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1. Introduction

In modern science there is a huge interest in the theory and application of the Golden Section and Fibonacci numbers
[1-34]. The Fibonacci numbers F, are the terms of the sequence 0,1,1,2,3,5,..., where F, = F,_1 + F,_», n > 2, with the ini-
tial values Fp =0 and F; = 1.

Falcén and Plaza [11] introduced a general Fibonacci sequence that generalizes, among others, both the classical Fibonacci
sequence and the Pell sequence. These general k-Fibonacci numbers Fy, are defined by Fy, = kFy,_1 + Fxn_2, n > 2, with the
initial values Fo = 0 and F; = 1. The Pell numbers are the 2-Fibonacci numbers. The k-Fibonacci numbers were found by
studying the recursive application of two geometrical transformations used in the well-known 4-triangle longest-edge par-
tition. On the other hand, in [12] the k-Fibonacci numbers were given in an explicit way and many properties were proven. In
particular, the k-Fibonacci numbers were related with the so-called Pascal 2-triangle.

Polynomials also can be defined by Fibonacci-like recurrence relations. Such polynomials, called Fibonacci polynomials,
were studied in 1883 by the Belgian mathematician Eugene Charles Catalan and the German mathematician E. Jacobsthal.
The polynomials F,(x) studied by Catalan are defined by the recurrence relation

Fu(X) =xFn_1(X) + Foa(X), n >3, (1.1)
where F;(x) = 1,F,(x) = x. The Fibonacci polynomials studied by Jacobsthal are defined by

LX) =Jha () + X (%), n =3, (1.2)
where J; (x) =J,(x) = 1. The Fibonacci polynomials studied by P.F. Byrd are defined by

Pu(X) = 2XQ, 1 (X) + Py 5 (X), 1= 2, (13)
where @, (x) =0, ¢,(x) = 1. The Lucas polynomials L,(x), originally studied in 1970 by Bicknell, are defined by

Ly(x) = XLy_1(X) 4+ La2(X),n > 2, (1.4)
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where Ly(x) = 2,L{(x) = x.

In this paper, let h(x) be a polynomial with real coefficients. We introduce h(x)-Fibonacci polynomials that generalize both
Catalan’s Fibonacci polynomials F,(x) and Byrd’s Fibonacci polynomials ¢, (x) and also the k-Fibonacci numbers Fy . In Sec-
tion 2 we provide properties for the h(x)-Fibonacci polynomials. In Section 3, we introduce h(x)-Lucas polynomials that gen-
eralize the Lucas polynomials and present properties of these polynomials. In the last section, we introduce the matrix Q(x)
that generalizes the Q-matrix (} (1)> whose powers generate the Fibonacci numbers. In this paper, we exhibit some prop-

erties of the classical type for the h(x)-Fibonacci and h(x)-Lucas polynomials and the matrix Q(x).

2. The h(x)-Fibonacci polynomials and their properties

Definition 2.1. Let h(x) be a polynomial with real coefficients. The h(x)-Fibonacci polynomials {Fj, ,(x)},-, are defined by the
recurrence relation

Fh.n+1 (X) = h(X)Fh,n(x) + Fh,n—l (X), nz= ]7 (21)
with initial conditions Fo(x) =0, Fp1(x) = 1.

For h(x) = x we obtain Catalan’s Fibonacci polynomials, and for h(x) = 2x we obtain Byrd’s Fibonacci polynomials. If
h(x) = k, we obtain the k-Fibonacci numbers. For k =1 and k =2 we obtain the usual Fibonacci numbers and the Pell
numbers.

The generating function gg(t) of the sequence {F,,(x)} is defined by

gr(t) = iFh,n(X)tn- (2.2)
n=0

We consider gi(t) a formal power series. Therefore, we need not take care of the convergence of the series. For general
material on generating functions we refer to the books [21,34].

Theorem 2.1.
t

gk (t) 1o hwi- e (2.3)
Proof. We have

8 (t) — h(x)tge(t) — t2g¢(0)

= Fro(X) + tFy1(X) + f; t" [Frn(X) — h(X)Fpn_1(X) — Fpn_2(x)] =t.

