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1. Summary 

We consider the following three-term recursion formula 

(1.1a) 5_! = 0, SQ = 1 

(1.1b) Sn = Y(n)Sn_l - Sn.2, n > 1 

(1.1c) Yin) = Yh{n) + 2/(1 - h(n)), 

where h{n) i s t h e n t h d i g i t of t h e F i b o n a c c i - l f w o r d f l 1 0 1 1 0 1 0 1 1 0 . . . g i v e n e x p l i -
c i t l y by ( s e e [ 7 ] , [ 1 1 ] , [ 9 ] , [ 2 0 ] , [ 1 9 ] ) 

( 1 . 2 ) h(n) = [ ( n + 1)<|>]. - [ft(j>] - 1, 

where [a] denotes the integer part of a real number a, and 

cj): = (1 + /5)/25 

obeying (j)2 = <J> + 1, cj) > 1, is the golden section [10], [9], [4]. 
For Y = y one recovers Chebyshev!s Sn(y) polynomials of degree ft [1], In 

the general case certain two-variable polynomials Sn(Y9 y) emerge. 
The theory of continued fractions (see [18]) shows that (-i)n Sn(Y, y) can 

be identified with the denominator of the ftth approximation of the regular con-
tinued fraction (i2 = -1) 

(1.3) [0; -il(l), -il(2), .... -il(k), ...] 

= l/(-iJ(l) + l/(-iJ(2) + l/(... . 

The polynomials Sn(Ys y) can be written as 

[nil] femax 
( 1 . 4 ) Sn(Z, y) = E ( " D * E O ; l> k)y*M-l-kyn-z{n)-i + k9 

where the coefficients (ft; £, k) are defined recursively by 

(1.5) (ft; £, k) = (ft - 1; £, fe) + ihiri - 1) + /z(n) - 1) (ft - 2; £ - 1, fc - 1) 

+ (2 - h(n - 1) - h{n))(n - 2; £ - 1, Zc), 

with certain input quantities. The range of the fe index is bounded by 

(n - z(n))}> 

£, min(£, p(ft))}, 

( 1 . 6 a ) 

( 1 . 6 b ) 

w i t h 

( 1 . 7 ) 

( 1 . 8 ) 

1992] 

amax 

z (ft) 

p(ft) 

= kmin (ft, £) : = max{0, £ -

= ^max ( n ' &) : = min{s(f t) -

= E &(&), 
/c.= i 
n - 1 

= Y, (Mfc + D + Hk) - 1). 
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A COMBINATORIAL PROBLEM IN THE FIBONACCI NUMBER SYSTEM 

The polynomials Sn(Y9 y) are listed for n = 0(1)13 in Table 1. They are 
generating functions for the numbers (n; £, k) which are shown to have a com-
binatorial meaning in the Fibonacci number system. This system is based on the 
fact that every natural number N has a unique representation (see [23], [5], 
[21], [11], [20]) in terms of Fibonacci numbers (see [10] and [4]): 

( 1 . 9 ) N = £ S ; ^ + 2 , s- e {0 , 1 } , sisi + l = 0 . 
i= 0 

( Z e c k e n d o r f T s r e p r e s e n t a t i o n of t h e second k i n d i n which one w r i t e s t h e number 
1 a s ^2 and n o t a s Fi.) 

T a b l e 1 . Sn = Y(n)Sn.l - Sn_l9 S.l = 
7 ( n ) = Yh{n) + 2/(1 - 7z(w)) 
/z(n) = [ ( n + l)(f>] - [w<|>] - 1 

5 „ U . 2/) 

0, Sn 1 

0 
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1 

Y 

Yy -

Y(Yy 

?3y 

?3y2 

Y^y2 

Yhy3 

Y5y3 

7 6 2 / 3 

Y^yh 

Y7y^ 

iW 

13 87,5 ?»y 

- 2) 
- 7 ( 2 7 + y) + 1 

- 72/(37 + y) + ( 2 1 + y) 

- 722/(47 + z/) + 2 7 ( 2 7 + y) - 1 

- 7 2 2 / 2 (57 + 2/) + 72/(77 + 32/) - 2 ( 7 + 2/) 

