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We study the relationship of the Chebyshev polynomials, Fibonacci polynomials, and their rth derivatives. We get the formulas for
the rth derivatives of Chebyshev polynomials being represented by Chebyshev polynomials and Fibonacci polynomials. At last, we
get several identities about the Fibonacci numbers and Lucas numbers.

1. Introduction

As we know, the Chebyshev polynomials and Fibonacci
polynomials are usually defined as follows: the first kind of
Chebyshev polynomials is 𝑇

𝑛+2
(𝑥) = 2𝑥𝑇

𝑛+1
(𝑥) − 𝑇

𝑛
(𝑥) and

𝑛 ≥ 0, with the initial values 𝑇
0
(𝑥) = 1 and 𝑇

1
(𝑥) = 𝑥;

the second kind of Chebyshev polynomials is 𝑈
𝑛+2
(𝑥) =

2𝑥𝑈
𝑛+1
(𝑥)−𝑈

𝑛
(𝑥) and 𝑛 ≥ 0, with the initial values𝑈

0
(𝑥) = 1

and 𝑈
1
(𝑥) = 2𝑥; the Fibonacci polynomials are 𝐹

𝑛+2
(𝑥) =

𝑥𝐹
𝑛+1
(𝑥) + 𝐹

𝑛
(𝑥) and 𝑛 ≥ 0 with the initial values 𝐹

0
(𝑥) = 0

and 𝐹
1
(𝑥) = 1. From the second-order linear recurrence

sequences, we have

𝑇
𝑛
(𝑥) =

1

2
[(𝑥 + √𝑥2 − 1)

𝑛

+ (𝑥 − √𝑥2 − 1)

𝑛

] ,

𝑈
𝑛
(𝑥) =

1

2√𝑥2 − 1

× [(𝑥 + √𝑥2 − 1)

𝑛+1

− (𝑥 − √𝑥2 − 1)

𝑛+1

] ,

𝐹
𝑛
(𝑥) =

1

2𝑛√𝑥2 + 4

× [(𝑥 + √𝑥2 + 4)

𝑛

− (𝑥 − √𝑥2 + 4)

𝑛

] .

(1)

These polynomials play a very important role in the study
of the theory and application of mathematics and they are

closely related to the famous Fibonacci numbers {𝐹
𝑛
} and

Lucas numbers {𝐿
𝑛
} which are defined by the second-order

linear recurrence sequences

𝐹
𝑛+2

= 𝐹
𝑛+1

+ 𝐹
𝑛
,

𝐿
𝑛+2

= 𝐿
𝑛+1

+ 𝐿
𝑛
,

(2)

where 𝑛 ≥ 0, 𝐹
0
= 0, 𝐹

1
= 1, 𝐿

0
= 2, and 𝐿

1
= 1. Therefore,

many authors have investigated these polynomials and got
many properties and corollaries. For example,Wu and Zhang
[1] have obtained the general formulas involving 𝐹

𝑛
(𝑥)

[
[
[

[

(

∞

∑

𝑘=𝑛

1

𝐹
𝑘
(𝑥)

)

−1]
]
]

]

= {
𝐹
𝑛
(𝑥) − 𝐹

𝑛−1
(𝑥) , if 𝑛 is even, 𝑛 ≥ 2,

𝐹
𝑛
(𝑥) − 𝐹

𝑛−1
(𝑥) − 1, if 𝑛 is odd, 𝑛 ≥ 1,

[
[
[

[

(

∞

∑

𝑘=𝑛

1

𝐹
2

𝑘
(𝑥)

)

−1]
]
]

]

= {
𝑥𝐹
𝑛
(𝑥) 𝐹
𝑛−1

(𝑥) − 1, if 𝑛 is even, 𝑛 ≥ 2,
𝑥𝐹
𝑛
(𝑥) 𝐹
𝑛−1

(𝑥) , if 𝑛 is odd, 𝑛 ≥ 1,

(3)

where 𝑥 is any positive integer. Wu and Yang [2] studied
Chebyshev polynomials and got a lot of properties.
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Recently, several authors also studied the derivatives
of these polynomials. For example, Zhang [3] used the
𝑟th derivatives of Chebyshev polynomials to solve some
calculating problems of the general summations. Falcón and
Plaza [4–6] presented many formulas and relations between
Fibonacci polynomials and their derivatives. This fact allows
them to present a family of integer sequences in a new and
direct way.

In this paper, we combine Sergio Falcón and Wenpeng
Zhang’s ideas. Then we obtain the following theorems and
corollaries. These results strengthen the connections of two
kinds of polynomials. They are also helpful in dealing with
some calculating problems of the general summations or
studying some integer sequences.

Theorem 1. For any positive integers, 𝑛 and 𝑟, one has the
following formulas:

𝑇
(2𝑟−1)

2𝑛
(𝑥)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

2
2𝑟

𝑛𝑠 (𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (𝑘 − 𝑟 − 𝑠 + 1)! (𝑘 + 𝑠 + 1 − 𝑟)!

× 𝑈
2𝑠−1

(𝑥) ,

𝑇
(2𝑟)

2𝑛+1
(𝑥)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

2
2𝑟

(2𝑛 + 1) 𝑠 (𝑛 + 𝑘)!

(𝑛 − 𝑘)! (𝑘 + 1 + 𝑠 − 𝑟)! (𝑘 + 1 − 𝑠 − 𝑟)!

× 𝑈
2𝑠−1

(𝑥) ,

𝑇
(2𝑟−1)

2𝑛+1
(𝑥)

=

𝑛−𝑟+1

∑

𝑠=0

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

2
2𝑟−2

(2𝑛 + 1) (2𝑠 + 1) (𝑛 + 𝑘)!

(𝑛 − 𝑘)! (𝑘 + 𝑠 + 2 − 𝑟)! (𝑘 − 𝑠 − 𝑟 + 1)!

