The Fibonacci Quarterly 2001 (39,2): 158-164

THE BINET FORMULA AND REPRESENTATIONS OF k-GENERALIZED FIBONACCI NUMBERS

Gwang-Yeon Lee
Department of Mathematics, Hanseo University, Seosan 356-706, Korea
\section*{Sang-Gu Lee and Jin-Soo Kim}
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea

Hang-Kyun Shin

Department of Mathematics, Seoul National University of Education, Seoul 137-742, Korea
(Submitted February 1999-Final Revision August 1999)

1. INTRODUCTION

We consider a generalization of Fibonacci sequence, which is called the k-generalized Fibonacci sequence for a positive integer $k \geq 2$. The k-generalized Fibonacci sequence $\left\{g_{n}^{(k)}\right\}$ is defined as

$$
g_{1}^{(k)}=\cdots=g_{k-2}^{(k)}=0, g_{k-1}^{(k)}=g_{k}^{(k)}=1
$$

and, for $n>k \geq 2$,

$$
g_{n}^{(k)}=g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k}^{(k)} .
$$

We call $g_{n}^{(k)}$ the $n^{\text {th }} k$-generalized Fibonacci number. For example, if $k=2$, then $\left\{g_{n}^{(2)}\right\}$ is a Fibonacci sequence and, if $k=5$, then $g_{1}^{(5)}=g_{2}^{(5)}=g_{3}^{(5)}=0, g_{4}^{(5)}=g_{5}^{(5)}=1$, and then the 5-generalized Fibonacci sequence is

$$
0,0,0,1,1,2,4,8,16,31,61,120,236,464,912,1793, \ldots .
$$

Let I_{k-1} be the identity matrix of order $k-1$ and let E be a $1 \times(k-1)$ matrix whose entries are 1's. For any $k \geq 2$, the fundamental recurrence relation $g_{n}^{(k)}=g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k}^{(k)}$ can be defined by the vector recurrence relation

$$
\left[\begin{array}{c}
g_{n+1}^{(k)} \\
g_{n+2}^{(k)} \\
\vdots \\
\vdots \\
g_{n+k}^{(k)}
\end{array}\right]=Q_{k}\left[\begin{array}{c}
g_{n}^{(k)} \\
g_{n+1}^{(k)} \\
\vdots \\
\vdots \\
g_{n+k-1}^{(k)}
\end{array}\right],
$$

where

$$
Q_{k}=\left[\begin{array}{cc}
0 & I_{k-1} \tag{1}\\
1 & E
\end{array}\right]_{k \times k} .
$$

The matrix Q_{k} is said to be a k-generalized Fibonacci matrix. In [4] and [5], we gave the relationships between the k-generalized Fibonacci sequences and their associated matrices.

In 1843, Binet found a formula giving F_{n} in terms of n. It is a very complicated-looking expression, and the formula is

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1-\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta},
$$

where α and β are eigenvalues of Q_{2}. In [6], Levesque gave a Binet formula for the Fibonacci sequence by using a generating function.

In this paper, we derive a generalized Binet formula for the k-generalized Fibonacci sequence by using the determinant and we give several combinatorial representations of k-generalized Fibonacci numbers.

2. GENERALILED BINET FORMULA

Let $\left\{g_{n}^{(k)}\right\}$ be a k-generalized Fibonacci sequence. Throughout the paper we will use $g_{n}=$ $g_{n+k-2}^{(k)}, n=1,2, \ldots$, and $G_{k}=\left(g_{1}, g_{2}, g_{3}, \ldots\right)$ for notational convenience.

For example, if $k=2, G_{2}=(1,1,2,3, \ldots)$, and if $k \geq 3, G_{k}=(1,1,2,4, \ldots)$. For $G_{k}, k \geq 2$, since $g_{1}=g_{2}=1$, we can replace the matrix Q_{k} in (1) with

$$
Q_{k}=\left[\begin{array}{ccccc}
0 & g_{1} & 0 & \cdots & 0 \\
0 & 0 & g_{1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & g_{1} \\
g_{1} & g_{1} & \cdots & g_{1} & g_{2}
\end{array}\right] .
$$