- 7 3 2 / 2 (67 + 2/) + 72z/ (117 + 42/) - 2 7 ( 3 7 + 2y) + 1 

- 7 4 2 / 2 (67 + 22/) + Y2y(llY2 + 9Iz/ + z/2) - 7 ( 6 7 2 + 1172/ + 3y2) 
+ (37 + 2z/) 
- Yky3{lY + 22/) + 7 2 2 / 2 ( 1 7 7 2 + 1072/ + 2/2) - Yy{llY2 + l5Yy + 3y2) 
+ ( 6 7 2 + 772/ + 2y2) - 1 

- 7 5 2 / 3 (87 + 22/) + 7 3 2 / 2 ( 2 3 7 2 + 1272/ + 2/2) - 7 2 2 / (287 2 + 2472/ + 4z/2) 
+ 7 ( 1 2 7 2 + 1872/ + 52/2) - (47 + 22/) 

- 7 6 2 / 3 (87 + 32/) + Yky2(23Y2 + 1972/ + 32/2) 
- 7 2 2 / (287 3 + 4172z/ + 1472/2 + 2/3) + 7 ( 1 2 7 3 + 35Y2y + 2072/2 + 3y3) 
- ( 1 0 7 2 + 972/ + 2y2) + 1 

- 762/4(97 + 32/) + 7i+2/3(3172 + 2172/ + 32/2) 
- 722/2(5173 + 53722/ + 157z/2 + y3) + 72/(4073 + 59722/ + 2472/2 + 32/3) 
- (1273 + 2872z/ + 147z/2 + 22/3) + (47 + 3y) 

In this number system N = sr • • • S2S1S0"> where the dot at the end indicates 
the Fi place which is not used. 

Proposition 1: (n; i , k ) gives the number of possibilities to choose, from the 
natural numbers 1 to n, I mutually disjoint pairs of consecutive numbers such 
that all numbers of k of these pairs end in the canonical Fibonacci number sys-
tem in an even number of zeros. 

Another formulation is possible if WythoffTs complementary sequences {A(n)} 
and {B(n)} (see [22], [7], [21], [12], [8], [9], and [4]), defined by 
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(1,10) A{n) : = [n<|>], Biri) : = [ncf)2] = n + A(n) , n = 1, 2, . . . , 
are introduced. 

Proposition 2: (n ; l9 k) is the number of different possibilities to choose, 
from the numbers 1, 2, . . . , n9 £ mutually disjoint pairs of consecutive num-
bers, sa}/-

(nl5 nl + 1), . .., (n£, n£ + 1) with rij > n^-i + 1 for j = 2, . .., £, 

such that all members of fc pairs among them, say 

(il3 £x + 1), . . ., (ife, ife + 1), 

are ^-numbers, i.e., ij = A(rrij) and ij + 1 = 4(tf?j + 1 ) for some m^ and all J = 
1, ..., k. For £ = 0, put (w; 0, 0) = 1. 

From the analysis of Wythoff's sequences one learns that A-pairs (A(mj) 9 
A(mj + 1) = A{rrij) + 1) occur precisely for mj = B(q^) for some q3- e M. All re-
maining pairs are either of the (A, B) or (5, A) type. Thus, one may state 
equivalently, 

Proposition 3: (n ; &, k) counts the number of different ways to choose, from 
the numbers 1, 2, . .., n - 1, £ distinct nonneighboring numbers such that 
exactly k numbers among them, say £]_, ..., i^ , are AB-numbers, i.e., they 
satisfy for all j = 1, . . . , k9 ij - A(B(rrij)) with some rrij GIN. 

Still another meaning can be attributed to the coefficients of the Sn poly-
nomials based on the above findings. 

Corollary: Consider the Zeckendorf representations (with 1 as F2) of the num-
bers 0, 1, 2, ..., Fn+i - 1. Then exactly (n; £, k) of them need £ Fibonacci 
numbers, k of which are of the type ^(g(m) + i) with 77? G {1, 2, . .., p(n)}. 

The representation of 0 which does not need any Fibonacci number is inclu-
ded in order to cover the case £ = 0, k = 0. 

Another set of generalized Chebyshev Sn polynomials is of interest. They 
are defined recursively by 

(1.11a) 5_x = 0, S0 = 1, 

(1.11b) Sn = Y(n + l)£n_i - Sn„2s n > 1, 

with I(n) defined by (1.1c). Table 2 shows Sn(J, 2/) for n = 0(1)13. They are 
given as (+i)n times the denominator of the nth approximation of the regular 
continued fraction 

(1.12) [0; -£l(2), -il(3), ..., -il{k), . . . ] . 