× 𝑈
2𝑠
(𝑥) ,

𝑇
(2𝑟)

2𝑛
(𝑥)

=

𝑛−𝑟

∑

𝑠=0

𝑛

∑

𝑘=0

(−1)
𝑛−𝑘

⋅ 2
2𝑟

⋅ (𝑛 + 𝑘 − 1)! ⋅ (2𝑠 + 1) ⋅ 𝑛

(𝑛 − 𝑘)! (𝑘 − 𝑠 − 𝑟)! (𝑘 + 𝑠 − 𝑟 + 1)!

× 𝑈
2𝑠
(𝑥) ,

(4)

where 𝑇(𝑟)
𝑛
(𝑥) denotes the 𝑟th derivative of 𝑇

𝑛
(𝑥) with respect

to 𝑥.

Theorem 2. For any positive integers, 𝑛 and 𝑟, one has the
following formulas:

𝑇
(2𝑟−1)

2𝑛+1
(𝑥)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

2
2𝑟−1

(2𝑛 + 1) (𝑛 + 𝑘)!𝑇
2𝑠
(𝑥)

(𝑛 − 𝑘)! (𝑠 + 𝑘 + 1 − 𝑟)! (𝑘 + 1 − 𝑠 − 𝑟)!

+

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

⋅ (2𝑛 + 1) ⋅ (𝑛 + 𝑘)!

22−2𝑟 (𝑛 − 𝑘)! (𝑘 + 1 − 𝑟)! (𝑘 + 1 − 𝑟)!
,

𝑇
(2𝑟)

2𝑛
(𝑥)

=

𝑛−𝑟

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

⋅ 2
2𝑟+1

⋅ 𝑛 (𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (𝑘 − 𝑟 + 𝑠)! (𝑘 − 𝑟 − 𝑠)!
𝑇
2𝑠
(𝑥)

+

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

⋅ 2
2𝑟

⋅ 𝑛 (𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (𝑘 − 𝑟)! (𝑘 − 𝑟)!
,

𝑇
(2𝑟)

2𝑛+1
(𝑥)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

2
2𝑟

(𝑛 + 𝑘)! (2𝑛 + 1) 𝑇
2𝑠−1

(𝑥)

(𝑛 − 𝑘)! (𝑠 + 𝑘 − 𝑟)! (𝑘 − 𝑟 − 𝑠 + 1)!
,

𝑇
(2𝑟−1)

2𝑛
(𝑥)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

2
2𝑟

𝑛 (𝑛 + 𝑘 − 1)!𝑇
2𝑠−1

(𝑥)

(𝑛 − 𝑘)! (𝑘 + 𝑠 − 𝑟)! (𝑘 − 𝑟 − 𝑠 + 1)!
.

(5)

Theorem 3. For any positive integers 𝑛 and 𝑟 one has the
following formulas:

𝑇
(2𝑟−1)

2𝑛+1
(𝑥)

=

𝑛−𝑟+2

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑟−𝑠

2
2𝑘+𝑟−1

(2𝑠 − 1) (2𝑛 + 1) (𝑛 + 𝑘)!

(𝑛 − 𝑘)! (𝑠 + 𝑘 − 𝑟 + 1)! (𝑘 − 𝑟 − 𝑠 + 2)!

× 𝐹
2𝑠−1

(𝑥) ,

𝑇
(2𝑟)

2𝑛
(𝑥)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑟−𝑠+1

⋅ 2
2𝑘+𝑟

(2𝑠𝑛 − 𝑛) (𝑛 + 𝑘 − 1)!

(𝑘 + 𝑠 − 𝑟)! (𝑘 − 𝑟 − 𝑠 + 1)! (𝑛 − 𝑘)!

× 𝐹
2𝑠−1

(𝑥) ,

𝑇
(2𝑟−1)

2𝑛
(𝑥)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=0

(−1)
𝑛−𝑟−𝑠+1

2
2𝑘+𝑟

(𝑛 + 𝑘 − 1)!𝑠𝑛

(𝑛 − 𝑘)! (𝑘 − 𝑟 − 𝑠 + 1)! (𝑘 + 𝑠 − 𝑟 + 1)!

× 𝐹
2𝑠
(𝑥) ,

𝑇
(2𝑟)

2𝑛+1
(𝑥)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑟−𝑠+1

2
2𝑘+𝑟+1

(2𝑠𝑛 + 𝑠) (𝑛 + 𝑘)!

(𝑛 − 𝑘)! (𝑠 + 𝑘 − 𝑟 + 1)! (𝑘 − 𝑟 − 𝑠 + 1)!

× 𝐹
2𝑠
(𝑥) .

(6)
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Corollary 4. For any positive integers 𝑛,𝑚, and 𝑟, one has the
following identities:

𝑇
(2𝑟−1)

2𝑛
(
𝑖
𝑚

𝐿
𝑚

2
)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑠𝑚+𝑛−𝑘+𝑚

⋅ 𝑖
𝑚

⋅ 2
2𝑟

𝑛𝑠 (𝑛 + 𝑘 − 1)!𝐹
2𝑠𝑚

(𝑛 − 𝑘)! (𝑘 − 𝑟 − 𝑠 + 1)! (𝑘 + 𝑠 + 1 − 𝑟)!𝐹
𝑚

,

𝑇
(2𝑟)

2𝑛+1
(
𝑖
𝑚

𝐿
𝑚

2
)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑠𝑚+𝑛+𝑚−𝑘

2
2𝑟

(2𝑛 + 1) 𝑖
𝑚

𝑠 (𝑛 + 𝑘)!𝐹
2𝑚𝑠

(𝑛 − 𝑘)! (𝑘 + 1 + 𝑠 − 𝑟)! (𝑘 + 1 − 𝑠 − 𝑟)!𝐹
𝑚

,

𝑇
(2𝑟−1)

2𝑛+1
(
𝑖
𝑚

𝐿
𝑚

2
)

=

𝑛−𝑟+1

∑

𝑠=0

𝑛

∑

𝑘=𝑟

(−1)
𝑠𝑚+𝑛

2
2𝑟−2

(2𝑛 + 1) (2𝑠 + 1) (𝑛 + 𝑘)!𝐹
𝑚(2𝑠+1)

(−1)
𝑘

(𝑛 − 𝑘)! (𝑘 + 𝑠 + 2 − 𝑟)! (𝑘 − 𝑠 − 𝑟 + 1)!𝐹
𝑚

,

𝑇
(2𝑟)

2𝑛
(
𝑖
𝑚

𝐿
𝑚

2
)

=

𝑛−𝑟

∑

𝑠=0

𝑛

∑

𝑘=0

(−1)
𝑠𝑚+𝑛−𝑘

⋅ 2
2𝑟

(𝑛 + 𝑘 − 1)! (2𝑠 + 1) 𝑛𝐹
𝑚(2𝑠+1)

(𝑛 − 𝑘)! (𝑘 − 𝑠 − 𝑟)! (𝑘 + 𝑠 − 𝑟 + 1)!𝐹
𝑚

,

(7)

where 𝑖 denotes the square root of −1.