Then we can find the following matrix in [3]:

$$
Q_{k}^{n}=\left[\begin{array}{cccccc}
g_{n-(k-1)} & g_{1,2}^{\dagger} & g_{1,3}^{\dagger} & \cdots & g_{1, k-1}^{\dagger} & g_{n-(k-2)} \tag{2}\\
g_{n-(k-2)} & g_{2,2}^{\dagger} & g_{2,3}^{\dagger} & \cdots & g_{2, k-1}^{\dagger} & g_{n-(k-3)} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
g_{n-1} & g_{k-1,2}^{\dagger} & g_{k-1,3}^{\dagger} & \cdots & g_{k-1, k-1}^{\dagger} & g_{n} \\
g_{n} & g_{k, 2}^{\dagger} & g_{k, 3}^{\dagger} & \cdots & g_{k, k-1}^{\dagger} & g_{n+1}
\end{array}\right],
$$

where

$$
\begin{aligned}
g_{i, 2}^{\dagger} & =g_{n-(k-i)}+g_{n-(k-(i-1))} \\
g_{i, 3}^{\dagger} & =g_{n-(k-i)}+g_{n-(k-(i-1))}+g_{n-(k-(i-2))} \\
& \vdots \\
g_{i, k-1}^{\dagger} & =g_{n-(k-i)}+g_{n-(k-(i-1))}+g_{n-(k-(i-2))}+\cdots+g_{n-(k-(i-(k-2)))}
\end{aligned}
$$

$i=1,2, \ldots, k$. Since $Q_{k}^{n} Q_{k}^{m}=Q_{k}^{n+m}, g_{n+m}=\left(Q_{k}^{n+m}\right)_{k, 1}$; hence, we have the following theorem.
Theorem 2.1 (see [3]): Let $G_{k}=\left(g_{1}, g_{2}, \ldots\right)$. Then, for any positive integers n and m,

$$
\begin{aligned}
g_{n+m}= & g_{n} g_{m-(k-1)}+\left(g_{n}+g_{n-1}\right) g_{m-(k-2)} \\
& +\left(g_{n}+g_{n-1}+g_{n-2}\right) g_{m-(k-3)}+\cdots \\
& +\left(g_{n}+g_{n-1}+g_{n-2}+\cdots+g_{n-(k-2)}\right) g_{m-1}+g_{n+1} g_{m} .
\end{aligned}
$$

Note that $g_{n+m}=\left(Q_{k}^{n+m}\right)_{k, 1}=\left(Q_{k}^{n+m}\right)_{k-1, k}$. Then we have the following corollary.
Corollary 2.2: Let $G_{k}=\left(g_{1}, g_{2}, \ldots\right)$. Then, for any positive integers n and m,

$$
\begin{aligned}
g_{n+m}= & g_{n-1} g_{m-(k-2)}+\left(g_{n-1}+g_{n-2}\right) g_{m-(k-3)} \\
& +\left(g_{n-1}+g_{n-2}+g_{n-3}\right) g_{m-(k-4)}+\cdots \\
& +\left(g_{n-1}+g_{n-2}+g_{n-3}+\cdots+g_{n-(k-1)}\right) g_{m}+g_{n} g_{m+1}
\end{aligned}
$$

Now we are going to find the generalized Binet formula for the k-generalized Fibonacci sequence.

Lemma 2.3: Let $b_{k}=\frac{2^{k+1}}{k+1}\left(\frac{k}{k+1}\right)^{k}$. Then $b_{k}<b_{k+1}$ for $k \geq 2$.
Proof: Since $\frac{k+1}{k+2}>\frac{k}{k+1}$ and $k \geq 2$,

$$
\left(\frac{k+1}{k+2}\right)^{k+1}>\left(\frac{k}{k+1}\right)^{k+1} \quad \text { and } \quad \frac{2^{k+2}}{k+2} \geq \frac{2^{k+1}}{k} .
$$