P

We thus obtain (2.3). O
Theorem 2.2. Suppose that h(x) is an odd polynomial (that is, h(—x) = —h(x)). Then F,,(—x) = (=1)""'F,(x) for n = 0.
Proof. From (2.3) we obtain

th,n(—x)(—f)" = ﬁ
or

g(—l)”HFh,n(—x)t" - W (2.4)

Applying (2.3) to the right-hand side of (2.4) we obtain

o0

(=)™ Eyp(—x)t" = iFh,n(X)t”A
—0 n=0

n

This proves Theorem 2.2. O
Binet’s formulas are well known in the theory of Fibonacci numbers. These formulas can also be carried out for the h(x)-
Fibonacci polynomials. Let a(x) and B(x) denote the roots of the characteristic equation

VP—h(x)p-1=0 (2.5)

of the recurrence relation (2.1). Then
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h(x) +\/h*(x) + 4 h(x) — /K2 (x) + 4
T e R 26)

Note that o(x) + B(x) = h(x), a(x)B(x) = —1 and a(x) — B(x) = \/h*(x) + 4.
We obtain the following Binet’s formula for Fj, ,(x). O

a(x) =

Theorem 2.3. Forn > 0,

Fpn(x) = (2.7)

Proof. From the theory of difference equations we know that the general term of the h(x)-Fibonacci polynomials may be
expressed in the form Fj,,(x) = Aa"(x) + Bp"(x) for some coefficients A and B. Using the values n =0 and n = 1 we obtain
A= 1M and B = Wlm which proves (2.7). O

ou(X)—

Theorem 2.4. Forn > 1,

2

RS S i L) 28)
i=0
Proof. From Theorem 2.1 we obtain
= t )
Fra(x)t" = =t h(x)t + t3)"
,,Z:; L e n;( ()t +1)
o0 n n i ;
=ty ( )(h(x)t) (t)
n=0 i=0 !
- Z Z <Tl>h”*i(x)tn+i+l.
n=0 i=0 1

This proves (2.8). O

\%
—_

Theorem 2.5. For n

’

_ ol-n n n-2i-1,1,2 i 2.9
Fan) =27 3 (G J0r 0w + 4 29

Proof. By (2.6) we have

Thus, by (2.7),

A0 -0 o' - B')
Fra®) =0 =500 — *(x) + 4
1!
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Theorem 2.6. Forn > 1,

Fun(X) =i 'Uy4 (’%‘)) (2.10)
where i = —1 and U,(t) = Z}.L?OU (-1y (]n _j> (26)"¥ is the Chebyshev polynomial of the second kind.

o 1
n __
> Un02" =152

Letz=iyandt= hé—’f) Then we obtain

>N . h(x)) 1
e e
nz:; "\ 2i 1—h(x)y—y?
or
- h(X)> y
iU <— yHl =
nz:; "\ 2i 1—hx)y—y?
Thus, by Theorem 2.1, we obtain (2.10). O
Theorem 2.7. Let D,(x) denote the n x n tridiagonal matrix defined as

1 ;
0 h(x) i

=
=

x
=

Da(x) = L ,on=1, (2.11)

where i2 = —1. In addition, let Do(x) = [0]. Then
detDy(x) = Fpn(x), n = 0. (2.12)

Proof. We proceed by induction on n. For n = 1 and n = 2, we have detD;(x) = 1 = F,;(x) and det D, (x) = h(x) = Fy»(X).
Assume that detD;_;(X) = Fpp_1(x) and detDp_»(x) = Fy 5 2(x), n = 3. Then
det D,(x) = h(x) det D,_; (x) — i* det Dy_5(x) = h(X)Fpn1(X) + Frn_2(x).
From Definition 2.1 we obtain
detD,(x) = Fpn(x). O

3. The h(x)-Lucas polynomials
In this section, we introduce h(x)-Lucas polynomials and present their basic properties. We do not write down all proofs,
since they are similar to those in Section 2.

Definition 3.1. Let h(x) be a polynomial with real coefficients. The h(x)-Lucas polynomials {L; ,(x)}n, are defined by the
recurrence relation

Lh,n+l (X) = h(X)Lh,n (X) + Lh.n—l (X), n s (31)

with initial conditions Lyo(x) = 2, Ly (x) = h(x).

1

\%

For h(x) = x we obtain the Lucas polynomials, and for h(x) = 1, we obtain the usual Lucas numbers.
Theorem 3.1. Forn > 1,
Lh,n (X) = Fh‘n+l (X) + Fh.n—l (X) (32)
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Proof. We proceed by induction on n. For n = 1 and n = 2, we have L;;(X) =
=Fnn(X) + Frn2(x), n

Fp3(x) + Fp1(x). Now, assume that Ly, 1(x)

Lyn(x) = h(X)Lnpn-1(X) + Lon2(X)
= h(x)(Fnn(X) + Fhn2(x)
= (h(X)Fyn(x) + Frn1(x)) +
= Funi1(X) + Frpoa(X). |

Corollary 3.1. Forn > 1,

Lyn(x) = h(X)Fpn(x) + 2Fpn_1(X).
Corollary 3.2. Forn > 0,

Lyn(X) = 2Fhpn11(X) — h(X)Fpn(x).