Corollary 5. For any positive integers 𝑛,𝑚, and 𝑟, one has the
following identities:

𝑇
(2𝑟−1)

2𝑛+1
(
𝑖
𝑚

𝐿
𝑚

2
)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑠𝑚+𝑛−𝑘

2
2𝑟−2

(2𝑛 + 1) (𝑛 + 𝑘)!𝐿
2𝑠𝑚

(𝑛 − 𝑘)! (𝑠 + 𝑘 + 1 − 𝑟)! (𝑘 + 1 − 𝑠 − 𝑟)!

+

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

⋅ (2𝑛 + 1) ⋅ (𝑛 + 𝑘)!

22−2𝑟 (𝑛 − 𝑘)! (𝑘 + 1 − 𝑟)! (𝑘 + 1 − 𝑟)!
,

𝑇
(2𝑟)

2𝑛
(
𝑖
𝑚

𝐿
𝑚

2
)

=

𝑛−𝑟

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑠𝑚+𝑛−𝑘

⋅ 2
2𝑟

⋅ 𝑛 (𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (𝑘 − 𝑟 + 𝑠)! (𝑘 − 𝑟 − 𝑠)!
𝐿
2𝑠𝑚

+

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

⋅ 2
2𝑟

⋅ 𝑛 (𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (𝑘 − 𝑟)! (𝑘 − 𝑟)!
,

𝑇
(2𝑟)

2𝑛+1
(
𝑖
𝑚

𝐿
𝑚

2
)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑠𝑚+𝑛−𝑘

2
2𝑟−1

(𝑛 + 𝑘)! (2𝑛 + 1) 𝐿
2𝑠𝑚−𝑚

𝑖𝑚 (𝑛 − 𝑘)! (𝑠 + 𝑘 − 𝑟)! (𝑘 − 𝑟 − 𝑠 + 1)!
,

𝑇
(2𝑟−1)

2𝑛
(
𝑖
𝑚

𝐿
𝑚

2
)

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑠𝑚+𝑛−𝑘

2
2𝑟−1

𝑛 (𝑛 + 𝑘 − 1)!𝐿
2𝑠𝑚−𝑚

𝑖𝑚 (𝑛 − 𝑘)! (𝑘 + 𝑠 − 𝑟)! (𝑘 − 𝑟 − 𝑠 + 1)!
.

(8)

2. Some Lemmas

Lemma 6. For any nonnegative integers𝑚 and 𝑛, one has the
following identities:

∫

1

−1

𝑇
𝑚
(𝑥) 𝑇
𝑛
(𝑥)

√1 − 𝑥2
𝑑𝑥 =

{{{

{{{

{

0, 𝑚 ̸= 𝑛,

𝜋

2
, 𝑚 = 𝑛 > 0,

𝜋, 𝑚 = 𝑛 = 0,

(9)

∫

1

−1

𝑈
𝑚
(𝑥)𝑈
𝑛
(𝑥)√1 − 𝑥2𝑑𝑥 =

{

{

{

0, 𝑚 ̸= 𝑛,

𝜋

2
, 𝑚 = 𝑛,

(10)

𝑇
𝑛
(cos 𝜃) = cos 𝑛𝜃, (11)

𝑈
𝑛
(cos 𝜃) = sin (𝑛 + 1) 𝜃

sin 𝜃
. (12)

Proof. See [7].

Lemma 7. For any positive integers 𝑚 and 𝑛, one has the
following identities:

𝑈
𝑛
(
𝑖

2
) = 𝑖
𝑛

𝐹
𝑛+1
,

𝑇
𝑛
(
𝑖

2
) =

𝑖
𝑛

2
𝐿
𝑛+1
.

(13)

Proof. See [3].

Lemma 8. For any positive integer 𝑛, one has

𝑇
𝑛
(𝑇
𝑚
(𝑥)) = 𝑇

𝑛𝑚
(𝑥) ,

𝑈
𝑛
(𝑇
𝑚
(𝑥)) =

𝑈
𝑚(𝑛+1)−1

(𝑥)

𝑈
𝑚−1

(𝑥)
.

(14)

Proof. See [3].
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Lemma 9. For any positive integers 𝑛 and 𝑟, one has

𝑇
(𝑟)

2𝑛
(𝑥) =

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛−𝑘

2
2𝑘

𝑛 (𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (2𝑘 − 𝑟)!
𝑥
2𝑘−𝑟

,

𝑇
(𝑟)

2𝑛+1
(𝑥)

=

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛−𝑘

2
2𝑘

(2𝑛 + 1) (𝑛 + 𝑘)!

(𝑛 − 𝑘)! (2𝑘 + 1 − 𝑟)!
𝑥
2𝑘+1−𝑟

.

(15)

Proof. FromTheorem 2 of [2], we can get the following result
easily:

𝑇
2𝑛
(𝑥) =

𝑛

∑

𝑘=0

(−1)
𝑛−𝑘

× [2
2𝑘

(
𝑛 + 𝑘

𝑛 − 𝑘
) − 2
2𝑘−1

(
𝑛 + 𝑘 − 1

2𝑘 − 1
)] 𝑥
2𝑘

=

𝑛

∑

𝑘=0

(−1)
𝑛−𝑘

⋅ 2
2𝑘−1

× [
2 (𝑛 + 𝑘)!

(2𝑘)! (𝑛 − 𝑘)!
−

(𝑛 + 𝑘 − 1)!

