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Abstract
Let {an}n≥0 denote the linear recursive sequence of order k (k ≥ 2)

defined by the initial values a0 = a1 = · · · = ak−2 = 0 and ak−1 = 1
and the recursion an = an−1 + an−2 + · · ·+ an−k if n ≥ k. The an are often
called k-Fibonacci numbers and reduce to the usual Fibonacci numbers when
k = 2. Let Pn,k(x) = ak−1x

n + akx
n−1 + · · · + an+k−2x + an+k−1, which

we will refer to as a k-Fibonacci coefficient polynomial. In this paper, we
show for all k that the polynomial Pn,k(x) has no real zeros if n is even and
exactly one real zero if n is odd. This generalizes the known result for the
k = 2 and k = 3 cases corresponding to Fibonacci and Tribonacci coefficient
polynomials, respectively. It also improves upon a previous upper bound of
approximately k for the number of real zeros of Pn,k(x). Finally, we show for
all k that the sequence of real zeros of the polynomials Pn,k(x) when n is odd
converges to the opposite of the positive zero of the characteristic polynomial
associated with the sequence an. This generalizes a previous result for the
case k = 2.
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1. Introduction

Let the recursive sequence {an}n≥0 of order k (k ≥ 2) be defined by the initial
values a0 = a1 = · · · = ak−2 = 0 and ak−1 = 1 and the linear recursion

an = an−1 + an−2 + · · ·+ an−k, n ≥ k. (1.1)
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The numbers an are sometimes referred to as k-Fibonacci numbers (or generalized
Fibonacci numbers) and reduce to the usual Fibonacci numbers Fn when k = 2
and to the Tribonacci numbers Tn when k = 3. (See, e.g., A000045 and A000073
in [11].) The sequence an was first considered by Knuth [3] and has been a topic
of study in enumerative combinatorics. See, for example, [1, Chapter 3] or [9]
for interpretations of an in terms of linear tilings or k-filtering linear partitions,
respectively, and see [10] for a q-generalization of an.

Garth, Mills, and Mitchell [2] introduced the definition of the Fibonacci coef-
ficient polynomials pn(x) = F1x

n + F2x
n−1 + · · ·+ Fnx+ Fn+1 and–among other

things–determined the number of real zeros of pn(x). In particular, they showed
that pn(x) has no real zeros if n is even and exactly one real zero if n is odd.
Later, this result was extended by Mátyás [5, 6] to more general second order re-
currences. The same result also holds for the Tribonacci coefficient polynomials
qn(x) = T2x

n + T3x
n−1 + · · · + Tn+1x + Tn+2, which was shown by Mátyás and

Szalay [8].
If k ≥ 2 and n ≥ 1, then define the polynomial Pn,k(x) by

Pn,k(x) = ak−1x
n + akx

n−1 + · · ·+ an+k−2x+ an+k−1. (1.2)

We will refer to Pn,k(x) as a k-Fibonacci coefficient polynomial. Note that when
k = 2 and k = 3, the Pn,k(x) reduce to the Fibonacci and Tribonacci coefficient
polynomials pn(x) and qn(x) mentioned above. In [7], the following result was
obtained concerning the number of real zeros of Pn,k(x) as a corollary to a more
general result involving sequences defined by linear recurrences with non-negative
integral weights.

Theorem 1.1. Let h denote the number of real zeros of the polynomial Pn,k(x)
defined by (1.2) above. Then we have
(i) h = k − 2− 2j for some j = 0, 1, . . . , (k − 2)/2, if k and n are even,
(ii) h = k − 1− 2j for some j = 0, 1, . . . , (k − 2)/2, if k is even and n is odd,
(iii) h = k − 1− 2j for some j = 0, 1, . . . , (k − 1)/2, if k is odd and n is even,
(iv) h = k − 2j for some j = 0, 1, . . . , (k − 1)/2, if k and n are odd.

For example, Theorem 1.1 states when k = 3 that the number of real zeros of
the polynomial Pn,3(x) is either 0 or 2 if n is even or 1 or 3 if n is odd. As already
mentioned, it was shown in [8] that Pn,3(x) possesses no real zeros when n is even
and exactly one real zero when n is odd.

In this paper, we show that the polynomial Pn,k(x) possesses the smallest pos-
sible number of real zeros in every case and prove the following result.

Theorem 1.2. Let k ≥ 2 be a positive integer and Pn,k(x) be defined by (1.2)
above. Then we have the following:
(i) If n is even, then Pn,k(x) has no real zeros.
(ii) If n is odd, then Pn,k(x) has exactly one real zero.

We prove Theorem 1.2 as a series of lemmas in the third and fourth sections
below, and have considered separately the cases for even and odd k. Combining
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Theorems 3.5 and 4.5 below gives Theorem 1.2. The crucial steps in our proofs
of Theorems 3.5 and 4.5 are Lemmas 3.2 and 4.2, respectively, where we make a
comparison of consecutive derivatives of a polynomial evaluated at the point x = 1.
This allows us to show that there is exactly one zero when x ≤ −1 in the case when
n is odd. We remark that our proof, when specialized to the cases k = 2 and k = 3,
provides an alternative proof to the ones given in [2] and [8], respectively, in these
cases. In the final section, we show for all k that the sequence of real zeros of
the polynomials Pn,k(x) for n odd converges to −λ, where λ is the positive zero
of the characteristic polynomial associated with the sequence an (see Theorem 5.5
below). This generalizes the result for the k = 2 case, which was shown in [2].

2. Preliminaries

We seek to determine the number of real zeros of the polynomial Pn,k(x). By the
following lemma, we may restrict our attention to the case when x ≤ −1.

Lemma 2.1. If k ≥ 2 and n ≥ 1, then the polynomial Pn,k(x) has no zeros on the
interval (−1,∞).