Therefore,

$$
b_{k+1}=\frac{2^{k+2}}{k+2}\left(\frac{k+1}{k+2}\right)^{k+1}>\frac{2^{k+1}}{k+1}\left(\frac{k}{k+1}\right)^{k}=b_{k}
$$

for each positive integer k.
Lemma 2.4: The equation $z^{k+1}-2 z^{k}+1=0$ does not have multiple roots for $k \geq 2$.
Proof: Let $f(z)=z^{k}-z^{k-1}-\cdots-z-1$ and let $g(z)=(z-1) f(z)$. Then $g(z)=z^{k+1}-2 z^{k}+1$. So 1 is a root but not a multiple root of $g(z)=0$, since $k \geq 2$ and $f(1) \neq 0$. Suppose that α is a multiple root of $g(z)=0$. Note that $\alpha \neq 0$ and $\alpha \neq 1$. Since α is a multiple root, $g(z)=\alpha^{k+1}-$ $2 \alpha^{k}+1=0$ and $g^{\prime}(\alpha)=(k+1) \alpha^{k}-2 k \alpha^{k-1}=\alpha^{k-1}((k+1) \alpha-2 k)=0$. Thus, $\alpha=\frac{2 k}{k+1}$, and hence

$$
\begin{aligned}
0 & =-\alpha^{k+1}+2 \alpha^{k}-1=\alpha^{k}(2-\alpha)-1 \\
& =\left(\frac{2 k}{k+1}\right)^{k}\left(2-\frac{2 k}{k+1}\right)-1=\left(\frac{2 k}{k+1}\right)^{k}\left(\frac{2 k+2-2 k}{k+1}\right)-1 \\
& =\frac{2^{k+1}}{k+1}\left(\frac{k}{k+1}\right)^{k}-1=b_{k}-1 .
\end{aligned}
$$

Since, by Lemma 2.3, $b_{2}=\left(\frac{2}{3}\right)^{3} \times 2^{2}=\frac{2^{5}}{3^{3}}>1$ and $b_{k}<b_{k+1}$ for $k \geq 2, b_{k} \neq 1$, a contradiction.
Therefore, the equation $g(z)=0$ does not have multiple roots.
Let $f(\lambda)$ be the characteristic polynomial of the k-generalized Fibonacci matrix Q_{k}. Then $f(\lambda)=\lambda^{k}-\lambda^{k-1}-\cdots-\lambda-1$, which is a well-known fact. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the eigenvalues of Q_{k}. Then, by Lemma 2.4, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct. Let Λ be a $k \times k$ Vandermonde matrix as follows:

$$
\Lambda=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} \\
\vdots & \vdots & \vdots & \vdots \\
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \cdots & \lambda_{k}^{k-1}
\end{array}\right] .
$$

Set $V=\Lambda^{T}$. Let

$$
\mathbf{d}_{i}=\left[\begin{array}{c}
\lambda_{1}^{n+i-1} \\
\lambda_{2}^{n+i-1} \\
\vdots \\
\lambda_{k}^{n+i-1}
\end{array}\right]
$$

and let $V_{j}^{(i)}$ be a $k \times k$ matrix obtained from V by replacing the $j^{\text {th }}$ column of V by d_{i}. Then we have the generalized Binet formula as the following theorem.

Theorem 2.5: Let $\left\{g_{n}^{(k)}\right\}$ be a k-generalized Fibonacci sequence. Then

$$
\begin{equation*}
g_{n}=\frac{\operatorname{det}\left(V_{1}^{(k)}\right)}{\operatorname{det}(V)} \tag{3}
\end{equation*}
$$

where $g_{n}=g_{n+k-2}^{(k)}$.
Proof: Since the eigenvalues of Q_{k} are distinct, Q_{k} is diagonalizable. It is easy to show that $Q_{k} \Lambda=\Lambda D$, where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$. Since Λ is invertible, $\Lambda^{-1} Q_{k} \Lambda=D$. Thus, Q_{k} is similar to D. So we have $Q_{k}^{n} \Lambda=\Lambda D^{n}$. Let $Q_{k}^{n}=\left[q_{i j}\right]_{k \times k}$. Then we have the following linear system of equations:

$$
\begin{aligned}
& q_{i 1}+q_{i 2} \lambda_{1}+\cdots+q_{i k} \lambda_{1}^{k-1}= \lambda_{1}^{n+i-1} \\
& q_{i 1}+q_{i 2} \lambda_{2}+\cdots+q_{i k} \lambda_{2}^{k-1}= \lambda_{2}^{n+i-1} \\
& \vdots \vdots \\
& q_{i 1}+q_{i 2} \lambda_{k}+\cdots+q_{i k} \lambda_{k}^{k-1}=\lambda_{k}^{n+i-1} .
\end{aligned}
$$

And, for each $j=1,2, \ldots, k$, we get

$$
q_{i j}=\frac{\operatorname{det}\left(V_{j}^{(i)}\right)}{\operatorname{det}(V)} .
$$

Therefore, by (2), we have the explicit form

$$
q_{k 1}=g_{n}=\frac{\operatorname{det}\left(V_{1}^{(k)}\right)}{\operatorname{det}(V)} .
$$

We note that, if $k=2$, then (3) is the Binet formula for the Fibonacci sequence.