As far as combinatorics is concerned, one has to replace the numbers 1, 2, ..., 
n in the above given statements by the numbers 2, 3, ..., n + 1. 

The physical motivation for considering the polynomials Sn(Y, y) and 
Sn(Y> y) is sketched in the Appendix, where a set of 2 x 2 matrices Mn formed 
from these polynomials is also introduced. In [14], [6], and [15], n-variable 
generalizations of Chebyshevfs polynomials were introduced. For the 2-variable 
case, these polynomials satisfy a 4-term recursion formula and bear no relation 
to the ones studied in this work. 
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Table 2. Sn 
Y(n + 1) 
h{n + 1) 

Y(n + l)Sn.l - Sn_2, 5_! = 0, S0 
Yh(n + 1) + 2/(1 - h(n + 1)) 
[(n + 2)$] - [(n + !)())] - 1 

n 

0 

1 
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13 

sn(J, 

1 

2/ 
ly -

Y2y -

Y2y2 

S 5 ( 7 , 

Y3y3 

j V 
I 5 2 / 3 

j 5 ^ 

^io a 
J V 

I 7 2 / 5 

513a 

») 

1 = S2(Y, y) 

( 7 + y) 

- y(2Y + y) + I 

y) 
- Yy2{kY + y) + 2z/(2J + z/) - 1 

- 7 2 z / 2 ( 5 7 + y) + Jz / (77 + 3z/) - ( 3 7 + y) = S 7 ( 7 , z/) - ( 7 - z/) 

- 7 3 2 / 2 (57 + 2z/) + 72/(772 + lYy + z/2) - ( 3 7 2 + 5Yy + ly2) + 1 

- 7 3 2 / 3 (67 + 22/) + Yy2(l2Y2 + 872/ + y2) - 2/(1072 + 872/ + 2y2) 
+ .(37 + 22/) 

% 2/) 
- 7 5 z / 3 ( 7 7 + 32/) + 7 3 z / 2 ( 1 7 7 2 + 1672/ + 3y2) - 72/(1773 + 21Y2y 
+ 11J2/2 + 2/3) + ( 6 7 3 + 17J22/ + lOYy2 + 22/3) - (47 + 2y) 

- 752/ l f (87 + 32/) + 7 3 2 / 3 ( 2 4 7 2 + 1872/ + 3z/2) - 72 / 2 (347 3 + 37722/ 
+ \2Yy2 + 2/3) + # ( 2 3 7 3 •+ 32Y2y + 1372/2 + 22/3) 
- ( 6 7 2 + 1172/ + 42/2) + 1 

\ y) + ( 7 - 2/) 

2. Fundamentals of Wythoff's Sequences 
(see [22], [7], [21], [12], [8], [11], [9], [4], [19]) 

In this section we collect, without proofs, some well-known facts concern-
ing Wythoff's pairs of natural numbers, the sequence {/z(n)}, and their relation 
to the Fibonacci number system (1.9). We also introduce the counting sequences 
{z(n)} and {p(n)}. 

The special Beatty sequences {A(n)} and {B(n)} (see [22], [9], [4]) given 
by (1.10) divide the set of natural numbers into two disjoint and exhaustive 
sets, henceforth called A- and 5-numbers. For n = 0 we also define the Wythoff 
pair (4(0), 5(0)) = (0, 0). The sequence h, defined in (1.2) as 

(2.1) h(n) = A(n + 1) - A{n) - 1, 

takes on values 0 and 1 only. Wythoff's pairs (A(n), B(n)) have a simple char-
acterization in the Fibonacci number system: A(n) is represented for each n E IN 
with an even number of zeros at the end (including the case of no zero) . B(n) 
is then obtained from the represented A{n) by inserting a 0 before the dot at 
the end. Therefore, 5-numbers end in an odd number of zeros in this canonical 
number system. It is also known how to obtain the representation of A(n) from 
the given one for n. 
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The sequence h(n) (2 .1) d i s t i n g u i s h e s the two types of numbers: 

!

0 i f f n i s a S-number, 

1 i f f n i s an A-number. 
An ^-number ending in a 1 in the Fibonacci system (no end zeros) has fractional 
part from the interval (2 - $s 2(2 - (j))). Its fractional part is from the in-
terval (2(2 - (j)) 5 1) if the ^4-number representation ends in at least two zeros. 
This distinction of ^-numbers corresponds to the compositions 

A(A{ri)) = A2(n) = [ [w*]* ] and AB(n) = [ [n<$>2]<|>] , 

respectively. 
It is convenient to introduce the projectors 

(2.3) k(n) : = h(n) - (1 - h(n + 1)) = h(n)h{n + 1), 

1 - Hn) = (1 - h(n)) + (1 - h(n + 1)), 

k marks ^45-numbers: 

!