Proof. Clearly, the equation Pn,k(x) = 0 has no roots if x ≥ 0 since it has positive
coefficients. Suppose −1 < x < 0. If n is odd, then

ak+2j−1x
n−2j + ak+2jx

n−2j−1 > 0, 0 ≤ j ≤ (n− 1)/2,

since xn−2j−1 > −xn−2j > 0 if −1 < x < 0 and ak+2j ≥ ak+2j−1 > 0. This implies

Pn,k(x) =

n−1
2∑

j=0

(ak+2j−1x
n−2j + ak+2jx

n−2j−1) > 0.

Similarly, if n is even, then

Pn,k(x) = ak−1x
n +

n−2
2∑

j=0

(ak+2jx
n−2j−1 + ak+2j+1x

n−2j−2) > 0.

So we seek the zeros of Pn,k(x) where x ≤ −1, equivalently, the zeros of Pn,k(−x)
where x ≥ 1. For this, it is more convenient to consider the zeros of gn,k(x) given
by

gn,k(x) := ck(−x)Pn,k(−x), (2.1)

see [7], where
ck(x) := xk − xk−1 − xk−2 − · · · − x− 1 (2.2)

denotes the characteristic polynomial associated with the sequence an.
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By [7, Lemma 2.1], we have

gn,k(x) = (−x)n+k − an+k(−x)k−1 − (an+1 + an+2 + · · ·+ an+k−1)(−x)k−2
− · · · − (an+k−2 + an+k−1)(−x)− an+k−1

= (−x)n+k − an+k(−x)k−1 −
k−1∑

r=1



k−1∑

j=r

an+j


 (−x)k−r−1. (2.3)

We now wish to study the zeros of gn,k(x), where x ≥ 1. In the subsequent two
sections, we undertake such a study, considering separately the even and odd cases
for k.

3. The case k even

Throughout this section, k will denote a positive even integer. We consider the
zeros of the polynomial gn,k(x) where x ≥ 1, and for this, it is more convenient to
consider the zeros of the polynomial

fn,k(x) := (1 + x)gn,k(x), (3.1)

where x ≥ 1.
First suppose n is odd. Note that when k is even and n is odd, we have

fn,k(x) = −xn+k(1 + x) + an+kx
k + anx

k−1 − an+1x
k−2 + an+2x

k−3

− · · ·+ an+k−2x− an+k−1

= −xn+k(1 + x) + an+kx
k +

k−1∑

r=0

(−1)ran+rxk−r−1, (3.2)

by (2.3) and the recurrence for an. In the lemmas below, we ascertain the number
of the zeros of the polynomial fn,k(x) when x ≥ 1. We will need the following
combinatorial inequality.

Lemma 3.1. If k ≥ 4 is even and n ≥ 1, then

an+k+1 ≥
k
2−1∑

r=0

2
k
2−ran+2r+1. (3.3)

Proof. We have

an+k+1 = an+k +
k−1∑

r=1

an+r ≥ 2
k−1∑

r=1

an+r

= 2an+k−1 + 2a+k−2 + 2
k−3∑

r=1

an+r ≥ 2an+k−1 + 4
k−3∑

r=1

an+r
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= 2an+k−1 + 4an+k−3 + 4an+k−4 + 4

k−5∑

r=1

an+r

≥ 2an+k−1 + 4an+k−3 + 8

k−5∑

r=1

an+r

= · · · ≥
k
2−1∑

r=i

2
k
2−ran+2r+1 + 2

k
2−i+1

2i−1∑

r=1

an+r

=

k
2−1∑

r=i−1
2

k
2−ran+2r+1 + 2

k
2−i+1an+2i−2 + 2

k
2−i+1

2i−3∑

r=1

an+r

≥
k
2−1∑

r=i−1
2

k
2−ran+2r+1 + 2

k
2−i+2

2i−3∑

r=1

an+r

= · · · ≥
k
2−1∑

r=0

2
k
2−ran+2r+1,

which gives (3.3).

The following lemma will allow us to determine the number of zeros of fn,k(x)
for x ≥ 1.

Lemma 3.2. Suppose k ≥ 4 is even and n is odd. If 1 ≤ i ≤ k−1, then f (i)n,k(1) < 0

implies f (i+1)
n,k (1) < 0, where f (i)n,k denotes the i-th derivative of fn,k.

Proof. Let f = fn,k and i = k − j for some 1 ≤ j ≤ k − 1. Then the assumption
f (k−j)(1) < 0 is equivalent to

k!

j!
an+k +

j−1∑

r=0

(−1)r (k − r − 1)!

(j − r − 1)!
an+r <

k−j∏

s=1

(n+ j + s) +

k−j∏

s=1

(n+ j + s+ 1). (3.4)

We will show that inequality (3.4) implies

k!

(j − 1)!
an+k+

j−2∑

r=0

(−1)r (k − r − 1)!

(j − r − 2)!
an+r <

k−j∏

s=0

(n+j+s)+

k−j∏

s=0

(n+j+s+1). (3.5)

Observe first that the left-hand side of both inequalities (3.4) and (3.5) is positive
as

k!

j!
an+k +

j−1∑

r=0

(−1)r (k − r − 1)!

(j − r − 1)!
an+r

=
k!

j!

k−1∑

r=j

an+r +

j−1∑

r=0

(
k!

j!
+ (−1)r (k − r − 1)!

(j − r − 1)!

)
an+r > 0,

Polynomials whose coefficients are k-Fibonacci numbers 61



since an+k =
∑k−1
r=0 an+r and k!

j! >
(k−r−1)!
(j−r−1)! . Note also that

∏k−j
s=0(n+ j + s) +

∏k−j
s=0(n+ j + s+ 1)

∏k−j
s=1(n+ j + s) +

∏k−j
s=1(n+ j + s+ 1)

> n+ j,

so to show (3.5), it suffices to show

k!

(j − 1)!
an+k +

j−2∑

r=0

(−1)r (k − r − 1)!

(j − r − 2)!
an+r

≤ (n+ j)

(
k!

j!
an+k +

j−1∑

r=0

(−1)r (k − r − 1)!