3. COMBINATORIAL REPRESENTATIONS OF k-GENERALIZED FIBONACCI NUMBERS

In this section, we consider some combinatorial representations of $g_{n}=g_{n+k-2}^{(k)}$ for $k \geq 2$. Let S_{k} be a $k \times k(0,1)$-matrix as follows:

$$
S_{k}=\left[\begin{array}{cc}
E & 1 \\
I_{k-1} & 0
\end{array}\right] .
$$

Then, by (2),

$$
S_{k}^{n}=\left[s_{j j}\right]=\left[\begin{array}{cccccc}
g_{n+1} & g_{k, k-1}^{\dagger} & \cdots & g_{k, 3}^{\dagger} & g_{k, 2}^{\dagger} & g_{n} \tag{4}\\
g_{n} & g_{k-1, k-1}^{\dagger} & \cdots & g_{k-1,3}^{\dagger} & g_{k-1,2}^{\dagger} & g_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
g_{n-(k-3)} & g_{2, k-1}^{\dagger} & \cdots & g_{2,3}^{\dagger} & g_{2,2}^{\dagger} & g_{n-(k-2)} \\
g_{n-(k-2)} & g_{1, k-1}^{\dagger} & \cdots & g_{1,3}^{\dagger} & g_{1,2}^{\dagger} & g_{n-(k-1)}
\end{array}\right] .
$$

In [1], we can find the following lemma.
Lemma 3.1 (see [1]):

$$
s_{i j}=\sum_{\left(m_{1}, \ldots, m_{k}\right)} \frac{m_{j}+m_{j+1}+\cdots+m_{k}}{m_{1}+\cdots+m_{k}} \times\binom{ m_{1}+\cdots+m_{k}}{m_{1}, \ldots, m_{k}},
$$

where the summation is over nonnegative integers satisfying $m_{1}+2 m_{2}+\cdots+k m_{k}=n-i+j$ and defined to be 1 if $n=i-j$.
Corollary 3.2: Let $\left\{g_{n}^{(k)}\right\}$ be the k-generalized Fibonacci sequence. Then

$$
g_{n}=\sum_{\left(m_{1}, \ldots, m_{k}\right)} \frac{m_{k}}{m_{1}+\cdots+m_{k}} \times\binom{ m_{1}+\cdots+m_{k}}{m_{1}, \ldots, m_{k}}
$$

where the summation is over nonnegative integers satisfying $m_{1}+2 m_{2}+\cdots+k m_{k}=n-1+k$.
Proof: From Lemma 3.1, if $i=1$ and $j=k$, then the conclusion can be derived directly from (4).

Let $A=\left[a_{i j}\right]$ be an $n \times n(0,1)$-matrix. The permanent of A is defined by

$$
\operatorname{per} A=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

where σ runs over all permutations of the set $\{1,2, \ldots, n\}$. A matrix A is called convertible if there is an $n \times n(1,-1)$-matrix H such that $\operatorname{per} A=\operatorname{det}(A \circ H)$, where $A \circ H$ denotes the Hadamard product of A and H. Such a matrix H is called a converter of A.

Let $\mathscr{F}^{(n, k)}=\left[f_{i j}\right]=T_{n}+B_{n}$, where $T_{n}=\left[t_{i j}\right]$ is the $n \times n(0,1)$-matrix defined by $t_{i j}=1$ if and only if $|i-j| \leq 1$, and $B_{n}=\left[b_{i j}\right]$ is the $n \times n(0,1)$-matrix defined by $b_{i j}=1$ if and only if $2 \leq j-i \leq$ $k-1$. In [4] and [5], the following theorem gave a representation of $g_{n}^{(k)}$.
Theorem 3.3 (see [4], [5]): Let $\left\{g_{n}^{(k)}\right\}$ be the k-generalized Fibonacci sequence. Then

$$
g_{n}=\operatorname{per} \mathscr{F}^{(n-1, k)},
$$

where $g_{n}=g_{n+k-2}^{(k)}$.
Let H be a ($1,-1$)-matrix of order $n-1$, defined by

$$
H=\left[\begin{array}{rrrrr}
1 & -1 & 1 & \cdots & 1 \\
1 & 1 & -1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & -1 \\
1 & 1 & 1 & \cdots & 1
\end{array}\right] .
$$