1 iff n is an AB-number 9 

0 otherwise. 
A(B(m) + 1) = AB(m) + 1, i.e., AB(m) is followed by an ^-number. Such pairs of 
consecutive numbers will be called A-pairs* Some identities for n e IN which 
will be of use later on are: 

(2.5a) AB(n) = A(n) + B(n) = 2A{n) + n = 5(4(n) + 1) - 2, 

(2.5b) 54 (n) = 2A{n) + n - 1 = 4B(n) - 1 = A(JB(n) + 1) - 2, 

(2.5c) A4(n) = A(n) + n - 1 = £(n) - 1 = A(A{n) + 1) - 2, 

(2.5d) BB(n) = 3A(n) + In = 4&4(n) + 2 = 5(5(w) + 1) - 2, 

= AAB(n) + 1. 

No three consecutive numbers can be ,4-numbers, and no two consecutive num-
bers can be 5-numbers. Among the A4-numbers ^ 1 , we distinguish between those 
which are bigger members of an 4-pair, viz, 

(2.6) AB(m) + 1 = A{B(m) + 1) = AA(A(m) + 1) for m e M, 

and the remaining ones which are called A-singles, viz, 

(2.7) AA(B(m) + 1) = A(AB(m) + 1) = BB(m) + 1 for m e IN. 

Thus, ,4-singles are A4-numbers having S-numbers as neighbors. A(n) is an 
i4-single if h(n - 1) = h(n) = 1. The .M-number 1 is considered separately 
because we can either count (0, 1) as an 4-pair or as a (5, A)-pair. 

Define z(n) to be the number of (positive) ^-numbers not exceeding n. This 
is 

n 
(2.8) z{n) = E h(k) = [ (n + 1)/<|>] = A(n + 1) - (n + 1). 

k= l 
The number of 5-numbers * 0 not exceeding n is then n - z(n) = [ (n + l)/c|)2]. 

Define p(n) to be the number of A/3-numbers (0 excluded) not exceeding n - 1. 
This is 

n- 1 
(2.9) p(n) = Y, k(m) = z(n) + z{n - 1) - n = 24 (n) - 3n + /z(n) . 

7 7 7 = 1 

The following identities hold: 

(2.10) pA(n + 1) = -A(n + l ) + 2 n + l = n - z(n) = z2(n - 1). 
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This i s j u s t the number of 5-numbers (excluding 0) not exceeding n. The 
l a s t e q u a l i t y follows with the help of 
(2.11) A(z(n - 1) + 1) = A(A(n) - n + 1) = n + 1 - h(n), 
which can be v e r i f i e d for A- and S-numbers n s e p a r a t e l y . Also, 
(2.12) pB(n) = A{n) - n = z(n - 1 ) , 
(2.13) pAB{m) = pBA(m) = m - 1. 
The p-value increases by one at each argument AB(m) + 1, due to 
(2.14) k(n) = p(n + 1) - p(n). 
The p-value m appears 2h(m) + 3 times. 

Another identity is 

(2.15) p(B(m) - 1) = pA2(m) = z(m - 1). 

The number of i4-singles (* 1) not exceeding n i s 
(2.16) pA(z(n) - p(n + 1)) = pAz2(n) = pz(n). 
F i n a l l y , 
(2.17) z(n - z{n) - 1) = z(pA(n + ! ) - ! ) = z(z2(n - 1) - 1) = p(n - 1). 

The last equality can be established by calculating B(n - z{n)). 
(2.18) B(n - z(n)) = n + 1 - 2/z(n) - 7z(w - 1) 

= n - z(n) + z(n - 2) + (1 - 7z(n)) = n - h(n) - k(n - 1), 

implying 

(2.19) A(n - s(n)) = s(n) + 1 - 2h(n) - /z(n - 1) = n - s(n) + p(n - 1). 

3. Generalized Chebyshev Polynomials 

Consider the recursion formula (1.1) with h(n) given by (1.2). For Y = y9 
the one for Chebyshevfs Sn(y) = Sn(y, y) polynomials [1] is found.* Their ex-
plicit form is 

[nil] 
(3.1) Sn{y) = £ (-l)£(n . l)yn~ll

s riew0. 