(2𝑘 − 1)! (𝑛 − 𝑘)!
] 𝑥
2𝑘

=

𝑛

∑

𝑘=0

𝑛(−1)
𝑛−𝑘

2
2𝑘

(𝑛 + 𝑘 − 1)!

(2𝑘)! (𝑛 − 𝑘)!
𝑥
2𝑘

.

(16)

FromTheorem 2 of [2], we know

𝑇
2𝑛+1

(𝑥) =

𝑛

∑

𝑘=0

(−1)
𝑛−𝑘

× [2
2𝑘+1

(
𝑛 + 𝑘 + 1

𝑛 − 𝑘
) − 2
2𝑘

(
𝑛 + 𝑘

2𝑘
)] 𝑥
2𝑘+1

.

(17)

In the similar way, we can get the following result easily:

𝑇
2𝑛+1

(𝑥) =

𝑛

∑

𝑘=0

(−1)
𝑛−𝑘

(2𝑛 + 1) 2
2𝑘

(𝑛 + 𝑘)!

(2𝑘 + 1)! (𝑛 − 𝑘)!
𝑥
2𝑘+1

. (18)

If we derive both sides of the above properties 𝑟th times, we
will get

𝑇
(𝑟)

2𝑛
(𝑥)

=

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛−𝑘

2
2𝑘

𝑛 (𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (2𝑘 − 𝑟)!
𝑥
2𝑘−𝑟

,

𝑇
(𝑟)

2𝑛+1
(𝑥)

=

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛−𝑘

2
2𝑘

(2𝑛 + 1) (𝑛 + 𝑘)!

(𝑛 − 𝑘)! (2𝑘 + 1 − 𝑟)!
𝑥
2𝑘+1−𝑟

.

(19)

This proves Lemma 9.

Lemma 10. For any positive integers 𝑛 and 𝑟, let

𝑇
(𝑟)

2𝑛
(𝑥) =

+∞

∑

𝑠=0

𝑎
2𝑛,𝑟,𝑠

𝑈
𝑠
(𝑥) ,

𝑇
(𝑟)

2𝑛+1
(𝑥) =

+∞

∑

𝑠=0

𝑎
2𝑛+1,𝑟,𝑠

𝑈
𝑠
(𝑥) ,

(20)

where 𝑇(𝑟)
𝑛
(𝑥) denotes the 𝑟th derivative of 𝑇

𝑛
(𝑥) with respect

to 𝑥. Then one can get

𝑎
2𝑛,𝑟,𝑠

=

{{{{

{{{{

{

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛−𝑘

2
2𝑘+1

𝑛 (𝑛 + 𝑘 − 1)! (𝑠 + 1)

(𝑛 − 𝑘)! (2𝑘 − 𝑠 − 𝑟)!! (2𝑘 + 𝑠 − 𝑟 + 2)!!
,

𝑠 − 𝑟 is even,
0, otherwise,

(21)

𝑎
2𝑛+1,𝑟,𝑠

=

{{{{

{{{{

{

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛−𝑘

⋅ 2
2𝑘+1

⋅ (2𝑛 + 1) ⋅ (𝑠 + 1) (𝑛 + 𝑘)!

(𝑛 − 𝑘)! (2𝑘 + 𝑠 + 3 − 𝑟)!! (2𝑘 + 1 − 𝑠 − 𝑟)!!
,

𝑠 − 𝑟 is odd,
0, otherwise.

(22)

Proof. Tobeginwith, wemultiply√1 − 𝑥2𝑈
𝑚
(𝑥) to both sides

of the following identity:

𝑇
(𝑟)

𝑛
(𝑥) =

+∞

∑

𝑠=0

𝑎
𝑛𝑟𝑠
𝑈
𝑠
(𝑥) , (23)

and then integrate it from −1 to 1. Applying property (10), we
can get

∫

1

−1

√1 − 𝑥2𝑇
(𝑟)

𝑛
(𝑥)𝑈
𝑚
(𝑥) 𝑑𝑥

=

∞

∑

𝑠=0

∫

1

−1

𝑎
𝑛,𝑟,𝑠

√1 − 𝑥2𝑈
𝑚
(𝑥)𝑈
𝑠
(𝑥) 𝑑𝑥

=
𝜋

2
𝑎
𝑛,𝑟,𝑚

(24)

and then we have

𝑎
𝑛𝑟𝑚

=
2

𝜋
∫

1

−1

√1 − 𝑥2𝑇
(𝑟)

𝑛
(𝑥)𝑈
𝑚
(𝑥) 𝑑𝑥. (25)

We define

𝑤
𝑛𝑘
=
2

𝜋
∫

𝜋

0

cos𝑛𝜃 sin (𝑘 + 1) 𝜃 sin 𝜃 𝑑𝜃. (26)

From [8], we know

𝑤
𝑛𝑘
=
{

{

{

2 (𝑘 + 1) 𝑛!

(𝑛 + 𝑘 + 2)!! (𝑛 − 𝑘)!!
, 𝑘 + 𝑛 is even, 𝑛 ≥ 𝑘,

0, otherwise,
(27)
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where 𝑛 and 𝑘 are any nonnegative integers. Let 𝑥 = cos 𝜃;
then we can get the following identity by applying property
(10):

𝑎
𝑛𝑟𝑚

=
2

𝜋
∫

𝜋

0

𝑇
(𝑟)

𝑛
(cos 𝜃)𝑈

𝑚
(cos 𝜃) sin2𝜃 𝑑𝜃

=
2

𝜋
∫

𝜋

0

𝑇
(𝑟)

𝑛
(cos 𝜃) sin (𝑚 + 1) 𝜃 sin 𝜃 𝑑𝜃.

(28)

According to Lemma 9 and property (27), we have

𝑎
2𝑛,𝑟,𝑚

=
2

𝜋
∫

𝜋

0

𝑇
(𝑟)

2𝑛
(cos 𝜃) sin (𝑚 + 1) 𝜃 sin 𝜃 𝑑𝜃

=
2

𝜋

𝑛

∑

𝑘=⌈𝑟/2⌉

2
2𝑘

⋅ 𝑛 ⋅ (𝑛 + 𝑘 − 1)!

