h2 h4 + 3h2 + 1
6 h5 h5 + 4h3 h5 + 4h3 + 3h
7 h6 h6 + 5h4 h6 + 5h4 + 6h2 h6 + 5h4 + 6h2 + 1

Table 1. The polynomials F l
h,n(x), for 1 6 n 6 7.

Note that

F
bn−1

2 c
1,n (x) = Fn.

For h(x) = 1, we get incomplete Fibonacci numbers [6]. If h(x) = k we obtained
incomplete k-Fibonacci numbers [11].



Some special cases of (3.1) are

F 0
h,n(x) = hn−1(x), (n ≥ 1);

F 1
h,n(x) = hn−1(x) + (n− 2)hn−3(x), (n ≥ 3);

F 2
h,n(x) = hn−1(x) + (n− 2)hn−3(x) +

(n− 4)(n− 3)

2
hn−5(x), (n ≥ 5);

F
bn−1

2 c
h,n (x) = Fh,n(x), (n ≥ 1);

F
bn−3

2 c
h,n (x) =

{
Fh,n(x)− nh(x)

2
, if n ≥ 3 and even;

Fh,n(x)− 1, if n ≥ 3 and odd.

3.2. Proposition. The recurrence relation of the incomplete h(x)-Fibonacci polynomials
F l
h,n(x) is

F l+1
h,n+2(x) = h(x)F l+1

h,n+1(x) + F l
h,n(x), 0 ≤ l ≤

⌊
n− 2

2

⌋
.(3.2)

The relation (3.2) can be transformed into the non-homogeneous recurrence relation

F l
h,n+2(x) = h(x)F l

h,n+1(x) + F l
h,n(x)−

(
n− 1− l

l

)
hn−1−2l(x).(3.3)

Proof. From Definition 3.1 we get

h(x)F l+1
h,n+1(x) + F l

h,n(x)

= h(x)

l+1∑
i=0

(
n− i
i

)
hn−2i(x) +

l∑
i=0

(
n− i− 1

i

)
hn−2i−1(x)

=

l+1∑
i=0

(
n− i
i

)
hn−2i+1(x) +

l+1∑
i=1

(
n− i
i− 1

)
hn−2i+1(x)

= hn−2i+1(x)

(
l+1∑
i=0

[(
n− i
i

)
+

(
n− i
i− 1

)])
− hn+1(x)

(
n

−1

)

=

l+1∑
i=0

(
n− i+ 1

i

)
hn−2i+1(x)− 0

= F l
h,n+2(x).

�

3.3. Proposition. The following equality holds:

s∑
i=0

(
s

i

)
F l+i
h,n+i(x)h

i(x) = F l+s
h,n+2s(x), 0 ≤ l ≤ n− s− 1

2
.(3.4)



Proof. We proceed by induction on s. The sum (3.4) clearly holds for s = 0 and s = 1;
see (3.2). Now suppose that the result is true for all j < s+ 1. We prove it for s+ 1:

s+1∑
i=0

(
s+ 1

i

)
F l+i
h,n+i(x)h

i(x) =

s+1∑
i=0

[(
s

i

)
+

(
s

i− 1

)]
F l+i
h,n+i(x)h

i(x)

=

s+1∑
i=0

(
s

i

)
F l+i
h,n+i(x)h

i(x) +

s+1∑
i=0

(
s

i− 1

)
F l+i
h,n+i(x)h

i(x)

= F l+s
h,n+2s(x) +

(
s

s+ 1

)
F l+s+1
h,n+s+1(x)h

s+1(x) +

s∑
i=−1

(
s

i

)
F l+i+1
h,n+i+1(x)h

i+1(x)

= F l+s
h,n+2s(x) + 0 +

s∑
i=0

(
s

i

)
F l+i+1
h,n+i+1(x)h

i+1(x) +

(
s

−1

)
F l
h,n(x)

= F l+s
h,n+2s(x) + h(x)

s∑
i=0

(
s

i

)
F l+i+1
h,n+i+1(x)h

i(x) + 0

= F l+s
h,n+2s(x) + h(x)F l+s+1

h,n+2s+1(x) = F l+s+1
h,n+2s+2(x).

�

3.4. Proposition. For n ≥ 2l + 2,

s−1∑
i=0

F l
h,n+i(x)h

s−1−i(x) = F l+1
h,n+s+1(x)− h

s(x)F l+1
h,n+1(x).(3.5)

Proof. We proceed by induction on s. The sum (3.5) clearly holds for s = 1; see (3.2).
Now suppose that the result is true for all j < s. We prove it for s:

s∑
i=0

F l
h,n+i(x)h

s−i(x) = h(x)

s−1∑
i=0

F l
h,n+i(x)h

s−i−1(x) + F l
h,n+s(x)

= h(x)
(
F l+1
h,n+s+1(x)− h

s(x)F l+1
h,n+1(x)

)
+ F l

h,n+s(x)

=
(
h(x)F l+1

h,n+s+1(x) + F l
h,n+s(x)

)
− hs+1(x)F l+1

h,n+1(x)

= F l+1
h,n+s+2(x) − h

s+1(x)F l+1
h,n+1(x).