The binomial coefficient has, for I * 0, the following combinatorial mean-
ing. It gives the number of ways to choose, from the numbers 1, 2, ..., n, I 
mutually disjoint pairs of consecutive numbers. For £ = 0, this number is put 
to 1. The sum over the moduli of the coefficients in (3.1), i.e., the sum over 
the "diagonals" of Pascalfs triangle, is Fn+i> One also has 

Sn{2) = n + 1 and Sn(3) = F2{n + l)9 

which is proved by induction. 
For Y * y, a certain two-variable generalization of these Sn polynomials 

results. We claim that they are given by (1.4) where the new coefficients have 
the combinatorial meaning given in Propositions 1-3 and the Corollary of the 
first section. 

Theorem 1: Sn(Y, y) given by (1.4) with (1.5) and, (1.6) is the solution of 
recursion formula (1.1) with (1.2) inserted. 

*Sn(lf) - Un(y/2) with Un(cos 0) = sin((n + 1)0) /sin 0, Chebyshev' s polynomials of the second 
kind, for |z/| < 2. 
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Proof: By induct ion over n. For n = 0 , k m i n (0 , 0) = fcmax(0, 0) = 0 due to s (0 ) 
= 0 and, t h e r e f o r e , 5 0 = 1. In order to compute Sm v i a ( 1 . 1 ) , assuming (1 .4) 
to hold for n = m - 1 and n = m - 25 one w r i t e s 

which i s i d e n t i c a l to (1 .1c) due to the p r o j e c t o r p r o p e r t i e s of the exponents . 
Now 

z(m - 1) = z(rri) - h(m) and z(m - 2) = z{m) - h(m) - h(m - 1 ) , 
following from (2.8) and (2.1), are employed to rewrite the I and y exponents 
in the Sm^i term of (1.1b) such that exponents appropriate for Sm appear. In 
the Sm_2 term of (1.1b) a factor {l/Y)k^m'lHl/y)l"k(m~l) is in excess, which, 
when rewritten as k(m - 1)(1/J) + (1 - k{m - l)(l/y), produces two terms from 
this Sm-2 piece. In both of them the index shift I -> £ - 1 is performed, and 
in the first term k + k - 1 is used. Finally, one proves that the I and k 
range in all of the three terms which originated from Sm_i and Sm„2 in (l»lb) 
can be extended to the one appropriate for Sm as claimed in (1.4). In order to 
show this, the convention to put (n; I, k) to zero as soon as for given n the 
indices I or k are out of the allowed range has to be followed. Also, 

p(m - 2) = pirn) - k(m - 1) - k(m - 2 ) , , 

resulting from (2.9), is used in the first term of Sw_2 to verify that 
kmax(m ~ 2> & - 1) + 1 = kmax(m9 D . 

In this term, m - 1 is always an ̂ -number, and 

kmln(m - 2, £ - 1) + 1 > km±n(m, I) 

holds as well. In the second term, which originated from Sm_2> m " 1 is n o t a n 

/IB-number, and one can prove that 

km±n(m - 2, I - 1) = kmln(m, I) and kmax(m - 2, I - 1) < femax (m, Jl). 
In the Sm_i term one has, for even ms first to extend the upper i range by one, 
then the k range is extended as well, using 

fcminO - 1» JO > kmtn(m, I) and kmax (m - 1, *,) < kmax(m, I). 

The coefficients of the three terms can now be combined under one k-sum and are 
just given by (m; l9 k) due to recursion formula (1.5), which completes the 
induction proof. Our interest is now in the combinatorial meaning of the (n; 
&, k) defined by (1.5) with appropriate inputs. 

Lemma 1: Sk defined by recursions (l.la-c) satisfies, for fcei, 

(3.2) Sk = Y(k) ... 1(1) - Y{k) ... J(3)50 - Y{k) ... 1(4)^ -

... - Y(k)Sk_3 - Sk_2. 

Proof: By induction over k = 1, 2, ... . 
Remark: In (3.2) each of the k - 1 terms with a minus sign can be obtained 
from the first reference term by deletion of one pair of consecutive 

Y(i + l)J(i) for i e {1, 2, ..., fe - 1} 
and by replacement of all Y(i - 1) ••• 7(1) following to the right by S^-i- So 
there is a one-to-one correspondence between these k - 1 terms and the fc - 1 
different pairs of consecutive numbers that can be picked out of {1, 2, ..., 
n}. 

