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Abstract

Recently, Belbachir and Bencherif have expanded Fibonacci and Lucas polynomials
using bases of Fibonacci- and Lucas-like polynomials. Here, we provide simplified
proofs for the expansion formulsethat in essence a computer can do. Furthermore, for
2 of the 5 instances, we find g-analogues.

1 Introduction
In [2], Belbachir and Bencherif studied the Fibonacci and Lucas polynomials:
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We prefer the modified polynomials
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Substituting z = ¢/(1 — )2, these formulae become particularly nice:
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The main result of [2] are the following 5 formulee:
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But the proofs of all these, using the simple forms for u,, and v,,, can be done by a computer!
To give the reader an idea, let us do the last one, which seems to be the most complicated:
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The other proofs are similar/easier:
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Remark 1.  The polynomials u,(z) and v,(x) are essentially Chebyshev polynomials.

The authors of [2] have also published a companion paper [3]; according to a remark in [2],
the results in [2] are more general than the ones in [3].

2 g-analogues

Now we are interested in g-analogues. For this, we replace wu,, by
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and v, by
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as suggested by Cigler [4]. We use standard g-notation here:
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compare [1]; the notions of the Introduction are the special instance ¢ = 1.

Theorem 2.
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Proof. We must prove that
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Comparing coefficients, we have to prove that
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Simplifying, we must prove that
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Another form of this is
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for 0 < a <n —1. This follows from Rothe’s formula [1, p. 490]
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Therefore, for £ < n — 2, the identity holds. For k =n — 1,
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can be shown by inspection, and for k = n, the identity holds, since the sum is empty. [

Theorem 3.
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Proof. We must prove that
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Comparing coefficients, this means
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which follows by a similar but simpler argument than before. O

3 Conclusion

We found 2 g-analogues; for the remaining 3 instances we were not successful and leave this
as a challenge for anybody who is interested.
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