Then the following theorem holds.
Theorem 3.4: Let $\left\{g_{n}^{(k)}\right\}$ be the k-generalized Fibonacci sequence. Then

$$
g_{n}=\operatorname{det}\left(\mathscr{F}^{(n-1, k)} \circ H\right),
$$

where $g_{n}=g_{n+k-2}^{(k)}$.
Proof: Since the matrix $\mathscr{F}^{(n-1, k)}$ is a convertible matrix with converter H, we have

$$
\operatorname{per} \mathscr{F}^{(n-1, k)}=\operatorname{det}\left(\mathscr{F}^{(n-1, k)} \circ H\right)
$$

and, by Theorem 3.3, the proof is complete.
Now we consider the generating function of the k-generalized Fibonacci sequence. We can easily find the characteristic polynomial, $x^{k}-x^{k-1}-\cdots-x-1$, of the k-Fibonacci matrix Q_{k}. It
follows that all of the eigenvalues of Q_{k} satisfy $x^{k}=x^{k-1}+x^{k-2}+\cdots+x+1$. And we can find the following fact in [5]:

$$
\begin{align*}
x^{n}= & g_{n-k+2} 2^{k-1}+\left(g_{n-k+1}+g_{n-k}+\cdots+g_{n-2 k+3}\right) x^{k-2} \\
& +\left(g_{n-k+1}+g_{n-k}+\cdots+g_{n-2 k+4}\right) x^{k-3} \tag{5}\\
& +\cdots+\left(g_{n-k+1}+g_{n-k}\right) x+g_{n-k+1} .
\end{align*}
$$

Let $G_{k}(x)=g_{1}+g_{2} x+g_{3} x^{2}+\cdots+g_{n+1} x^{n}+\cdots$. Then

$$
G_{k}(x)-x G_{k}(x)-x^{2} G_{k}(x)-\cdots-x^{k} G_{k}(x)=\left(1-x-x^{2}-\cdots-x^{k}\right) G_{k}(x) .
$$

Using equation (5), we have $\left(1-x-x^{2}-\cdots-x^{k}\right) G_{k}(x)=g_{1}=1$. Thus,

$$
G_{k}(x)=\left(1-x-x^{2}-\cdots-x^{k}\right)^{-1}
$$

for $0 \leq x+x^{2}+\cdots+x^{k}<1$.
Let $f_{k}(x)=x+x^{2}+\cdots+x^{k}$. Then $0 \leq f_{k}(x)<1$ and we have the following lemma.
Lemma 3.5: For positive integers p and n, the coefficient of x^{n} in $\left(f_{k}(x)\right)^{p}$ is

$$
\sum_{l=0}^{p}(-1)\binom{p}{l}\binom{n-k l-1}{n-k l-p}, \frac{n}{k} \leq p \leq n .
$$

Proof:

$$
\begin{aligned}
\left(f_{k}(x)\right)^{p} & =\left(x+x^{2}+\cdots+x^{k}\right)^{p}=x^{p}\left(1+x+x^{2}+\cdots+x^{k-1}\right)^{p} \\
& =x^{p}\left(\frac{1-x^{k}}{1-x}\right)^{p}=x^{p}\left(\left(1-x^{k}\right)\left(\frac{1}{1-x}\right)\right)^{p} \\
& =x^{p}\left(\left(\sum_{l=0}^{p}\binom{p}{l}(-1)^{l} x^{k l}\right)\left(\sum_{i=0}^{\infty}\binom{p+i-1}{i} x^{i}\right)\right)
\end{aligned}
$$

In the above equation, we consider the coefficient of x^{n}. Since the first term on the right is x^{p}, we have $k l+i=n-p$, that is, $i=n-k l-p$. If $l=q$ for any $q=0,1, \ldots, p$, then the second term on the right is

$$
\left((-1)^{q}\binom{p}{q}\binom{n-k q-1}{n-k q-p}\right) x^{n-p}
$$

So the coefficient of x^{n} is

$$
\sum_{l=0}^{p}(-1)^{\prime}\binom{p}{l}\binom{n-k l-1}{n-k l-p}, \frac{n}{k} \leq p \leq n
$$

