AN "ALL OR NONE" DIVISIBILITY PROPERTY FOR A CLASS OF FIBONACCI-LIKE SEQUENCES OF INTEGERS

Juan Pla

315 Rue de Belleville, 75019 Paris, France
(Submitted September 1992)
In this note, we prove the following theorem.
Theorem: Let u_{n} be the general term of a given sequence of integers such that $u_{n+2}=u_{n+1}+u_{n}$, where u_{0} and u_{1} are arbitrary integers. Let x be an arbitrary integer other than $-2,-1,0$, and 1 . Let D be any divisor of $x^{2}+x-1$ other than 1 . Then, the sequence $w_{n}=x u_{n+1}-u_{n}$, where $n \geq 0$, is such that:
(a) D divides every w_{n};
(b) D divides no w_{n}.

Proof: It is a well-known fact [1] that

$$
\begin{equation*}
u_{n+p+1}=F_{p+1} u_{n+1}+F_{p} u_{n}, \tag{1}
\end{equation*}
$$

where F_{p} is the $p^{\text {th }}$ Fibonacci number. Considering the following product of two polynomials in the variable x,

$$
\begin{equation*}
\left(x^{2}+x+1\right) \sum_{p=0}^{p=n} F_{p+1} x^{p}, \tag{2}
\end{equation*}
$$

and taking advantage of the fundamental properties of the Fibonacci sequence, we can see that most of the terms in (2) vanish when we develop the product, to obtain

$$
\begin{equation*}
\left(x^{2}+x+1\right) \sum_{p=0}^{p=n} F_{p+1} x^{p}=-1+x^{n+1}\left((1+x) F_{n+1}+F_{n}\right) . \tag{3}
\end{equation*}
$$

Since x is an integer, the two integers $x^{2}+x-1$ and $k_{n}=(1+x) F_{n+1}+F_{n}$, by (3), cannot share any common divisor. That is,

$$
\begin{equation*}
\left(x^{2}+x-1, k_{n}\right)=1, n \geq 0 . \tag{4}
\end{equation*}
$$

Letting

$$
\left\{\begin{array}{l}
k_{p}=(1+x) F_{p+1}+F_{p}, \tag{5}\\
k_{p-1}=F_{p+1}+x F_{p}
\end{array}\right.
$$

we have a linear system whose determinant is $x^{2}+x-1$. Since we assume that x is an integer, and that this polynomial has no integer as a root, this means that the system (5) has one solution, which can be expressed as

$$
\left\{\begin{array}{l}
\left(x^{2}+x-1\right) F_{p+1}=x k_{p}-k_{p-1}, \tag{6}\\
\left(x^{2}+x-1\right) F_{p}=(1+x) k_{p-1}-k_{p} .
\end{array}\right.
$$

If we substitute the values of F_{p+1} and F_{p} from (6) into (1), we have

$$
\begin{align*}
\left(x^{2}+x-1\right) u_{n+p+1} & =\left(x k_{p}-k_{p-1}\right) u_{n+1}+\left((1+x) k_{p-1}-k_{p}\right) u_{n} \\
& =\left(x u_{n+1}-u_{n}\right) k_{p}+\left((1+x) u_{n}-u_{n+1}\right) k_{p-1} . \tag{7}
\end{align*}
$$

Recalling that $w_{n}=x u_{n+1}-u_{n}$ and that $u_{n+1}=u_{n}+u_{n-1}$, we can substitute these values into the right-hand side of (7) and by simplifying obtain

$$
\begin{equation*}
\left(x^{2}+x-1\right) u_{n+p+1}=w_{n} k_{p}+w_{n-1} k_{p-1} \tag{8}
\end{equation*}
$$

Now let D be any divisor of $x^{2}+x-1$ (except 1) and assume D divides w_{n} for some n. Since, by (4), D does not divide k_{p}, we see that D divides w_{n-1}. It is now obvious, by induction, that all the terms of $\left\{w_{n}\right\}$ are divisible by D. Similarly, if there exists one w_{n} that is not divisible by D, then there is no w_{n} that is divisible by D.

Examples:

a) The first interesting value is $x=2$, for which $x^{2}+x-1=5$, and

$$
w_{n}=2 u_{n+1}-u_{n}=u_{n+1}+u_{n-1} .
$$

Letting $u_{n}=F_{n}$, we have $w_{n}=L_{n}$, where L_{n} is the $n^{\text {th }}$ Lucas number. Since 5 does not divide $L_{0}=w_{0}$, we have established the well-known fact that no L_{n} is divisible by 5 . On the contrary, if we let $u_{n}=L_{n}$, then $w_{n}=L_{n+1}+L_{n-1}$. Here, all terms of w_{n} are divisible by 5 , since $w_{1}=5$.
b) A consequence of this "all or none" property is that no Fibonacci-like sequence of integers u_{n} exists such that $F_{n}=u_{n+1}+u_{n-1}$ for all n because some of the Fibonacci numbers are divisible by 5 and some are not.
c) When $x^{2}+x-1$ is composite, it is easy to build sequences displaying the "none" property for some of the divisors and the "all" property for the other ones. For instance, when $x=7$, $x^{2}+x-1=55=5 * 11$ and $w_{n}=7 u_{n+1}-u_{n}$. With $u_{0}=3$ and $u_{1}=2$, we get $w_{0}=11$, which means that w_{n} displays the property "none" for 5 , and the property "all" for 11 .

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to the editor for his assitance in restructuring the original version of this paper and to the referee for his/her many valuable suggestions which also improved the quality of this article.

REFERENCE

1. A. F. Horadam. "A Generalized Fibonacci Sequence." Amer. Math. Monthly 68.5 (1961): 455-59.

AMS Classification Numbers: 11B37, 11B39