�

3.5. Lemma. The following equality holds:

F ′h,n(x) = h′(x)

(
nLh,n(x)− h(x)Fh,n(x)

h2(x) + 4

)
.(3.6)

Proof. By deriving into the Binet’s formula it is obtained:

F ′h,n(x) =
n
[
αn−1(x)− (−α(x))−n−1

]
α′(x)

α(x) + α(x)−1

−
[
αn(x)− (−α(x))−n

]
(1− α−2(x))α′(x)

[α(x) + α−1(x)]2
,



where α(x) = (h(x) +
√
h2(x) + 4)/2. Then α′(x) = (h′(x)α(x))/(α(x) + α−1(x)), 1 −

α−2(x) = h(x)/α(x). Therefore

F ′h,n(x) =
n
[
αn(x) + (−α(x))−n

]
h′(x)

[α(x) + α−1(x)]2

−
[
αn(x)− (−α(x))−n

]
α(x) + α−1(x)

· h(x)h′(x)

[α(x) + α−1(x)]2
.

On the other hand, Fh,n+1(x) + Fh,n−1(x) = αn(x) + βn(x) = αn(x) + (−α(x))−n =
Lh,n(x).
From where, after some algebra Equation (3.6) is obtained. �

Lemma 3.5 generalizes Proposition 13 of [4].

3.6. Lemma. The following equality holds:

(3.7)
bn−1

2 c∑
i=0

i

(
n− 1− i

i

)
hn−1−2i(x)

=
((h(x)2 + 4)n− 4)Fh,n(x)− nh(x)Lh,n(x)

2(h2(x) + 4)
.

Proof. From Equation (1.2) we have

h(x)Fh,n(x) =

bn−1
2 c∑

i=0

(
n− 1− i

i

)
hn−2i(x).

By deriving into the above equation:

h′(x)Fh,n(x) + h(x)F ′h,n(x) =

bn−1
2 c∑

i=0

(n− 2i)

(
n− 1− i

i

)
hn−2i−1(x)h′(x)

= nFh,n(x)h
′(x)− 2

bn−1
2 c∑

i=0

i

(
n− 1− i

i

)
hn−2i−1(x)h′(x).

From Lemma 3.5

h′(x)Fh,n(x) + h(x)h′(x)

(
nLh,n(x)− h(x)Fh,n(x)

h2(x) + 4

)

= nFh,n(x)h
′(x)− 2

bn−1
2 c∑

i=0

i

(
n− 1− i

i

)
hn−2i−1(x)h′(x).

From where, after some algebra Equation (3.7) is obtained.
�

3.7. Proposition. The following equality holds:

bn−1
2 c∑

l=0

F l
h,n(x) =


4Fh,n(x) + nh(x)Lh,n(x)

2(h2(x) + 4)
, if n is even;

(h2(x) + 8)Fh,n(x) + nh(x)Lh,n(x)

2(h2(x) + 4)
, if n is odd.

(3.8)



Proof. We have

bn−1
2 c∑

l=0

F l
h,n(x)

=

(
n− 1− 0

0

)
hn−1(x) +

[(
n− 1− 0

0

)
hn−1(x) +

(
n− 1− 1

1

)
hn−3(x)

]

+ · · ·+

[(
n− 1− 0

0

)
hn−1(x) +

(
n− 1− 1

1

)
hn−3(x)

+ · · ·+

(
n− 1−

⌊
n−1
2

⌋⌊
n−1
2

⌋ )
hn−1−2bn−1

2 c(x)

]

=

(⌊
n− 1

2

⌋
+ 1

)(
n− 1− 0

0

)
hn−1(x) +

⌊
n− 1

2

⌋(
n− 1− 1

1

)
hn−3(x)

+ · · ·+

(
n− 1−

⌊
n−1
2

⌋⌊
n−1
2

⌋ )
hn−1−2bn−1

2 c(x)

=

bn−1
2 c∑

i=0

(⌊
n− 1

2

⌋
+ 1− i

)(
n− 1− i

i

)
hn−1−2i(x)

=

bn−1
2 c∑

i=0

(⌊
n− 1

2

⌋
+ 1

)(
n− 1− i

i

)
hn−1−2i(x)

−
bn−1

2 c∑
i=0

i

(
n− 1− i

i

)
hn−1−2i(x)

=

(⌊
n− 1

2

⌋
+ 1

)
Fh,n(x)−

bn−1
2 c∑

i=0

i

(
n− 1− i

i

)
hn−1−2i(x).