(j − r − 1)!
an+r

)
. (3.6)

For (3.6), it is enough to show

k!

(j − 1)!
an+k +

j−2∑

r=0

(−1)r (k − r − 1)!

(j − r − 2)!
an+r

≤ (j + 1)

(
k!

j!
an+k +

j−1∑

r=0

(−1)r (k − r − 1)!

(j − r − 1)!
an+r

)
. (3.7)

Starting with the left-hand side of (3.7), we have

k!

(j − 1)!
an+k +

j−2∑

r=0

(−1)r (k − r − 1)!

(j − r − 2)!
an+r

=
k!

(j − 1)!

k−1∑

r=j−1
an+r +

j−2∑

r=0

(
k!

(j − 1)!
+ (−1)r (k − r − 1)!

(j − r − 2)!

)
an+r

=
k!

(j − 1)!

k−1∑

r=j

an+r +

j−1∑

r=0

(
j
k!

j!
+ (−1)r(j − r − 1)

(k − r − 1)!

(j − r − 1)!

)
an+r

=
k!

(j − 1)!

k−1∑

r=j

an+r +

j−1∑

r=0

j

(
k!

j!
+ (−1)r (k − r − 1)!

(j − r − 1)!

)
an+r

+

j−1∑

r=0

(−1)r+1(r + 1)
(k − r − 1)!

(j − r − 1)!
an+r

≤ k!

(j − 1)!

k−1∑

r=j

an+r +

j−1∑

r=0

j

(
k!

j!
+ (−1)r (k − r − 1)!

(j − r − 1)!

)
an+r

+

b j−2
2 c∑

r=0

(2r + 2)
(k − 2r − 2)!

(j − 2r − 2)!
an+2r+1

62 T. Mansour, M. Shattuck



= (j + 1)
k!

j!

k−1∑

r=j

an+r +

j−1∑

r=0

j

(
k!

j!
+ (−1)r (k − r − 1)!

(j − r − 1)!

)
an+r

− k!

j!

k−1∑

r=j

an+r +

b j−2
2 c∑

r=0

(2r + 2)
(k − 2r − 2)!

(j − 2r − 2)!
an+2r+1.

Below we show
b j−2

2 c∑

r=0

(2r + 2)
(k − 2r − 2)!

(j − 2r − 2)!
an+2r+1 ≤

k!

j!

k−1∑

r=j

an+r. (3.8)

Then from (3.8), we have

k!

(j − 1)!
an+k +

j−2∑

r=0

(−1)r (k − r − 1)!

(j − r − 2)!
an+r

≤ (j + 1)
k!

j!

k−1∑

r=j

an+r +

j−1∑

r=0

j

(
k!

j!
+ (−1)r (k − r − 1)!

(j − r − 1)!

)
an+r

≤ (j + 1)
k!

j!

k−1∑

r=j

an+r +

j−1∑

r=0

(j + 1)

(
k!

j!
+ (−1)r (k − r − 1)!

(j − r − 1)!

)
an+r

= (j + 1)
k!

j!
an+k + (j + 1)

j−1∑

r=0

(−1)r (k − r − 1)!

(j − r − 1)!
an+r,

which gives (3.7), as desired.
To finish the proof, we need to show (3.8). We may assume j ≥ 2, since the

inequality is trivial when j = 1. By Lemma 3.1 and the fact that 2m ≥ 2m if
m ≥ 1, we have
k−1∑

r=j

an+r ≥ an+k−1

≥
k
2−2∑

r=0

2
k
2−r−1an+2r+1 ≥

k
2−2∑

r=0

(k − 2r − 2)an+2r+1 ≥
b j−2

2 c∑

r=0

(k − 2r − 2)an+2r+1,

the last inequality holding since j ≤ k − 1, with k even. So to show (3.8), it is
enough to show

(k − 2r − 2)
k!

j!
≥ (2r + 2)

(k − 2r − 2)!

(j − 2r − 2)!
, 0 ≤ r ≤ b(j − 2)/2c, (3.9)

where 2 ≤ j ≤ k− 1. Since the ratio k!/j!
(k−2r−2)!/(j−2r−2)! is decreasing in j for fixed

k and r, one needs to verify (3.9) only when j = k − 1, and it holds in this case
since 2r + 2 ≤ j < k. This completes the proof.
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We now determine the number of zeros of fn,k(x) on the interval [1,∞).

Lemma 3.3. Suppose k ≥ 4 is even and n is odd. Then the polynomial fn,k(x)
has exactly one zero on the interval [1,∞). Furthermore, this zero is simple.

Proof. Let f = fn,k, where we first assume n ≥ 3. Then

f(1) = −2 + an+k +
k−1∑

r=0

(−1)ran+r = −2 + 2

k
2−1∑

r=0

an+2r > 0,

since an+k−2 ≥ ak+1 = 2. Let ` be the smallest positive integer i such that
f (i)(1) < 0; note that 1 ≤ ` ≤ k + 1 since f (k+1)(1) < 0. Then

f (`+1)(1), f (`+2)(1), . . . , f (k+1)(1)

are all negative, by Lemma 3.2. Since f (k+1)(x) < 0 for all x ≥ 1, it fol-
lows that f (`)(x) < 0 for all x ≥ 1. To see this, note that if ` ≤ k, then
f (k)(1) < 0 implies f (k)(x) < 0 for all x ≥ 1, which in turn implies each of
f (k)(x), f (k−1)(x), . . . , f (`)(x) is negative for all x ≥ 1.