(−1)
𝑛−𝑘

(𝑛 − 𝑘)! (2𝑘 − 𝑟)!

× ∫

𝜋

0

cos2𝑘−𝑟𝜃 sin (𝑚 + 1) 𝜃 sin 𝜃 𝑑𝜃

=

𝑛

∑

𝑘=⌈𝑟/2⌉

2
2𝑘

⋅ 𝑛 ⋅ (𝑛 + 𝑘 − 1)!

(−1)
𝑛−𝑘

(𝑛 − 𝑘)! (2𝑘 − 𝑟)!

𝑤
2𝑘−𝑟,𝑚

.

(29)

Then we have 𝑎
2𝑛,𝑟,𝑚

= 0 if 𝑚 − 𝑟 is odd. If 𝑚 − 𝑟 is even, we
have

𝑎
2𝑛,𝑟,𝑚

=

𝑛

∑

𝑘=⌈𝑟/2⌉

2
2𝑘

⋅ 𝑛 ⋅ (𝑛 + 𝑘 − 1)!

(−1)
𝑛−𝑘

(𝑛 − 𝑘)! (2𝑘 − 𝑟)!

⋅
2 (𝑚 + 1) (2𝑘 − 𝑟)!

(2𝑘 − 𝑚 − 𝑟)!! (2𝑘 + 𝑚 + 2 − 𝑟)!!

=

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛−𝑘

2
2𝑘+1

𝑛 (𝑛 + 𝑘 − 1)! (𝑚 + 1)

(𝑛 − 𝑘)! (2𝑘 − 𝑚 − 𝑟)!! (2𝑘 + 𝑚 − 𝑟 + 2)!!
.

(30)

This proves property (21). In the similar way, we have
𝑎
2𝑛+1,𝑟,𝑚

= 0 if𝑚 − 𝑟 is even. If𝑚 − 𝑟 is odd, we have

𝑎
2𝑛+1,𝑟,𝑚

=

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛−𝑘

2
2𝑘

(2𝑛 + 1) (𝑛 + 𝑘)!

(𝑛 − 𝑘)! (2𝑘 + 1 − 𝑟)!
𝑤
2𝑘+1−𝑟,𝑚

=

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛−𝑘

⋅ 2
2𝑘+1

⋅ (2𝑛 + 1) ⋅ (𝑚 + 1) (𝑛 + 𝑘)!

(𝑛 − 𝑘)! (2𝑘 + 𝑚 + 3 − 𝑟)!! (2𝑘 + 1 − 𝑚 − 𝑟)!!
.

(31)

That is property (22). This proves Lemma 10.

Lemma 11. For any positive integers 𝑛 and 𝑟, let

𝑇
(𝑟)

2𝑛
(𝑥) =

1

2
𝑏
2𝑛,𝑟,0

𝑇
0
(𝑥) +

+∞

∑

𝑠=1

𝑏
2𝑛,𝑟,𝑠

𝑇
𝑠
(𝑥) ,

𝑇
(𝑟)

2𝑛+1
(𝑥) =

1

2
𝑏
2𝑛+1,𝑟,0

𝑇
0
(𝑥) +

+∞

∑

𝑠=1

𝑏
2𝑛+1,𝑟,𝑠

𝑇
𝑠
(𝑥) .

(32)

Then one can get

𝑏
2𝑛,𝑟,𝑠

=

{{{{

{{{{

{

𝑛

∑

𝑘=⌈𝑟/2⌉

2
2𝑘+1

(−1)
𝑛−𝑘

𝑛 (𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (2𝑘 − 𝑟 + 𝑠)!! (2𝑘 − 𝑟 − 𝑠)!!
,

𝑠 − 𝑟 is even,
0, otherwise,

(33)

𝑏
2𝑛+1,𝑟,𝑠

=

{{{{

{{{{

{

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛−𝑘

⋅ 2
2𝑘+1

⋅ (2𝑛 + 1) (𝑛 + 𝑘)!

(𝑛 − 𝑘)! (𝑠 + 2𝑘 + 1 − 𝑟)!! (2𝑘 + 1 − 𝑟 − 𝑠)!!
,

𝑠 − 𝑟 is odd,
0, otherwise.

(34)

Proof. In order to prove property (22) we must multiply
𝑇
𝑚
(𝑥)/√1 − 𝑥2 to both sides of the following identity:

𝑇
(𝑟)

𝑛
(𝑥) =

1

2
𝑏
𝑛,𝑟,0

𝑇
0
(𝑥) +

+∞

∑

𝑠=1

𝑏
𝑛,𝑟,𝑠

𝑇
𝑠
(𝑥) , (35)

and then integrate it from −1 to 1. Applying property (9) we
can get

∫

1

−1

𝑇
(𝑟)

𝑛
(𝑥) 𝑇
𝑚
(𝑥)

√1 − 𝑥2
𝑑𝑥 = ∫

1

−1

𝑏
𝑛𝑟0
𝑇
0
(𝑥) 𝑇
𝑚
(𝑥)

2√1 − 𝑥2
𝑑𝑥

+

∞

∑

𝑘=1

∫

1

−1

𝑏
𝑛𝑟𝑘
𝑇
𝑚
(𝑥) 𝑇
𝑛
(𝑥)

√1 − 𝑥2
𝑑𝑥

=
𝜋

2
𝑏
𝑛𝑟𝑚

(36)

and then we have

𝑏
𝑛𝑟𝑚

=
2

𝜋
∫

1

−1

𝑇
(𝑟)

𝑛
(𝑥) 𝑇
𝑚
(𝑥)

√1 − 𝑥2
𝑑𝑥. (37)

We define

𝑞
𝑛𝑘
=
2

𝜋
∫

𝜋

0

cos𝑛𝜃 cos 𝑘𝜃 𝑑𝜃. (38)

From [8], we know

𝑞
𝑛𝑘
=
{

{

{

2𝑛!