Theorem 3.6: For positive integers p and n,

$$
\begin{equation*}
g_{n+1}=\sum_{n_{n} \leq p \leq n} \sum_{l=0}^{p}(-1)^{\prime}\binom{p}{l}\binom{n-k l-1}{n-k l-p} . \tag{6}
\end{equation*}
$$

Proof: Since

$$
G_{k}(x)=g_{1}+g_{2} x+g_{3} x^{2}+\cdots+g_{n+1} x^{n}+\cdots=\frac{1}{1-x-x^{2}-\cdots-x^{k}}
$$

the coefficient of x^{n} is the $(n+k-1)^{\text {st }}$ Fibonacci number, that is, g_{n+1} in G_{k}. And

$$
\begin{align*}
G_{k}(x)= & \frac{1}{1-x-x^{2}-\cdots-x^{k}}=\frac{1}{1-f_{k}(x)} \\
= & 1+f_{k}(x)+\left(f_{k}(x)\right)^{2}+\cdots+\left(f_{k}(x)\right)^{n}+\cdots \\
= & 1+f_{k}(x)+x^{2} \sum_{l=0}^{n}\binom{2}{l}(-1)^{l} x^{k l} \sum_{i=0}^{\infty}\binom{i+1}{i} x^{l} \tag{7}\\
& +\cdots+x^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} x^{k l} \sum_{i=0}^{\infty}\binom{n+i-1}{i} x^{i}+\cdots
\end{align*}
$$

Since we need the coefficient of x^{n}, we only need the first $n+1$ terms on the right and the $(p+1)^{\text {st }}$ term in (7) such that

$$
x^{p} \sum_{l=0}^{p}\binom{p}{l}(-1)^{l} x^{k l} \sum_{i=0}^{\infty}\binom{p+i-1}{i} x^{i}
$$

So $k l+i=n-p$, as we see in (6), and $\frac{n}{k} \leq p \leq n$. Thus, by Lemma 3.5, we have the theorem.
From the above theorems, we have five representations for $g_{n}, g_{n}=g_{n+k-2}^{(k)}$. That is,

$$
\begin{aligned}
g_{n} & =\operatorname{per} \mathscr{F}^{(n-1, k)}=\operatorname{det}\left(\mathscr{F}^{(n-1, k)} \circ H\right)=\frac{\operatorname{det}\left(V_{l}^{(k)}\right)}{\operatorname{det}(V)} \\
& =\sum_{\frac{n-1}{k} \leq p \leq n-1} \sum_{l=0}^{p}(-1)^{l}\binom{p}{l}\binom{n-k l-2}{n-k l-p-1} \\
& =\sum_{\left(m_{1}, \ldots, m_{k}\right)} \frac{m_{k}}{m_{1}+\cdots+m_{k}} \times\binom{ m_{1}+\cdots+m_{k}}{m_{1}, \ldots, m_{k}},
\end{aligned}
$$

where the summation is over nonnegative integers satisfying $m_{1}+2 m_{2}+\cdots+k m_{k}=n-1+k$.

ACKNOWLEDGMENT

This work was partially supported by the Brain Korea 21 Project.

REFERENCES

1. W. Y. C. Chen \& J. D. Louck. "The Combinatorial Power of the Companion Matrix." Linear Algebra Appl. 232 (1996):261-78.
2. R. A. Horn \& C. R. Johnson. Matrix Analysis. New York: Cambridge Univ. Press, 1985.
3. G.-Y. Lee. "A Completeness on Generalized Fibonacci Sequences." Bull. Korean Math. Soc. 32.2 (1995):239-49.
4. G.-Y. Lee \& S.-G. Lee. "A Note on Generalized Fibonacci Numbers." The Fibonacci Quarterly 33.3 (1995):273-78.
5. G.-Y. Lee, S.-G. Lee, \& H.-G. Shin. "On the k-Generalized Fibonacci Matrix Q_{k}." Linear Algebra Appl. 251 (1997):73-88.
6. Claude Levesque. "On $m^{\text {th }}$-Order Linear Recurrences." The Fibonacci Quarterly 23.4 (1985):290-93.

AMS Classification Numbers: 11B39, 15A15, 15A36