If ` ≥ 2, then f (`−1)(1) ≥ 0 and f (`)(x) < 0 for all x ≥ 1. Since f (`−1)(1) ≥ 0
and limx→∞ f (`−1)(x) = −∞, we have either (i) f (`−1)(1) = 0 and f (`−1)(x) has no
zeros on the interval (1,∞) or (ii) f (`−1)(1) > 0 and f (`−1)(x) has exactly one zero
on the interval (1,∞). If ` ≥ 3, then f (`−2)(x) would also have at most one zero
on (1,∞) since f (`−2)(1) ≥ 0, with f (`−2)(x) initially increasing up to some point
s ≥ 1 before it decreases monotonically to −∞ (where s = 1 if f (`−1)(1) = 0 and
s > 1 if f (`−1)(1) > 0). Note that each derivative of f of order ` or less is eventually
negative. Continuing in this fashion, we then see that if ` ≥ 2, then f ′(x) has at
most one zero on the interval (1,∞), with f ′(1) ≥ 0 and f ′(x) eventually negative.
If ` = 1, then f ′(x) < 0 for all x ≥ 1. Since f(1) > 0 and limx→∞ f(x) = −∞,
it follows in either case that f has exactly one zero on the interval [1,∞), which
finishes the case when n ≥ 3.

If n = 1, then f1,k(x) = −xk+1(1 + x) + 2xk + x− 1 so that f1,k(1) = 0, with

f ′1,k(x) = −(k + 1)xk − (k + 2)xk+1 + 2kxk−1 + 1

≤ −(k + 1)xk−1 − (k + 2)xk−1 + 2kxk−1 + 1 = −3xk−1 + 1 < 0

for x ≥ 1. Thus, there is exactly one zero on the interval [1,∞) in this case as well.
Let t be the root of the equation fn,k(x) = 0 on [1,∞). We now show that t has

multiplicity one. First assume n ≥ 3. Then t > 1. We consider cases depending on
the value of f ′(1). If f ′(1) < 0, then f ′(x) < 0 for all x ≥ 1 and thus f ′(t) < 0 is
non-zero, implying t is a simple root. If f ′(1) > 0, then f ′(t) < 0 due to f(1) > 0
and the fact that f ′(x) would then have one root v on (1,∞) with v < t. Finally,
if f ′(1) = 0, then the proof of Lemma 3.2 above shows that f ′′(1) < 0 and thus
f ′′(x) < 0 for all x ≥ 1, which implies f ′(t) < 0. If n = 1, then t = 1 and
f ′1,k(1) < 0. Thus, t is a simple root in all cases, as desired, which completes the
proof.
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We next consider the case when n is even.

Lemma 3.4. Suppose k ≥ 4 and n are even. Then fn,k(x) has no zeros on [1,∞).

Proof. In this case, we have

fn,k(x) = xn+k(1 + x) + an+kx
k +

k−1∑

r=0

(−1)ran+rxk−r−1,

by (2.3) and (3.1). If x ≥ 1, then fn,k(x) > 0 since an+k =
∑k−1
r=0 an+r and

xk ≥ xk−r−1 for 0 ≤ r ≤ k − 1.

The main result of this section now follows rather quickly.

Theorem 3.5. (i) If k is even and n is odd, then the polynomial Pn,k(x) has one
real zero q, and it is simple with q ≤ −1.
(ii) If k and n are even, then the polynomial Pn,k(x) has no real zeros.

Proof. Note first that the preceding lemmas, where we assumed k ≥ 4 is even, may
be adjusted slightly and are also seen to hold in the case k = 2. First suppose n
is odd. By Lemma 3.3, the polynomial fn,k(x), and hence gn,k(x), has one zero
for x ≥ 1, and it is simple. By [7, Lemma 2.3], the characteristic polynomial
ck(x) = xk − xk−1 − xk−2 − · · · − 1 has one negative real zero when k is even, and
it is seen to lie in the interval (−1, 0). Since gn,k(x) = ck(−x)Pn,k(−x), it follows
that Pn,k(−x) has one zero for x ≥ 1. Thus, Pn,k(x) has one zero for x ≤ −1, and
it is simple. By Lemma 2.1, the polynomial Pn,k(x) has exactly one real zero.

If n is even, then the polynomial fn,k(x), and hence gn,k(x), has no zeros for
x ≥ 1, by Lemma 3.4. By (2.1), it follows that Pn,k(x) has no zeros for x ≤ −1.
By Lemma 2.1, Pn,k(x) has no real zeros.

4. The case k odd

Throughout this section, k ≥ 3 will denote a positive odd integer. We study the
zeros of the polynomial gn,k(x) when x ≥ 1, and for this, it is again more convenient
to consider the polynomial fn,k(x) := (1+x)gn,k(x). First suppose n is odd. When
k and n are both odd, note that

fn,k(x) = xn+k(1 + x)− an+kxk − anxk−1 + an+1x
k−2 − · · ·+ an+k−2x− an+k−1

= xn+k(1 + x)− an+kxk +
k−1∑

r=0

(−1)r+1an+rx
k−r−1,

by (2.3) and the recurrence for an. In the lemmas below, we ascertain the number of
zeros of the polynomial fn,k(x) when x ≥ 1. We start with the following inequality.
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Lemma 4.1. Suppose k ≥ 3 is odd and n ≥ 1. If 1 ≤ j ≤ k − 1, then

3
k!

j!
an+k−1 ≥

b j2 c∑

r=1

2r
(k − 2r)!

(j − 2r)!
an+2r−1. (4.1)

Proof. First note that we have the inequality

an+k−1 ≥
k−3
2∑

r=1

2
k−1
2 −ran+2r. (4.2)

To show (4.2), proceed as in the proof of Lemma 3.1 above and write

an+k−1 ≥ an+k−2 +
k−3∑

r=2

an+r

≥ 2an+k−3 + 2
k−4∑

r=2

an+r

= 2an+k−3 + 2an+k−4 + 2

k−5∑

r=2

an+r

≥ 2a2n+k−3 + 4an+k−5 + 4

k−6∑

r=2

an+r

= · · · ≥
k−3
2∑

r=1

2
k−1
2 −ran+2r.