1992] 205 



A COMBINATORIAL PROBLEM IN THE FIBONACCI NUMBER SYSTEM 

Notation: The k - 1 terms of Sk - Y(k) ••. 1(1) given by (3-2) are denoted by 
[i, i + 1], with i = 1, 2, ..., fe - 1. E.g., for k = 5, [3, 4] = -I(5)S2, i.e., 
7(4) and Y(3) do not appear. 
Lemma 2: Sk of (3.2) consists in all of Fk+i terms if all Si appearing on the 
right-hand side of (3.2) are iteratively inserted until only products of Jfs 
occur. 

k- 1 
Proof: By induction, using SQ = 1 and 1 + ]C ̂i = f̂c+1-

i= l 
Definition 1: Q(n) is the set of Fn+i - 1 elements given by the individual terms 
of which Sn - Y(n) ••• 1(1) consists due to Lemma 2. 
Definition 2: Pz(n), for £ e {1, 2, . .., [n/2]}, is the set of £ mutually dis-
joint pairs of consecutive numbers taken out of the set {1, 2, ..., n}. 
Lemma 3: The elements of Q(n) are given by 

qiti(n) i = (-l)£J(n) ... J(n^ + 1) • Y{nit ) ... J(n^ + 1) *J(n^) 

••• *(D, 
where the £ barred J-pairs have to be omitted and 

(nix, nil + 1), ..., (nii , w^ + 1) 

is an element of P£ (n) for £ = 1, 2, ..., [n/2]. The index i numerates the 
different £ pairs: 

* - 1, 2, .... ( , ). 

Proof: Let (nx, ̂  + 1), ..., (n£, n£ + 1) with nj > n^-j + 1 for j = 2, ..., £ 
be an element of P£(n). Using the Notation, the corresponding element of Q(n) 
is obtained by picking in the [n£, n£ + 1] term of Sn the [n£_i, n£_i + 1] term 
of Sn _i which appears there, and so on, until the \n\y n\ + 1] term of 5n2-l 
is reached. If n^ = 1, one arrives at SQ - 1. If n^ > 2, one replaces the 
surviving 5^-1 by its first term, i.e., Y(rii - 1) ... J(l). In this way, each 
of the (n££) elements of P£ (n), distinguished by the label i , is mapped to a 
different element of Q(n). For all £, there are in all Pn+i - 1 such elements, 
and this mapping from U£i]/P£ to Q(n) is one-to-one. It is convenient also to 
define q$ i = Y(n) •«• J(l), which is the first term of 5W. 

Lemma 4: (3.3) q0 = ̂ ("fy «-*(*). 

Proof: Definition (2.9) of counting sequence z{n). 
Lemma 5: The general element q% ^(n) G Q(n) is given by 
(3.4) qiti(n) = j*Wyn-zW{ (__XJ£7-(2?c + £ -fĉ - a- k)}9 

if among the specific choice i of £ barred pairs of g£ .(n), as written in Lem-
ma 3, ̂  barred pairs are numerated by i4-numbers. 

Proof: A barred pair Y(i + l)Y(i) in ̂ 7£,i(n), given in Lemma 3, corresponds to 
a missing factor -I2 in Y(n) •«• 7(1) iff £ and i + 1 are both i-numbers. In 
all other cases a factor -Yz/ is missing. Therefore, the reference term q$ of 
(3.3) is changed as stated in (3.4). 

Putting these results together, we have proved Proposition 2 given in the 
first section, because the elements of Q(n) u q-Q are all the terms of Sn, and 
the multiplicity of a term with fixed powers of Y and y given in (.3.4) is just 
(n; £, k) according to (1.4). 

Proposition 1 is equivalent to Proposition 2 because of the characteriza-
tion of ̂ 4-numbers in the Fibonacci number system, as described in section 2. 
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If a pair of consecutive numbers is replaced by its smaller member, Propo-
sition 3 results from either Proposition* 

The Corollary follows from Proposition 3 and the Fibonacci representation 
explained in (1.9) - The numbers 1, 2, . .., n - 1 indicate the places I^, -̂ 35 
..., Fn, respectively. In (1*9) Si-\ = 1 if the number i e {1, 2, ..., n - 1} 
is chosen. If i = AB{m), for some m e M, the place of 

4̂£(m)+l = 4̂(B(m)+l) 
is activated. 

