
AN "ALL OR NONE" DIVISIBILITY PROPERTY FOR A CLASS OF 

FIBONACCI-LIKE SEQUENCES OF INTEGERS 

Juan Pla 
315 Rue de Belleville, 75019 Paris, France 

(Submitted September 1992) 

In this note, we prove the following theorem. 

Theorem: Let un be the general term of a given sequence of integers such that un+2 = un+1 +un, 

where uQ and ux are arbitrary integers. Let x be an arbitrary integer other than -2, -1,0, and 1. 

Let D be any divisor of x
2
 + x -1 other than 1. Then, the sequence wn = xun+l - un, where n > 0, 

is such that: 

(a) D divides every wn; 

(h) D divides no wn. 

Proof: It is a well-known fact [1] that 

^n+P+l=Fp+^n+l
+F

p
U
^ (1) 

where Fp is thep* Fibonacci number. Considering the following product of two polynomials in 

the variable x, 

tf+x + lJZF^x', (2) 

and taking advantage of the fundamental properties of the Fibonacci sequence, we can see that 

most of the terms in (2) vanish when we develop the product, to obtain 

(x
2
 + x +1) g Fp+lx? = -1 + x"

+1
((l + x)Fn+l + Fn). (3) 

p=0 

Since x is an integer, the two integers x
2
 + x - 1 and kn=(l + x)Fn+l + Fn, by (3), cannot share any 

common divisor. That is, 

( x
2
+ x - U w ) = l, n>0. (4) 

Letting 

fo = (l + *)^1+F,, (5) 

[bp-i^F^ + xFp, 

we have a linear system whose determinant is x
2
 + x - l . Since we assume that x is an integer, 

and that this polynomial has no integer as a root, this means that the system (5) has one solution, 

which can be expressed as 

[(x
2
 + x - l)Fp+l = xkp -kp_l7 

(6) 
\ ( x 2 + x _ l ) F (i + x)k k 
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If we substitute the values of Fp+l and F from (6) into (1), we have 

(x
2
 + x - 1 ) ! ^ = (xkp - V i K + i + (0 + x) kp-i - kp)un 

= (xun+l - un)kp + ((1 + x)u„ - un+l)kp_v 

Recalling that wn = xun+l-un andthati/w+1 = f#w+Mw_1, we can substitute these values into the 

right-hand side of (7) and by simplifying obtain 

(x
2
 + x - l)un+p+l = wnkp + wn_xkp_x. (8) 

Now let D be any divisor of x
2
 + x - 1 (except 1) and assume D divides wn for some n. Since, by 

(4), D does not divide kp, we see that D divides wn_x. It is now obvious, by induction, that all the 

terms of {wn} are divisible by D. Similarly, if there exists one wn that is not divisible by D, then 

there is no wn that is divisible by D. 

Examples: 

a) The first interesting value is x = 2, for which x
2
 + x - 1 = 5, and 

Letting un-Fn, we have wn = Ln, where Ln is the n
th

 Lucas number. Since 5 does not divide 

L0 = w0, we have established the well-known fact that no Ln is divisible by 5. On the contrary, if 

we let un = Zw, then wn = Ln+l + Ln_x. Here, all terms of wn are divisible by 5, since wY = 5. 

b) A consequence of this "all or none" property is that no Fibonacci-like sequence of integers un 

exists such that Fn - un+l+un_l for all n because some of the Fibonacci numbers are divisible by 5 

and some are not. 

c) When x
2
 + x - 1 is composite, it is easy to build sequences displaying the "none" property for 

some of the divisors and the "all" property for the other ones. For instance, when x = 7, 

x
2
 + x - 1 = 55 = 5*11 and wn = 7un+l -un. With u0 = 3 and ul=2,we get wQ - 11, which means 

that wn displays the property "none" for 5, and the property "all" for 11. 
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