Since 2m ≥ 2m if m ≥ 1, we have

an+k−1 ≥
k−3
2∑

r=1

2
k−1
2 −ran+2r ≥

k−3
2∑

r=1

(k − 2r − 1)an+2r. (4.3)

First suppose j ≤ k − 2. In this case, we show

k!

j!
an+k−1 ≥

b j2 c∑

r=1

r
(k − 2r)!

(j − 2r)!
an+2r−1, (4.4)

which implies (4.1). And (4.4) is seen to hold since by (4.3),

k!

j!
an+k−1 ≥

k−3
2∑

r=1

(k − 2r − 1)k!

j!
an+2r ≥

b j2 c∑

r=1

(k − 2r − 1)k!

j!
an+2r,

with an+2r ≥ an+2r−1 and

(k − 2r − 1)k!

r(k − 2r)!
≥ (k − 2)!

(k − 2r − 2)!
≥ j!

(j − 2r)!
.
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The j = k − 1 case of (4.1) follows from noting

3kan+k−1 ≥ kan+k−1 +
k−3
2∑

r=1

2k(k − 2r − 1)an+2r

≥ (k − 1)an+k−2 +

k−3
2∑

r=1

2r(k − 2r)an+2r−1 =

k−1
2∑

r=1

2r(k − 2r)an+2r−1,

since k(k − 2r − 1) ≥ r(k − 2r) if 1 ≤ r ≤ k−3
2 .

Lemma 4.2. Suppose k, n ≥ 3 are odd. If 1 ≤ i ≤ k − 1, then f (i)n,k(1) > 0 implies

f
(i+1)
n,k (1) > 0.

Proof. Let f = fn,k and i = k − j for some 1 ≤ j ≤ k − 1. Then the assumption
f (k−j)(1) > 0 is equivalent to

(n+ k)!

(n+ j)!
+

(n+ k + 1)!

(n+ j + 1)!
>
k!

j!
an+k +

j−1∑

r=0

(−1)r (k − r − 1)!

(j − r − 1)!
an+r. (4.5)

Using (4.5), we will show f (k−j+1)(1) > 0, i.e.,

(n+ k)!

(n+ j − 1)!
+

(n+ k + 1)!

(n+ j)!
>

k!

(j − 1)!
an+k +

j−2∑

r=0

(−1)r (k − r − 1)!

(j − r − 2)!
an+r. (4.6)

Note that the right-hand side of both inequalities (4.5) and (4.6) is positive since
an+k =

∑k−1
r=0 an+r. Since the left-hand side of (4.6) divided by the left-hand side

of (4.5) is greater than n+ j, it suffices to show

k!

(j − 1)!
an+k +

j−2∑

r=0

(−1)r (k − r − 1)!

(j − r − 2)!
an+r

≤ (n+ j)

(
k!

j!
an+k +

j−1∑

r=0

(−1)r (k − r − 1)!

(j − r − 1)!
an+r

)
. (4.7)

For (4.7), it is enough to show

k!

(j − 1)!
an+k +

j−2∑

r=0

(−1)r (k − r − 1)!

(j − r − 2)!
an+r

≤ (j + 3)

(
k!

j!
an+k +

j−1∑

r=0

(−1)r (k − r − 1)!

(j − r − 1)!
an+r

)
, (4.8)

since n ≥ 3.
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Starting with the left-hand-side of (4.8), and proceeding at this stage as in the
proof of Lemma 3.2 above, we have

k!

(j − 1)!
an+k +

j−2∑

r=0

(−1)r (k − r − 1)!

(j − r − 2)!
an+r

≤ k!

(j − 1)!

k−1∑

r=j

an+r +

j−1∑

r=0

j

(
k!

j!
+ (−1)r (k − r − 1)!

(j − r − 1)!

)
an+r

+

b j2 c∑

r=1

2r
(k − 2r)!

(j − 2r)!
an+2r−1

= (j + 3)
k!

j!

k−1∑

r=j

an+r +

j−1∑

r=0

j

(
k!

j!
+ (−1)r (k − r − 1)!

(j − r − 1)!

)
an+r

− 3
k!

j!

k−1∑

r=j

an+r +

b j2 c∑

r=1

2r
(k − 2r)!

(j − 2r)!
an+2r−1

≤ (j + 3)
k!

j!

k−1∑

r=j

an+r +

j−1∑

r=0

j

(
k!

j!
+ (−1)r (k − r − 1)!

(j − r − 1)!

)
an+r,

where the last inequality follows from Lemma 4.1. Thus,

k!

(j − 1)!
an+k +

j−2∑

r=0

(−1)r (k − r − 1)!

(j − r − 2)!
an+r

≤ (j + 3)
k!

j!

k−1∑

r=j

an+r +

j−1∑

r=0

j

(
k!

j!
+ (−1)r (k − r − 1)!

(j − r − 1)!

)
an+r

≤ (j + 3)
k!

j!

k−1∑

r=j

an+r +

j−1∑

r=0

(j + 3)

(
k!

j!
+ (−1)r (k − r − 1)!

(j − r − 1)!

)
an+r

= (j + 3)
k!

j!
an+k + (j + 3)

j−1∑

r=0

(−1)r (k − r − 1)!

(j − r − 1)!
an+r,

which gives (4.8) and completes the proof.

We can now determine the number of zeros of fn,k(x) on the interval [1,∞).

Lemma 4.3. Suppose k ≥ 3 and n are odd. Then fn,k(x) has exactly one zero on
the interval [1,∞) and it is simple.

Proof. If n ≥ 3, then use Lemma 4.2 and the same reasoning as in the proof of
Lemma 3.3 above. Note that in this case we have

fn,k(1) = 2− an+k +
k−1∑

r=0

(−1)r+1an+r = 2− 2

k−1
2∑

r=0

an+2r < 0,
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as an+k−1, an+k−3 > 0. If n = 1, then f1,k(x) = xk+1(1 + x)− 2xk + x− 1 and the
result also holds as f1,k(1) = 0 with f ′1,k(x) > 0 if x ≥ 1.