(𝑛 + 𝑘)!! (𝑛 − 𝑘)!!
, 𝑘 + 𝑛 is even, 𝑛 ≥ 𝑘,

0, otherwise,
(39)

where 𝑛 and 𝑘 are any nonnegative integers. Let 𝑥 = cos 𝜃;
then we can get the following identity by applying property
(10):

𝑏
𝑛𝑟𝑚

=
2

𝜋
∫

𝜋

0

𝑇
𝑚
(cos 𝜃) 𝑇(𝑟)

𝑛
(cos 𝜃)

sin 𝜃
sin 𝜃 𝑑𝜃

=
2

𝜋
∫

𝜋

0

𝑇
𝑚
(cos 𝜃) 𝑇(𝑟)

𝑛
(cos 𝜃) 𝑑𝜃.

(40)
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According to Lemma 9 and property (39), we have

𝑏
2𝑛,𝑟,𝑚

=
2

𝜋
∫

𝜋

0

𝑇
(𝑟)

2𝑛
(cos 𝜃) cos𝑚𝜃𝑑𝜃

=

𝑛

∑

𝑘=⌈𝑟/2⌉

2
2𝑘

𝑛 (𝑛 + 𝑘 − 1)!𝑞
2𝑘−𝑟,𝑚

(−1)
𝑛−𝑘

(𝑛 − 𝑘)! (2𝑘 − 𝑟)!

,

(41)

so we have 𝑏
2𝑛,𝑟,𝑚

= 0 if𝑚− 𝑟 is odd. If𝑚− 𝑟 is even, we have

𝑏
2𝑛,𝑟,𝑚

=

𝑛

∑

𝑘=⌈𝑟/2⌉

2
2𝑘

𝑛 (𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (2𝑘 − 𝑟)!

⋅
2(−1)
𝑛−𝑘

(2𝑘 − 𝑟)!

(2𝑘 − 𝑟 + 𝑚)!! (2𝑘 − 𝑟 − 𝑚)!!

=

𝑛

∑

𝑘=⌈𝑟/2⌉

2
2𝑘+1

(−1)
𝑛−𝑘

𝑛 (𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (2𝑘 − 𝑟 + 𝑚)!! (2𝑘 − 𝑟 − 𝑚)!!
.

(42)

This proves property (33). In the similar way we have
𝑏
2𝑛+1,𝑟,𝑚

= 0 if𝑚 − 𝑟 is even. If𝑚 − 𝑟 is odd, we have

𝑏
2𝑛+1,𝑟,𝑚

=

𝑛

∑

𝑘=⌈𝑟/2⌉

2
2𝑘

(2𝑛 + 1) (𝑛 + 𝑘)!𝑞
2𝑘+1−𝑟,𝑚

(−1)
𝑛−𝑘

(𝑛 − 𝑘)! (2𝑘 + 1 − 𝑟)!

=

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛−𝑘

⋅ 2
2𝑘+1

⋅ (2𝑛 + 1) (𝑛 + 𝑘)!

(𝑛 − 𝑘)! (𝑚 + 2𝑘 + 1 − 𝑟)!! (2𝑘 + 1 − 𝑟 − 𝑚)!!
.

(43)

That is property (34). This proves Lemma 11.

Lemma 12. For any positive integers 𝑚 and 𝑛, one has the
following identities:

𝐹
𝑛
(2𝑖 cos 𝜃) = 𝑖

𝑛+3 sin 𝑛𝜃
sin 𝜃

, (44)

∫

1

−1

√𝑥2 + 4𝐹
𝑚
(𝑥) 𝐹
𝑛
(𝑥) 𝑑𝑥 = {

2𝑖
2𝑚−1

𝜋, 𝑚 = 𝑛 > 0,

0, otherwise.
(45)

Proof. As we know,

𝐹
𝑛
(𝑥) =

1

2𝑛√𝑥2 + 4

× [(𝑥 + √𝑥2 + 4)

𝑛

− (𝑥 − √𝑥2 + 4)

𝑛

] .

(46)

Let 𝑥 = 2𝑖 cos 𝜃; then we have

𝐹
𝑛
(2𝑖 cos 𝜃) = 1

2 sin 𝜃
[(𝑖 cos 𝜃 + sin 𝜃)𝑛 − (𝑖 cos 𝜃 − sin 𝜃)𝑛]

=
1

2 sin 𝜃
(𝑖
𝑛

𝑒
−𝑖𝑛𝜃

− 𝑖
𝑛

𝑒
𝑖𝑛𝜃

)

=
𝑖
𝑛

2 sin 𝜃
(cos 𝑛𝜃 − 𝑖 sin 𝑛𝜃 − cos 𝑛𝜃 − 𝑖 sin 𝑛𝜃)

=
𝑖
𝑛+3 sin 𝑛𝜃
sin 𝜃

.

(47)

This proves property (44). Let 𝑥 = 2𝑖 cos 𝜃 in the following
identity:

𝐴 = ∫

2𝑖

−2𝑖

√𝑥2 + 4𝐹
𝑚
(𝑥) 𝐹
𝑛
(𝑥) 𝑑𝑥; (48)

then we can get

𝐴 = ∫

𝜋

0

2 sin 𝜃𝐹
𝑛
(2𝑖 cos 𝜃) 𝐹

𝑚
(2𝑖 cos 𝜃) 2𝑖 sin 𝜃 𝑑𝜃

= ∫

𝜋

0

4𝑖sin2𝜃 𝑖
𝑛+3 sin 𝑛𝜃
sin 𝜃

𝑖
𝑚+3 sin𝑚𝜃

sin 𝜃
𝑑𝜃

= 4𝑖
𝑛+𝑚−1

∫

𝜋

0

sin 𝑛𝜃 sin𝑚𝜃𝑑𝜃

= 2𝑖
𝑛+𝑚−1

∫

𝜋

0

cos (𝑛 − 𝑚) 𝜃 − cos (𝑚 + 𝑛) 𝜃𝑑𝜃.

(49)

Then we can get property (45). This proves Lemma 12.