From Lemma 3.6 the Equation (3.8) is obtained. �

4. The incomplete h(x)-Lucas Polynomials
4.1. Definition. The incomplete h(x)-Lucas polynomials are defined by

Ll
h,n(x) =

l∑
i=0

n

n− i

(
n− i
i

)
hn−2i(x), 0 ≤ l ≤

⌊n
2

⌋
.(4.1)

In Table 2, some polynomials of incomplete h(x)-Lucas polynomials are provided.
Note that

L
bn2 c
1,n (x) = Ln.



n \ l 0 1 2 3

1 h
2 h2 h2 + 2
3 h3 h3 + 3h
4 h4 h4 + 4h2 h4 + 4h2 + 2
5 h5 h5 + 5h3 h5 + 5h3 + 5h
6 h6 h6 + 6h4 h6 + 6h4 + 9h2 h6 + 6h4 + 9h2 + 2
7 h7 h7 + 7h5 h7 + 7h5 + 14h3 h7 + 7h5 + 14h3 + 7h

Table 2. The polynomials Ll
h,n(x), for 1 6 n 6 7.

Some special cases of (4.1) are

L0
h,n(x) = hn(x), (n ≥ 1);

L1
h,n(x) = hn(x) + nhn−2(x), (n ≥ 2);

L2
h,n(x) = hn(x) + nhn−2(x) +

n(n− 3)

2
hn−4(x), (n ≥ 4);

L
bn2 c
h,n (x) = Lh,n(x), (n ≥ 1);

L
bn−2

2 c
h,n (x) =

{
Lh,n(x)− 2, if n ≥ 2 and even;
Lh,n(x)− nh(x), if n ≥ 2 and odd.

4.2. Proposition. The following equality holds:

Ll
h,n(x) = F l−1

h,n−1(x) + F l
h,n+1(x); 0 ≤ l ≤

⌊n
2

⌋
.(4.2)

Proof. Applying Definition 3.1 to the right-hand side (RHS) of (4.2) results

(RHS) =

l−1∑
i=0

(
n− 2− i

i

)
hn−2−2i(x) +

l∑
i=0

(
n− i
i

)
hn−2i(x)

=

l∑
i=1

(
n− 1− i
i− 1

)
hn−2i(x) +

l∑
i=0

(
n− i
i

)
hn−2i(x)

=

l∑
i=0

[(
n− 1− i
i− 1

)
+

(
n− i
i

)]
hn−2i(x)−

(
n− 1

−1

)

=

l∑
i=0

n

n− i

(
n− i
i

)
hn−2i(x) + 0 = Ll

h,n(x).

�

4.3. Proposition. The recurrence relation of the incomplete h(x)-Lucas polynomials
Ll

h,n(x) is

Ll+1
h,n+2(x) = h(x)Ll+1

h,n+1(x) + Ll
h,n(x), 0 ≤ l ≤

⌊n
2

⌋
.(4.3)

The relation (4.3) can be transformed into the non-homogeneous recurrence relation

Ll
h,n+2(x) = h(x)Ll

h,n+1(x) + Ll
h,n(x)−

n

n− l

(
n− l
l

)
hn−2l(x).(4.4)

Proof. It is clear from (4.2) and (3.2). �



4.4. Proposition. The following equality holds:

h(x)Ll
h,n(x) = F l

h,n+2(x)− F l−2
h,n−2(x), 0 ≤ l ≤

⌊
n− 1

2

⌋
.

Proof. By (4.2),

F l
h,n+2(x) = Ll

h,n+1(x)− F l−1
h,n (x) and F l−2

h,n−2(x) = Ll−1
h,n−1(x)− F

l−1
h,n (x),

whence, from (4.3)

F l
h,n+2(x)− F l−2

h,n−2(x) = Ll
h,n+1(x)− Ll−1

h,n−1(x) = h(x)Ll
h,n(x).

�

4.5. Proposition. The following equality holds:
s∑

i=0

(
s

i

)
Ll+i

h,n+i(x)h
i(x) = Ll+s

h,n+2s(x), 0 ≤ l ≤ n− s
2

.

Proof. Using (4.2) and (3.4), we get

s∑
i=0

(
s

i

)
Ll+i

h,n+i(x)h
i(x) =

s∑
i=0

(
s

i

)[
F l+i−1
h,n+i−1(x) + F l+i

h,n+i+1(x)
]
hi(x)

=

s∑
i=0

(
s

i

)
F l+i−1
h,n+i−1(x)h

i(x) +

s∑
i=0

(
s

i

)
F l+i
h,n+i+1(x)h

i(x)

= F l−1+s
h,n−1+2s(x) + F l+s

h,n+1+2s(x) = Ll+s
h,n+2s(x).