We next consider the case when n is even.

Lemma 4.4. If k ≥ 3 is odd and n is even, then fn,k(x) has no zeros on [1,∞).

Proof. In this case, we have

fn,k = −xn+k(1 + x)− an+kxk +
k−1∑

r=0

(−1)r+1an+rx
k−r−1.

If x ≥ 1, then fn,k(x) < 0 since an+k =
∑k−1
r=0 an+r and −xk ≤ −xk−r−1 for

0 ≤ r ≤ k − 1.

We now prove the main result of this section.

Theorem 4.5. (i) If k ≥ 3 and n are odd, then the polynomial Pn,k(x) has one
real zero q, and it is simple with q ≤ −1.
(ii) If k ≥ 3 is odd and n is even, then the polynomial Pn,k(x) has no real zeros.

Proof. First suppose n is odd. By Lemma 4.3, the polynomial fn,k(x), and hence
gn,k(x), has one zero on [1,∞), and it is simple. By [7, Lemma 2.3], the character-
istic polynomial ck(x) = xk−xk−1−xk−2−· · ·−1 has no negative real zeros when
k is odd. Since gn,k(x) = ck(−x)Pn,k(−x), it follows that Pn,k(x) has one zero for
x ≤ −1, and hence one real zero, by Lemma 2.1.

If n is even, then the polynomial fn,k(x), and hence gn,k(x), has no zeros for
x ≥ 1, by Lemma 4.4. Thus, neither does Pn,k(−x), which implies it has no real
zeros.

5. Convergence of zeros

In this section, we show that for each fixed k ≥ 2, the sequence of real zeros of
Pn,k(x) for n odd is convergent. Before proving this, we remind the reader of the
following version of Rouché’s Theorem which can be found in [4].

Theorem 5.1 (Rouché). If p(z) and q(z) are analytic interior to a simple closed
Jordan curve C, and are continuous on C, with

|p(z)− q(z)| < |q(z)|, z ∈ C,

then the functions p(z) and q(z) have the same number of zeros interior to C.

We now give three preliminary lemmas.

Polynomials whose coefficients are k-Fibonacci numbers 69



Lemma 5.2. (i) If k ≥ 2, then the polynomial ck(x) = xk−xk−1− · · ·−x− 1 has
one positive real zero λ, with λ > 1. All of its other zeros have modulus strictly
less than one.
(ii) The zeros of ck(x), which we will denote by α1 = λ, α2, . . . , αk, are distinct
and thus

an = c1α
n
1 + c2α

n
2 + · · ·+ cnα

n
k , n ≥ 0, (5.1)

where c1, c2, . . . , ck are constants.
(iii) The constant c1 is a positive real number.

Proof. (i) It is more convenient to consider the polynomial dk(x) := (1− x)ck(x).
Note that

dk(x) = (1− x)
(
xk − 1− xk

1− x

)
= 2xk − xk+1 − 1.

We regard dk(z) as a complex function. Since on the circle |z| = 3 in the complex
plane holds

|2zk| = 2 · 3k < 3k+1 − 1 = | − zk+1| − 1 ≤ | − zk+1 − 1|,

it follows from Rouché’s Theorem that dk(z) has k + 1 zeros in the disc |z| < 3
since the function −zk+1 − 1 has all of its zeros there. On the other hand, on the
circle |z| = 1 + ε, we have

| − zk+1| = (1 + ε)k+1 < 2(1 + ε)k − 1 ≤ |2zk − 1|,

which implies that the polynomial dk(z) has exactly k zeros in the disc |z| < 1+ ε,
for all ε > 0 sufficiently small such that − ln(1−ε)

ln(1+ε) < 2 ≤ k. Letting ε → 0, we see
that there are k zeros for the polynomial dk(z) in the disc |z| ≤ 1. But z = 1 is a
zero of the polynomial dk(z) = (1− z)ck(z) on the circle |z| = 1, and it is the only
such zero since dk(z) = 0 implies |z|k · |2 − z| = 1, or |2 − z| = 1, which is clearly
satisfied by only z = 1. Hence, the polynomial ck(z) has k − 1 zeros in the disc
|z| < 1 and exactly one zero in the domain 1 < |z| < 3. Finally, by Descartes’ rule
of signs and since ck(1) < 0, we see that ck(x) has exactly one positive real zero λ,
with 1 < λ < 3.

(ii) We’ll prove only the first statement, as the second one follows from the first
and the theory of linear recurrences. For this, first note that d′k(x) = 0 implies
x = 0, 2k

k+1 . Now the only possible rational roots of the equation dk(x) = 0 are ±1,
by the rational root theorem. Thus dk

(
2k
k+1

)
= 0 is impossible as k ≥ 2, which

implies dk(x) and d′k(x) cannot share a zero. Therefore, the zeros of dk(x), and
hence of ck(x), are distinct.

(iii) Substitute n = 0, 1, . . . , k − 1 into (5.1), and recall that a0 = a1 = · · · =
ak−2 = 0 with ak−1 = 1, to obtain a system of linear equations in the variables
c1, c2, . . . , ck. Let A be the coefficient matrix for this system (where the equations
are understood to have been written in the natural order) and let A′ be the matrix
obtained from A by replacing the first column of A with the vector (0, . . . , 0, 1) of
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length k. Now the transpose of A and of the (k − 1) × (k − 1) matrix obtained
from A′ by deleting the first column and the last row are seen to be Vandermonde
matrices. Therefore, by Cramer’s rule, we have

c1 =
detA′

detA
=

(−1)k+1
∏

2≤i<j≤k(αj − αi)∏
1≤i<j≤k(αj − αi)

=
1

(−1)k−1∏k
j=2(αj − α1)

=
1

∏k
j=2(α1 − αj)

.

