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1. Introduction 
Fibonacci polynomials are a great importance in 

mathematics. Large classes of polynomials can be defined 
by Fibonacci-like recurrence relation and yield Fibonacci 
numbers [15]. Such polynomials, called the Fibonacci 
polynomials, were studied in 1883 by the Belgian 
Mathematician Eugene Charles Catalan and the German 
Mathematician E. Jacobsthal. 

The polynomials ( )nf x  studied by Catalan are defined 
by the recurrence relation 

 ( ) ( ) ( )2 1n n nf x xf x f x+ += +  (1.1) 

where ( )1 1f x = , ( )2f x x= , and 3n ≥ . Notice 

that ( )1nf F= , the nth Fibonacci number. 
The Fibonacci polynomials studied by Jacobsthal were 

defined by 

 ( ) ( ) ( )1 2n n nJ x J x xJ x− −= +  (1.2) 

where ( ) ( )1 21J x J x= = , and 3n ≥ . 

The Pell polynomials ( )np x are defined by 

 ( ) ( ) ( )1 22n n np x xp x p x− −= +  (1.3) 

where ( )0 0p x = ,  ( )1 1p x = , and 2n ≥ . 
The Lucas polynomials ( ) nl x , originally studied in 

1970 by Bicknell, are defined by 

 ( ) ( ) ( )1 2n n nl x xl x l x− −= +  (1.4) 

where ( )0 2l x = , ( )1l x x= , and 2n ≥ . 
It is well known that the Fibonacci polynomials and 

Lucas polynomials are closely related. Obviously, they 
have a deep relationship with the famous Fibonacci and 

Lucas sequences. That is ( )1n nf F=  and ( )1n nl L= , 
where nF  and nL  are the Fibonacci and Lucas numbers. 
Swamy [11] defined the Fibonacci Polynomials and 
obtained some more identities for these polynomials. 
Hogget and Lind [17] make a similar “symbolic 
substitution” of certain sequences into the Fibonacci 
polynomials, they extend these results to the substitution 
of any recur rent sequence into any sequence of 
polynomials obeying a recurrence relation with 
polynomial coefficients. Since then many problems about 
the polynomials have been proposed in various issue of 
the Fibonacci Quarterly. Hoggatt, Philips and Leonard [16] 
have obtained some more identities involving Fibonacci 
Polynomials and Lucas polynomials. A. Lupas [3] present 
many interesting properties of Fibonacci and Lucas 
Polynomials. C. Berg [4] defined Fibonacci numbers and 
orthogonal polynomials. S. Falcon and A. Plaza [13] 
defined the k-Fibonacci polynomials are the natural 
extension of the k-Fibonacci numbers and many of their 
properties admit a straightforward proof and many 
relations for the derivatives of Fibonacci polynomials are 
proven. K. Kaygisiz and A. Sahin [10] present new 
generalizations of the Lucas numbers by matrix 
representation, using Generalized Lucas Polynomials. G. 
Y. Lee and M. Asci [8], consider the Pascal matrix and 
define a new generalization of Fibonacci polynomials 
called (p, q)-Fibonacci polynomials. They obtain 
combinatorial identities and by using Riordan method they 
get a factorizations of Pascal matrix involving (p, q)-
Fibonacci polynomials. Many authors have studied 
Fibonacci polynomials. In this paper, we present 
generalization of Fibonacci and Lucas Polynomials by 
changing the initial terms but the recurrence relation is 
preserved. 

2. Generalized Fibonacci Polynomials 
The generalized Fibonacci polynomials defined by 
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If s=1, then we obtained classical Fibonacci polynomial 
sequence. 

It is well known that the Fibonacci polynomials and 
Lucas Polynomials are closely related. The 

generalized Lucas polynomials defined by 
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If s=1, then we obtained classical Lucas polynomial 
sequence. 

In the 19th century, the French mathematician Binet 
devised two remarkable analytical formulas for the 
Fibonacci and Lucas numbers. In our case, Binet’s 
formula allows us to express the generalized Fibonacci 
Polynomials in function of the roots 1 2&ℜ ℜ  of the 
following characteristic equation, associated to the 
recurrence relation (2.1) & (2.2): 

 2 1x xt= +  (2.3) 

3. Properties of Generalized Fibonacci 
Polynomials 

Theorem 1: (Binet's formula). The nth generalized 
Fibonacci Polynomials is given by 
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where are the roots of the characteristic equation (3), 
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Proof: we use the Principle of Mathematical Induction 
(PMI) on n. It is clear the result is true for n = 0 and n = 1 
by hypothesis. Assume that it is true for i such that 0 ≤ i ≤ 
r +1, then 
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It follows from definition of generalized Fibonacci 
Polynomials and from equation (3.1), 
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Thus, the formula is true for any positive integer n. 
Theorem 2: (Binet's formula). The nth generalized 

Lucas Polynomials is given by 

 ( ) ( )1 2
n n

nl x s= ℜ +ℜ  (3.3) 

Proposition 3: For any integer n ≥ 1, 
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Proof: Since 1 2&ℜ ℜ  are the roots of the 
characteristic equation (2.3), then 
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now, multiplying both sides of these equations by 

1 2&n nℜ ℜ  respectively, we obtain the desired result. 
Proposition 4: For any integer n ≥ 1, 

 ( ) ( ) ( )1 2 1 1
n n

n ns f x f x+ −ℜ +ℜ = +  (3.5) 