Lemma 13. For any positive integer 𝑛, let

𝑇
(𝑟)

2𝑛
(𝑥) =

+∞

∑

𝑠=1

𝑐
𝑛,𝑟,𝑠

𝐹
𝑠
(𝑥) ,

𝑇
(𝑟)

2𝑛+1
(𝑥) =

+∞

∑

𝑠=1

𝑐
𝑛,𝑟,𝑠

𝐹
𝑠
(𝑥) ;

(50)

then we can get

𝑐
2𝑛,𝑟,𝑠

=

{{{{

{{{{

{

𝑛

∑

𝑘=⌈𝑟/2⌉

2
4𝑘−𝑟+1

𝑛𝑠 (𝑛+𝑘 − 1)!𝑖
1−𝑟−𝑠

(−1)
𝑛

(𝑛 − 𝑘)! (2𝑘 − 𝑟 − 𝑠+1)!! (2𝑘 − 𝑟+𝑠+1)!!
,

𝑠 − 𝑟 is odd,
0, otherwise,

𝑐
2𝑛+1,𝑟,𝑠

=

{{{{

{{{{

{

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛

2
4𝑘+2−𝑟

(2𝑠𝑛 + 𝑠) 𝑖
2−𝑟−𝑠

(𝑛 + 𝑘)!

(𝑛 − 𝑘)! (2𝑘+𝑠 − 𝑟+2)!! (2𝑘 − 𝑟 − 𝑠+2)!!
,

𝑠 − 𝑟 is even,
0, otherwise.

(51)
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Proof. At first, we multiply√𝑥2 + 4𝐹
𝑚
(𝑥) to both sides of the

following identity:

𝑇
(𝑟)

𝑛
(𝑥) =

+∞

∑

𝑠=1

𝑐
𝑛,𝑟,𝑠

𝐹
𝑠
(𝑥) , (52)

and then integrate it from −2𝑖 to 2𝑖; we can get the following
identity by applying Lemma 12, where 𝑚 is any positive
integer. Consider

∫

2𝑖

−2𝑖

√𝑥2 + 4𝐹
𝑚
(𝑥) 𝑇
(𝑟)

𝑛
(𝑥) 𝑑𝑥

=

∞

∑

𝑠=1

∫

2𝑖

−2𝑖

𝑐
𝑛,𝑟,𝑠

√𝑥2 + 4𝐹
𝑠
(𝑥) 𝐹
𝑚
(𝑥) 𝑑𝑥

= 2𝑖
2𝑚−1

𝜋𝑐
𝑛,𝑟,𝑚

;

(53)

then we have

𝑐
𝑛,𝑟,𝑚

=
(−𝑖)
2𝑚−1

2𝜋
∫

2𝑖

−2𝑖

√𝑥2 + 4𝐹
𝑚
(𝑥) 𝑇
(𝑟)

𝑛
(𝑥) 𝑑𝑥. (54)

Let 𝑥 = cos 𝜃; then we can get the following identity by
applying Lemma 12:

𝑐
𝑛,𝑟,𝑚

=
(−𝑖)
2𝑚−1

2𝜋

× ∫

𝜋

0

𝑇
(𝑟)

𝑛
(2𝑖 cos 𝜃) 𝐹

𝑚
(2𝑖 cos 𝜃) 4𝑖sin2𝜃 𝑑𝜃

=
𝑖
2𝑚+2

2𝜋
∫

𝜋

0

𝑇
(𝑟)

𝑛
(2𝑖 cos 𝜃) ⋅ 𝑖

𝑚+3 sin𝑚𝜃
sin 𝜃

⋅ (2 sin 𝜃)2 𝑑𝜃

=
2𝑖
3𝑚+1

𝜋
∫

𝜋

0

𝑇
(𝑟)

𝑛
(2𝑖 cos 𝜃) sin𝑚𝜃 sin 𝜃 𝑑𝜃.

(55)

According to property (27), we have

𝑐
2𝑛,𝑟,𝑚

=

𝑛

∑

𝑘=⌈𝑟/2⌉

2
2𝑘+1

⋅ 𝑛𝑖
3𝑚+1

(𝑛 + 𝑘 − 1)!

(−1)
𝑛−𝑘

(𝑛 − 𝑘)! (2𝑘 − 𝑟)!𝜋

× ∫

𝜋

0

(2𝑖 cos 𝜃)2𝑘−𝑟 sin𝑚𝜃 sin 𝜃 𝑑𝜃

=

𝑛

∑

𝑘=⌈𝑟/2⌉

2
4𝑘+1

𝑛 (𝑛 + 𝑘 − 1)!𝑖
1−𝑟−𝑚

(−1)
𝑛

(𝑛 − 𝑘)! (2𝑘 − 𝑟)!2𝑟𝜋

× ∫

𝜋

0

cos2𝑘−𝑟𝜃 sin𝑚𝜃 sin 𝜃 𝑑𝜃

=

𝑛

∑

𝑘=⌈𝑟/2⌉

2
4𝑘−𝑟

𝑛 (𝑛 + 𝑘 − 1)!𝑖
1−𝑟−𝑚

(−1)
𝑛

(𝑛 − 𝑘)! (2𝑘 − 𝑟)!
𝑤
2𝑘−𝑟,𝑚−1

,

(56)

so we have 𝑐
2𝑛,𝑟,𝑚

= 0 if𝑚 − 𝑟 is even. If𝑚 − 𝑟 is odd, we can
get

𝑐
2𝑛,𝑟,𝑚

=

𝑛

∑

𝑘=⌈𝑟/2⌉

2
4𝑘−𝑟

𝑛 (𝑛 + 𝑘 − 1)!𝑖
1−𝑟−𝑚

(−1)
𝑛

(𝑛 − 𝑘)! (2𝑘 − 𝑟)!

×
2𝑚 (2𝑘 − 𝑟)!

(2𝑘 − 𝑟 − 𝑚 + 1)!! (2𝑘 − 𝑟 + 𝑚 + 1)!!

=

𝑛

∑

𝑘=⌈𝑟/2⌉

2
4𝑘−𝑟+1

⋅ 𝑛𝑚 (𝑛 + 𝑘 − 1)!𝑖
1−𝑟−𝑚

(−1)
𝑛

(𝑛 − 𝑘)! (2𝑘 − 𝑟 − 𝑚 + 1)!! (2𝑘 − 𝑟 + 𝑚 + 1)!!
.