If j ≥ 2, then either αj < 0 or αj and α` are complex conjugates for some `. Note
that α1 − αj > 0 in the first case and

(α1 − αj)(α1 − α`) = (α1 − a)2 + b2 > 0

in the second, where αj = a + bi. Since all of the complex zeros of ck(x) which
aren’t real come in conjugate pairs, it follows that c1 is a positive real number.

We give the zeros of ck(z) for 2 ≤ k ≤ 5 as well as the value of the constant c1
in Table 1 below, where z denotes the complex conjugate of z.

k The zeros of ck(z) The constant c1
2 1.61803, −0.61803 0.44721
3 1.83928, r1 = −0.41964 + 0.60629i, r1 0.18280
4 1.92756, −0.77480, r1 = −0.07637 + 0.81470i, r1 0.07907
5 1.96594, r1 = 0.19537 + 0.84885i, 0.03601

r2 = −0.67835 + 0.45853i, r1, r2

Table 1: The zeros of ck(z) and the constant c1.

The next lemma concerns the location of the positive zero of the k-th derivative
of fn,k(x).

Lemma 5.3. Suppose k ≥ 2 is fixed and n is odd. Let sn (= sn,k) be the zero of
fn,k(x) on [1,∞), where fn,k(x) is given by (3.1), and let tn (= tn,k) be the positive
zero of the k-th derivative of fn,k(x). Let λ be the positive zero of ck(x). Then we
have

(i) tn < sn for all odd n, and
(ii) tn → λ as n odd increases without bound.

Proof. Suppose k is even, the proof when k is odd being similar. Then fn,k is given
by (3.2) above. Throughout the following proof, n will always represent an odd
integer and f = fn,k. Recall from Lemma 3.3 that f has exactly one zero on the
interval [1,∞).

(i) By Descartes’ rule of signs, the polynomial f (k)(x) has one positive real zero
tn. If tn < 1 ≤ sn, then we are done, so let us assume tn ≥ 1. The condition tn ≥ 1,
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or equivalently f (k)(1) ≥ 0, then implies n ≥ 3, and thus f(1) > 0. (Indeed, tn ≥ 1
for all n sufficiently large since an+k ∼ c1λn+k, with λ > 1.)

Now observe that f (k)(1) ≥ 0 implies f (i)(1) > 0 for 1 ≤ i ≤ k− 1, as the proof
of Lemma 3.2 above shows in fact that f (i)(1) ≤ 0 implies f (i+1)(1) < 0. Since
f (i)(1) > 0 for 0 ≤ i ≤ k−1 and f (k)(1) ≥ 0, it follows that each of the polynomials
f(x), f ′(x), . . . , f (k)(x) has exactly one zero on [1,∞) since f (k+1)(x) < 0 for all
x ≥ 1. Furthermore, the zero of f (i)(x) on [1,∞) is strictly larger than the zero
of f (i+1)(x) on [1,∞) for 0 ≤ i ≤ k − 1. In particular, the zero of f(x) is strictly
larger than the zero of f (k)(x), which establishes the first statement.

(ii) Let us assume n is large enough to ensure tn ≥ 1. Note that

f (k)(x)

k!
= −

(
n+ k

k

)
xn −

(
n+ k + 1

k

)
xn+1 + an,k

so that

−2
(
n+ k + 1

k

)
xn+1 + an,k ≤

f (k)(x)

k!
≤ −2

(
n+ k

k

)
xn + an,k, x ≥ 1. (5.2)

Setting x = tn in (5.2), and rearranging, then gives
(

an+k

2
(
n+k+1

k

)
)1/(n+1)

≤ tn ≤
(

an+k

2
(
n+k
k

)
)1/n

. (5.3)

The second statement then follows from letting n tend to infinity in (5.3) and noting
limn→∞(an+k)

1/n = λ (as an+k ∼ c1λn+k, by Lemma 5.2).

We will also need the following formula for an expression involving the zeros of
ck(x).

Lemma 5.4. If α1 = λ, α2, . . . , αk are the zeros of ck(x), then

k−1∑

j=0

(−1)jλk−j−1Sj{α2, α3, . . . , αk}

=
kλk+2 − (2k − 1)λk+1 − (k − 1)λk + 2kλk−1 − λ− 1

(λ− 1)2(λ+ 1)
, (5.4)

where Sj{α2, α3, . . . , αk} denotes the j-th symmetric function in the quantities
α2, α3, . . . , αk if 1 ≤ j ≤ k − 1, with S0{α2, α3, . . . , αk} := 1.

Proof. Let us assume k is even, the proof in the odd case being similar. First note
that

(−1)i+1 = Si{α1, α2, . . . , αk} = Si{α2, . . . , αk}+ λSi−1{α2, . . . , αk}, 1 ≤ i ≤ k,

which gives the recurrences

S2r{α2, . . . , αk} = −1− λS2r−1{α2, . . . , αk}, 1 ≤ r ≤ (k − 2)/2, (5.5)
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and

S2r+1{α2, . . . , αk} = 1− λS2r{α2, . . . , αk}, 0 ≤ r ≤ (k − 2)/2. (5.6)

Iterating (5.5) and (5.6) yields

S2r{α2, . . . , αk} = −(1 + λ+ · · ·+ λ2r−1) + λ2r

= −1− 2λ2r + λ2r+1

1− λ , 1 ≤ r ≤ (k − 2)/2, (5.7)

and

S2r+1{α2, . . . , αk} = (1 + λ+ · · ·+ λ2r)− λ2r+1

=
1− 2λ2r+1 + λ2r+2

1− λ , 0 ≤ r ≤ (k − 2)/2. (5.8)

Note that (5.7) also holds in the case when r = 0.
By (5.7) and (5.8), we then have

k−1∑

j=0

(−1)jλk−j−1Sj{α2, α3, . . . , αk}

= −
k
2−1∑

r=0

λk−2r−1
(
1− 2λ2r + λ2r+1

1− λ

)
−

k
2−1∑

r=0

λk−2r−2
(
1− 2λ2r+1 + λ2r+2

1− λ

)

=
1

λ− 1

k
2−1∑

r=0

(λk−2r−1 − 2λk−1 + λk) +
1

λ− 1

k
2−1∑

r=0

(λk−2r−2 − 2λk−1 + λk)

=
λ

λ− 1

(
λk − 1

λ2 − 1

)
+

1

λ− 1

(
λk − 1

λ2 − 1

)
− 2kλk−1

λ− 1
+

kλk

λ− 1
,

which gives (5.4).