Comment.* The map used in the proof of Lemma 3 never produces negative powers 
of I or y. Thus, 

I - (n - z(ri)) < k < z(n) - I 
is always obeyed. On the other hand, the p(n) definition shows that 

0 < k < min(£, p(n)) 
has to hold as well. (1.6) gives the intersection of both k ranges. 

The main part of this work closes with a collection of explicit formulas 
concerning the (n; is k) numbers. Here9 the results listed in section 2 are 
used. 

A necessary condition is 

max in - Q\ 

(3.5) £ (n; I, k) = (U
 % *), 

which guarantees Sn(y, y) = Sn{y). 
The results for (n; %3 k) for I = 0, 1, 2S are: 

(3.6) & = 0: (n; 0, 0) = 1, 

(3.7a) I = 1; (n; 1, 0) = (n - 1) - p(n), 
(3.7b) (n; 1, 1) = p(n), 

(3.8a) & = 2: (n; 25 0) = ^{^) + p(n - 1) - (n - 3)p(n) + (n ~ 2)> 

(3.8b) (n; 2, 1) = (n - 3)p(n) - p(n - 1) - 2(p(2}) 5 

(3.8c) (n; 2, 2) = (p(2n)) . 

Already the & = 3 case becomes quite involved, except for (n% 3, 3) 5 which is a 
special case of 

(3.9) (n; Jt, *,) = (P(£n))> for n > AB(l) + 1. 

This is, from the combinatorial point of view, a trivial formula, which, when 
derived from the recursion formula, is due to an iterative solution of 

Pin) 
(n; I, it) = £ (&Ufc); A - 1, £ - 1), 

fe-o 
with input (BA(k)\ 0, 0) = 1. 

The last term of S^i has just the coefficient 

(3.10) (2£; I, s(2£) - JO = 1, 

where the input (2; 1, 0) = 1 was used. 
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Finally, we list some questions that are under investigation: 

(i) What do the generating functions for Sn9 Sn look like? 

(ii) Which differential equations do these objects satisfy? 

(iii) Are the Sn and Sn orthogonal with respect to some measure? 

(iv) How does the self-similarity of the h{n) sequence reflect itself in the 
polynomials Sn and Sn? 

APPENDIX 

Physical Applications 

The two-variable polynomials introduced in this work are basic for the 
solution of the discrete one-dimensional Schrodinger equation for a particle of 
mass rn moving in a quasi-periodic potential of the Fibonacci type (see [13] and 
[17]). The transfer matrix for such a model is given by 

< A . i , * „ . - ( « » > • - ; ) . 1, 0> 

with Y(n) defined by (1.1c) and (1.2). J = E - Vl, y = E - 70, where E is the 
energy (in units of ft^/lma2, with lattice constant a) and the potential at lat-
tice site n is Vn : = V(n$) with 

(V0 for 0 < x < 2 - <f> 
(A. 2) V(x) = < and V(x + 1) = V(x). 

{vl for 2 - <j) < x < 1 
The product matrix 

(A.3) Mn: = Rn ... R2Rl, 

which allows us to compute i|*w, the particle's wave-function at site number n, 
in terms of the inputs ipj anc* ô> according to 

<*•<> a * 1 ) - « • « ; ) 
t u rns out to be 

(sn, 
(A. 5) M„ = ( 

V'S'K-I > 

- 5 , 

- 5 , 
Because of det Rn = 1 = det Afn, one finds the identity 

(A. 6) SnSn - ̂ n-l^n + i = 1> 

for n e IN, which generalizes a well-known result for ordinary Chebyshev polyno-
mials. It allows to express Sn in terms of S^ with £ = 0, 1, ..., n + 1: 

1 / n^x 1 \ (A.7) Sn = —(1 + SnSn + l X — J , 

This can be proved by induction using 

Sn = —(1 + Sn+lSn-0-

Another model that leads to the same type of transfer matrices as (A.l) is 
the Fibonacci chain [2] with harmonic nearest neighbor interaction built from 
two masses rriQ and mi with mass m^u) at site number i. In this case 
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Y(n) = 2 - (u)/a)(n))25 with a)2(n) : = </mhM. 
K is the spring constant and oo the frequency. 

One-dimensional quasi-crystal models (see [16], [3]) can be transformed to 
Schrodinger equations on a regular lattice with quasi-periodic potentials as 
considered above. 
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