Theorem 3.2. The generating function

= i Ly (X)t
n=0

of the sequence {L,,(x)} is given as

2 — h(x)t

g(t) ZW-

Theorem 3.3. Suppose that h(x) is an odd polynomial. Then L, ,(—x) = (—

Theorem 3.4. For n > 0, L,,(x) = o"(x) + " (x), where o(x) and B(x) are the roots of the characteristic Eq. (2.5).

Corollary 3.3. Forn > 0,

Lpn(x) + \/ > (X) + 4F 0 (X)

o (x) = 3

2
,Bn(X) _ Lh‘n (X) - hz(x) + 4Fh.n(x) )

Corollary 3.4. Forn > 0,

L) = (2(x) + 4) F},(x) = 4(=1)".

Corollary 3.5. Forn > 0,
Fion(x) = Fpn(X)Lna(x).

Theorem 3.5. Forn > 1,

13) i ,
L) =y (7 l)h”’(x).
i=l
Theorem 3.6. Forn > 1,

5]

Lyn(x 2n12< )h“’ )(H*00+ )

= Fpa(x) + Fpo(x) and Ly (x)
> 3. From Definitions 3.1 and 2.1,

) + Frn-1(X) + Fraos(x)
) + (h(X)Fnn_2(%) + Frn-3(x))

3183

=h (X +2=

(33)

(3.4)

(3.5)

(3.6)

3.7)

(38)

(3.9)

(3.10)

(3.11)

(3.12)
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Theorem 3.7. Forn > 0,

Lin(x) = 2i"T, (th) (3.13)
where i = —1 and T,(t) = z }20 i <]n ]>(2t)”’2j is the Chebyshev polynomial of the first kind.
Theorem 3.8. Let R,(x) denote the n x n tridiagonal matrix defined as
SR -
h(x .
0 M
i hx) .
Rn(x) = A , nx=1, (3.14)
i
I i hx) ]
where i = —1. Then
detRy(x) =Lyp 1(x), n>1. (3.15)

4. The matrix Q,(x) and its properties

In this section, we introduce the matrix Q,(x) that plays the role of the Q-matrix. The Q-matrix is associated with the Fibo-
nacci numbers and is defined as

11
o=[; of
Definition 4.1. Let Qp(x) denote the 2 x 2 matrix defined as
h(x) 1
= . 4.16
aw=[" (416)
Theorem 4.1. Let n > 1. Then
Fupi1(X)  Frn(X)
Qr(x) = { } 4.17
7 (%) Fan(®)  Frn1(®) (4.17)
Proof. We proceed by induction on n. The result holds for n = 1. Assume that it holds for n =m (> 1). Then
Fh.m l(x) Fllm :| |: :|
m+l +
X) =
0= {Fmo«) Fam1(0 | 1
_ |:h(x)Fh‘m+1( ) + Fhm(x) Fh m+1 (X):|
h()Fum(X) + Fama (%) Frn(X)
_ |:Fh.m+2 (%) Frpmi (X):| 0
Frmi1(X)  Fnm(X)
Corollary 4.1. Let n > 1. Then
Fini1 (X)Fna1 (X) = Fiy(X) = (=1)". (4.18)

Proof. Since detQ,(x) = —1, then det Q}(x) = (—1)". By Theorem 4.1, det Q}(X) = Fyn1 (X)Fan_1(X) — F2,(x). We thus obtain
(4.18). O

Corollary 4.2. Let m,n > 0. Then
Fh.m+n+1 (X) = Fh‘m+1 (X)Fh.nﬂ (X) + Fh.m (X)Fh.n(x)- (419)
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In particular,
Fhane1(X) = Fipin (%) + Fp o (). (4.20)
Proof. This result follows from the identity Q3" (x) = Q' (x)Q;(x). O
Theorem 4.2. The roots of the characteristic equation of Qj(x) are o"(x) and p"(x).

Proof. The characteristic polynomial of Qj(x) is

Froa(¥) =24 Fpa(x) }
Fpn(X) Fpp1(x) =2
=22 = J(Fpne1(X) + Frpno1 (X)) + (Fh,nH (%)Fhn_1(x) — Fﬁ,n(X))~

det (Qp(x) — AI) = det

On the basis of Theorem 3.1 and Corollary 4.1,
det (Qh(x) — ) = 2> — ALpa(x) + (—1)".

The roots of the characteristic equation are

Lin(x) £ /L7 ,(x) — 4(=1)"
A= .
2
From Corollary 3.4 we obtain

O VPP (%) +4 Fun(x)

2
and from Corollary 3.3 we obtain

iA=0o"(x)or A=p"(x). O
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