We now can prove the main result of this section.

Theorem 5.5. Suppose k ≥ 2 and n is odd. Let rn (= rn,k) denote the real zero
of the polynomial Pn,k(x) defined by (1.2) above. Then rn → −λ as n→∞.

Proof. Let n denote an odd integer throughout. We first consider the case when k
is even. Equivalently, we show that sn → λ as n→∞, where sn denotes the zero
of fn,k(x) on the interval [1,∞). By Lemma 5.3, we have tn < sn for all n with
tn → λ as n → ∞, where tn is the positive zero of the k-th derivative of fn,k(x).
So it is enough to show sn < λ for all n sufficiently large, i.e., fn,k(λ) < 0.

By Lemma 5.2, we have

fn,k(λ) = −λn+k(1 + λ) + an,kλ
k +

k−1∑

r=0

(−1)ran+rλk−r−1
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∼ −λn+k(1 + λ) + c1λ
n+2k +

k−1∑

r=0

(−1)rc1λn+k−1

= λn+k(−1− λ+ c1λ
k),

so that fn,k(λ) < 0 for large n if −1− λ+ c1λ
k < 0, i.e.,

λk <
1 + λ

c1
. (5.9)

So to complete the proof, we must show (5.9). By Lemmas 5.2 and 5.4, we have

1

c1
=

k∏

j=2

(λ− αj) =
k−1∑

j=0

(−1)jλk−j−1Sj{α2, α3, . . . , αk}

=
kλk+2 − (2k − 1)λk+1 − (k − 1)λk + 2kλk−1 − λ− 1

(λ− 1)2(λ+ 1)
,

so that (5.9) holds if and only

λk(λ− 1)2 < kλk+2 − (2k − 1)λk+1 − (k − 1)λk + 2kλk−1 − λ− 1,

i.e.,
1 + λ+ kλk + (2k − 3)λk+1 < 2kλk−1 + (k − 1)λk+2. (5.10)

Recall from the proof of Lemma 5.2 that 2λk = 1 + λk+1. Substituting λk+1 =
λ+λk+2

2 ,

λk =
1 + λ+λk+2

2

2
=

2 + λ+ λk+2

4
,

and

λk−1 =
λk

λ
=

2 + λ+ λk+2

4λ

into (5.10), and rearranging, then gives
(
1− λ

2
− k

λ

)
+

5kλ

4
< λk+2

(
k

2λ
− k

4
+

1

2

)
. (5.11)

For (5.11), note first that ck(2) > 0 as 2k > 2k − 1 = 2k−1 + · · · + 1, which
implies λ < 2 ≤ k and thus 1− λ

2 − k
λ < 0. So to show (5.11), it is enough to show

5k

4
< λk+1

(
k

2λ
− k

4
+

1

2

)
. (5.12)

For (5.12), we’ll consider the cases k = 2 and k ≥ 4. If k = 2, then λ = θ = 1+
√
5

2 ,
so that (5.12) reduces in this case to 5

2 < θ2 = θ + 1, which is true. Now suppose
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k ≥ 4 is even. First observe that ck
(
5
3

)
< 0, whence λ > 5

3 , as dk
(
5
3

)
> 0 since(

5
3

)k (
2− 5

3

)
> 1 for all k ≥ 3. Thus, we have

λk =
(
λk−1 + 1

)
+ λk−2 + λk−3 + · · ·+ λ

> 2λ
k−1
2 + λk−2 + λk−3 + · · ·+ λ > 2 · 5

3
+

5(k − 2)

3
=

5k

3
.

So to show (5.12) when k ≥ 4, it suffices to show

0 < λ

(
k

2λ
− k

4
+

1

2

)
− 3

4
=
k(2− λ)

4
+

2λ− 3

4
,

which is true as 5
3 < λ < 2. This completes the proof in the even case.

If k is odd, then we proceed in a similar manner. Instead of inequality (5.9),
we get

λk +
1

λ
<

1 + λ

c1
, (5.13)

which is equivalent to
(
1− λ

2
− k

λ
+

(λ− 1)2

λ

)
+

5kλ

4
< λk+2

(
k

2λ
− k

4
+

1

2

)
. (5.14)

Note that the sum of the first four terms on the left-hand side of (5.14) is negative
since 1− k

λ < 0 and −λ2 + (λ−1)2
λ < 0 as 5

3 < λ < 2 for k ≥ 3. Thus, it suffices to
show (5.12) in the case when k ≥ 3 is odd, which has already been done since the
proof given above for it applies to all k ≥ 3.

n\k 2 3 4 5

1 1 1 1 1
5 1.39118 1.59674 1.61156 1.64627
9 1.48442 1.69002 1.73834 1.77122
49 1.59187 1.80885 1.88958 1.92625
99 1.60498 1.82403 1.90856 1.94605
199 1.61151 1.83165 1.91805 1.95599

λ 1.61803 1.83928 1.92756 1.96594

Table 2: Some real zeros of Pn,k(−x), where λ is the positive zero
of ck(x).

Perhaps the proofs presented here of Theorems 1.2 and 5.5 could be general-
ized to show comparable results for polynomials associated with linear recurrent
sequences having various non-negative real weights, though the results are not true
for all linear recurrences having such weights, as can be seen numerically in the
case k = 3. Furthermore, numerical evidence (see Table 2 below) suggests that the
sequence of zeros in Theorem 5.5 decreases monotonically for all k, as is true in
the k = 2 case (see [2, Theorem 3.1]).
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