(57)

In the similar way, we have 𝑐
2𝑛+1,𝑟,𝑚

= 0 if𝑚−𝑟 is odd. If𝑚−𝑟
is even, we can get

𝑐
2𝑛+1,𝑟,𝑚

=

𝑛

∑

𝑘=⌈𝑟/2⌉

2
4𝑘+1−𝑟

(2𝑛 + 1) 𝑖
2−𝑟−𝑚

(𝑛 + 𝑘)!

(−1)
𝑛

(𝑛 − 𝑘)! (2𝑘 + 1 − 𝑟)!
𝑤
2𝑘+1−𝑟,𝑚−1

=

𝑛

∑

𝑘=⌈𝑟/2⌉

(−1)
𝑛

2
4𝑘+2−𝑟

(2𝑚𝑛 + 𝑚) 𝑖
2−𝑟−𝑚

(𝑛 + 𝑘)!

(𝑛 − 𝑘)! (2𝑘 + 𝑚 − 𝑟 + 2)!! (2𝑘 − 𝑟 − 𝑚 + 2)!!
.

(58)

This proves Lemma 13.

3. Proof of the Theorems and Corollaries

In this section, we will prove our theorems and corollaries.
First of all, we can prove all the theorems from Lemmas 10,
11, and 13 easily. Then we prove our corollaries.

Proof of Corollary 4. Let 𝑥 = 𝑇
𝑚
(𝑥) inTheorem 1. We can get

the following properties from Lemma 8:

𝑇
(2𝑟−1)

2𝑛
(𝑇
𝑚
(𝑥))

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

2
2𝑟

𝑛𝑠 (𝑛 + 𝑘 − 1)!𝑈
2𝑠𝑚−1

(𝑥)

(𝑛 − 𝑘)! (𝑘 − 𝑟 − 𝑠 + 1)! (𝑘 + 𝑠 + 1 − 𝑟)!𝑈
𝑚−1

(𝑥)
,

𝑇
(2𝑟)

2𝑛+1
(𝑇
𝑚
(𝑥))

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

2
2𝑟

(2𝑛 + 1) 𝑠 (𝑛 + 𝑘)!𝑈
2𝑠𝑚−1

(𝑥)

(𝑛 − 𝑘)! (𝑘 + 1 + 𝑠 − 𝑟)! (𝑘 + 1 − 𝑠 − 𝑟)!𝑈
𝑚−1

(𝑥)
,

𝑇
(2𝑟−1)

2𝑛+1
(𝑇
𝑚
(𝑥))

=

𝑛+1−𝑟

∑

𝑠=0

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

2
2𝑟−2

(2𝑛+1) (2𝑠+1) (𝑛+𝑘)!𝑈
𝑚(2𝑠+1)−1

(𝑥)

(𝑛 − 𝑘)! (𝑘 + 𝑠 + 2 − 𝑟)! (𝑘 − 𝑠 − 𝑟 + 1)!𝑈
𝑚−1

(𝑥)
,

𝑇
(2𝑟)

2𝑛
(𝑇
𝑚
(𝑥))

=

𝑛−𝑟

∑

𝑠=0

𝑛

∑

𝑘=0

(−1)
𝑛−𝑘

⋅ 2
2𝑟

(𝑛 + 𝑘 − 1)! (2𝑠 + 1) 𝑛𝑈
𝑚(2𝑠+1)−1

(𝑥)

(𝑛 − 𝑘)! (𝑘 − 𝑠 − 𝑟)! (𝑘 + 𝑠 − 𝑟 + 1)!𝑈
𝑚−1

(𝑥)
.

(59)
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Then, taking 𝑥 = 𝑖/2 in the above identities, according to
Lemma 7, we can get Corollary 4.

Proof of Corollary 5. Let 𝑥 = 𝑇
𝑚
(𝑥) inTheorem 2.We can get

the following properties from Lemma 8:

𝑇
(2𝑟−1)

2𝑛+1
(𝑇
𝑚
(𝑥))

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

2
2𝑟−1

(2𝑛 + 1) (𝑛 + 𝑘)!𝑇
2𝑠𝑚

(𝑥)

(𝑛 − 𝑘)! (𝑠 + 𝑘 + 1 − 𝑟)! (𝑘 + 1 − 𝑠 − 𝑟)!

+

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

⋅ (2𝑛 + 1) ⋅ (𝑛 + 𝑘)!

22−2𝑟 (𝑛 − 𝑘)! (𝑘 + 1 − 𝑟)! (𝑘 + 1 − 𝑟)!
,

𝑇
(2𝑟)

2𝑛
(𝑇
𝑚
(𝑥))

=

𝑛−𝑟

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

⋅ 2
2𝑟+1

⋅ 𝑛 (𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (𝑘 − 𝑟 + 𝑠)! (𝑘 − 𝑟 − 𝑠)!
𝑇
2𝑠𝑚

(𝑥)

+

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

⋅ 2
2𝑟

⋅ 𝑛 (𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (𝑘 − 𝑟)! (𝑘 − 𝑟)!
,

𝑇
(2𝑟)

2𝑛+1
(𝑇
𝑚
(𝑥))

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

2
2𝑟

(𝑛 + 𝑘)! (2𝑛 + 1) 𝑇
2𝑠𝑚−𝑚

(𝑥)

(𝑛 − 𝑘)! (𝑠 + 𝑘 − 𝑟)! (𝑘 − 𝑟 − 𝑠 + 1)!
,

𝑇
(2𝑟−1)

2𝑛
(𝑇
𝑚
(𝑥))

=

𝑛−𝑟+1

∑

𝑠=1

𝑛

∑

𝑘=𝑟

(−1)
𝑛−𝑘

2
2𝑟

𝑛 (𝑛 + 𝑘 − 1)!𝑇
2𝑠𝑚−𝑚

(𝑥)

(𝑛 − 𝑘)! (𝑘 + 𝑠 − 𝑟)! (𝑘 − 𝑟 − 𝑠 + 1)!
.

(60)

Then, taking 𝑥 = 𝑖/2 in the above identities, according to
Lemma 7, we can get Corollary 5.
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