Proof: By using Eq. (3.1) in the R.H.S. of Eq. (3.5) and 

taking in to account that 1
2

1−
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ℜ
 it is obtained 

 

( )

( )

( )

1 1 1 1
1 2 1 2

1 2 1 2

1 1 1 1
1 1 2 2

1 2

1 1 2 2
1 2 1 2

1 2

1 1

n n n n

n n n n

n n

n n

RHS s s

s

s

s

+ + − −

+ − + −

ℜ −ℜ ℜ −ℜ
= +

ℜ −ℜ ℜ −ℜ

= ℜ +ℜ −ℜ −ℜ
ℜ −ℜ

     = ℜ ℜ + −ℜ ℜ +    ℜ −ℜ ℜ ℜ     

= ℜ +ℜ

 

Proposition 5: For any integer n, 
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Proof: From the Binet’s formula of generalized 
Fibonacci Polynomials 
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If n is even, ( ) ( ) ( )22 2 2
1 24 4 n n

nx f x s s s+ + = ℜ + ℜ  

If n is odd, ( ) ( ) ( )22 2 2
1 24 4 n n

nx f x s s s+ − = ℜ − ℜ  

Let us denote ( )1 2
n ns sℜ + ℜ  by ( )nl x . 

Then previous formula become: 

 ( ) ( ) ( ) ( )2 2 2 24 4 1 n
n nx f x s l x+ + − =  (3.7) 

4. Sums of Generalized Fibonacci 
Polynomials 

In this section, we study the sums of generalized 
Fibonacci Polynomials. This enables us to give in a 
straightforward way several formulas for the sums of such 
Polynomials. 
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Lemma 6: For fixed integers p, q with 0 1q p≤ ≤ − , 
the following equality holds 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1 p
p pn qp n p n qsf x l x f x sf x++ + += − −

 (3.8) 
Proof: From the Binet’s formula of generalized 

Fibonacci and Lucas Polynomials, 

( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

1

1 1
1 2

1 2
1 2

2 2 2
1 1 2 2

1 2
2 2 2

1 2 1 2
1 2

2

1 1

1

1

p p n q

p n q p n q
n n

p n q p n qp ppn q pn q

p n q p n q p pn q pn q

p
pn qp n

l x f x

s s

s

s

sf x sf x

+ +

+ + + +

+ + + ++ +

+ + + + + +

++

 ℜ −ℜ = ℜ +ℜ
 ℜ −ℜ
 

 = ℜ + − ℜ − − ℜ −ℜ  ℜ −ℜ

 = ℜ −ℜ + − ℜ −ℜ  ℜ −ℜ

= + −

 

then, the equation becomes, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1 p
p pn qp n p n qsf x l x f x sf x++ + += − −  

Proposition 7: For fixed integers p, q with 
0 1q p≤ ≤ − , the following equality holds 
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Proof: Applying Binet’s formula of generalized 
Fibonacci Polynomials, 
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Corollary 7.1: Sum of odd generalized Fibonacci 
polynomials 

If p=2m+1, then Eq.(3.9) is 
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Corollary 7.2: Sum of even generalized Fibonacci 
polynomials 

If p=2m, then Eq.(3.9) is 
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Proof: Applying Binet’s formula of generalized 
Fibonacci Polynomials, the proof is clear. For different 
values of p&q: 
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5. Confluent Hypergeometric Identities of 
Generalized Fibonacci Polynomials 

A. Lupas [3], present a guide of Fibonacci and Lucas 
Polynomial and defined Fibonacci and Lucas Polynomial 
in terms of hypergeometric form. K. Dilcher [9], defined 
Fibonacci numbers in terms of hypergeometric function. C. 
Berg [4], defined Fibonacci numbers and orthogonal 
polynomials. 

In this section, we established some properties of 
generalized Fibonacci Polynomials in terms of confluent 
hypergeometric function. Proofs of the theorem are based 
on special function, simple algebra and give several 
interesting identities involving them. 

Theorem 9: If ( )nf x  and ( )nl x  are generalized 
Fibonacci and Lucas Polynomials then 
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(iv) ( ) ( ) ( )1 1 2n n nl x xf x xf x+ += +  (4.4) 

Proof (i): Since the generating function of the 
generalized Fibonacci Polynomials is, 
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Proof (ii): Since the generating function of the 
generalized Lucas Polynomials is, 
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We can easily get the following recurrence relation by 
using (4.1) and (4.2) 

(iii) ( ) ( ) ( )12n n nl x f x xf x+= −  
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 (iv) ( ) ( ) ( )1 1 2n n nl x xf x xf x+ += +  

Theorem 10: If ( )nf x  and ( )nl x  are generalized 
Fibonacci and Lucas Polynomials then 
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Generating functions are very helpful in finding of 
relations for sequences of integers. Some authors found 
miscellaneous identities for the Fibonacci polynomials 
and Lucas polynomials by manipulation with their 
generating functions. Our approach is rather different in 
this section. 

Corollary 10.1: 
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Corollary 10.3: 
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Proposition 11: Prove that 
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Proof: Using the generating function, the proof is clear. 

6. Conclusion 
We have derived many fundamental properties in this 

paper. We describe sums of generalized Fibonacci 
Polynomials. This enables us to give in a straightforward 
way several formulas for the sums of such Polynomials. 

These identities can be used to develop new identities of 
polynomials. Also we describe some confluent 
hypergeometric identities of generalized Fibonacci and 
Lucas polynomials. In Theorem: 10 we use c, is the 
arbitrary constants of integration and give several 
interesting identities involving them. 
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