�

4.6. Proposition. For n ≥ 2l + 1,
s−1∑
i=0

Ll
h,n+i(x)h

s−1−i(x) = Ll+1
h,n+s+1(x)− h

s(x)Ll+1
h,n+1(x).

The proof can be done by using (4.3) and induction on s.

4.7. Lemma. The following equality holds:

bn2 c∑
i=0

i
n

n− i

(
n− i
i

)
hn−2i(x) =

n

2
[Lh,n(x)− h(x)Fh,n(x)] .

The proof is similar to Lemma 3.6.

4.8. Proposition. The following equality holds:

bn2 c∑
l=0

Ll
h,n(x) =

{
Lh,n(x) +

nh(x)
2

Fh,n(x), if n is even;
1
2
(Lh,n(x) + nh(x)Fh,n(x)) , if n is odd.

(4.5)

Proof. An argument analogous to that of the proof of Proposition 3.7 yields

bn2 c∑
l=0

Ll
h,n(x) =

(⌊n
2

⌋
+ 1
)
Lh,n(x)−

bn2 c∑
i=0

i
n

n− i

(
n− i
i

)
hn−2i(x).

From Lemma 4.7 the Equation (4.5) is obtained. �



5. Generating functions of the incomplete h(x)-Fibonacci and h(x)-
Lucas polynomials
In this section, we give the generating functions of incomplete h(x)-Fibonacci and

h(x)-Lucas polynomials.

5.1. Lemma. (See [9], p. 592). Let {sn}∞n=0 be a complex sequence satisfying the
followin non-homogeneous recurrence relation:

sn = asn−1 + bsn−2 + rn, n > 1,

where a and b are complex numbers and {rn} is a given complex sequence. Then the
generating function U(t) of the sequence {sn} is

U(t) =
G(t) + s0 − r0 + (s1 − s0a− r1)t

1− at− bt2 ,

where G(t) denotes the generating function of {rn}.

5.2. Theorem. The generating function of the incomplete h(x)-Fibonacci polynomials
F l
h,n(x) is given by

Rh,l(x) =

∞∑
i=0

F l
h,i(x)t

i

= t2l+1 [Fh,2l+1(x) + (Fh,2l+2(x)− h(x)Fh,2l+1(x)) t

− t2

(1− h(x)t)l+1

] [
1− h(x)t− t2

]−1
.

Proof. Let l be a fixed positive integer. From (3.1) and (3.3), F l
h,n(x) = 0 for 0 ≤ n <

2l + 1, F l
h,2l+1(x) = Fh,2l+1(x), and F l

h,2l+2(x) = Fh,2l+2(x), and that

F l
h,n(x) = h(x)F l

h,n−1(x) + F l
h,n−2(x)−

(
n− 3− l

l

)
hn−3−2l(x).

Now let

s0 = F l
h,2l+1(x), s1 = F l

h,2l+2(x), and sn = F l
h,n+2l+1(x).

Also let r0 = r1 = 0, and

rn =

(
n+ l − 1

n− 2

)
hn−2(x).

The generating function of the sequence {rn} is G(t) = t2/(1−h(x)t)l+1; see [13, p. 355].
Thus, from Lemma 5.1, we get the generating function Rh,l(x) of sequence {sn}. �

5.3. Theorem. The generating function of the incomplete h(x)-Lucas polynomials Ll
h,n(x)

is given by

Sh,l(x) =

∞∑
i=0

Ll
h,i(x)t

i

= t2l [Lh,2l(x) + (Lh,2l+1(x)− h(x)Lh,2l(x)) t

− t2(2− t)
(1− h(x)t)l+1

] [
1− h(x)t− t2

]−1
.



Proof. The proof is similar to the proof of Theorem 5.2. Let l be a fixed positive integer.
From (4.1) and (4.4), Ll

h,n(x) = 0 for 0 ≤ n < 2l, Ll
h,2l(x) = Lh,2l(x), and Ll

h,2l+1(x) =
Lh,2l+1(x), and that

Ll
h,n(x) = h(x)Ll

h,n−1(x) + Ll
h,n−2(x)−

n− 2

n− 2− l

(
n− 2− l
n− 2− 2l

)
hn−2−2l(x).

Now let

s0 = Ll
h,2l(x), s1 = Ll

h,2l+1(x), and sn = Ll
h,n+2l(x).

Also let r0 = r1 = 0, and

rn =

(
n+ 2l − 2

n+ l − 2

)
hn+2l−2(x).

The generating function of the sequence {rn} is G(t) = t2(2 − t)/(1 − h(x)t)l+1; see
[13, p. 355]. Thus, from Lemma 5.1, we get the generating function Sh,l(x) of sequence
{sn}. �
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