A DETERMINANT OF GENERALIZED FIBONACCI NUMBERS

CHRISTIAN KRATTENTHALER ${ }^{\dagger}$ AND ANTONIO M. OLLER-MARCÉN

Abstract

We evaluate a determinant of generalized Fibonacci numbers, thus providing a common generalization of several determinant evaluation results that have previously appeared in the literature, all of them extending Cassini's identity for Fibonacci numbers.

1. Introduction

The well-known Fibonacci sequence is given by $f_{n}=f_{n-1}+f_{n-2}$ with $f_{0}=f_{1}=1$. Numerous properties of this sequence are known. We refer the reader to the monograph [9] for a wealth of information on this sequence. One of these properties is the so called Cassini identity, given by

$$
f_{n} f_{n+2}-f_{n+1}^{2}=(-1)^{n}
$$

which can be written in matrix form as

$$
\operatorname{det}\left(\begin{array}{cc}
f_{n} & f_{n+1} \tag{1.1}\\
f_{n+1} & f_{n+2}
\end{array}\right)=(-1)^{n}
$$

Miles [6] introduced k-generalized Fibonacci numbers $f_{n}^{(k)}$ by

$$
f_{n}^{(k)}=\sum_{i=0}^{k} f_{n-i}^{(k)},
$$

with $f_{n}^{(k)}=0$ for every $0 \leq n \leq k-2, f_{k-1}^{(k)}=1$, and he gave the following generalization of (1.1):

$$
\operatorname{det}\left(\begin{array}{cccc}
f_{n}^{(k)} & f_{n+1}^{(k)} & \cdots & f_{n+k-1}^{(k)} \tag{1.2}\\
f_{n+1}^{(k)} & f_{n+2}^{(k)} & \cdots & f_{n+k}^{(k)} \\
\vdots & \vdots & \ddots & \vdots \\
f_{n+k-1}^{(k)} & f_{n+k}^{(k)} & \cdots & f_{n+2 k-2}^{(k)}
\end{array}\right)=\left(-1 \frac{(\underline{2 n+k)(k-1)}}{2} .\right.
$$

More recently, Stakhov [8] has generalized Cassini's identity for sequences of the form $f_{n}=f_{n-1}+f_{n-p-1}$.

Hoggat and Lind [4] consider the so called "dying rabbit problem", previously introduced in [1] and studied in [2] or [3], which modifies the original Fibonacci setting by letting rabbits die. In previous work by one of the authors [7], the sequence arising in

[^0]this setting was studied in detail. For instance, the recurrence relation for this sequence depends on two parameters $k, \ell \geq 2$ and is given by
$$
C_{n}^{(k, \ell)}=C_{n-\ell}^{(k, \ell)}+C_{n-\ell-1}^{(k, \ell)}+\cdots+C_{n-k-\ell+1}^{(k, \ell)},
$$
where $C_{0}^{(k, \ell)}, \ldots, C_{k+\ell-2}^{(k, \ell)}$ are initial values which will be specified below. It was also proved that, if $r_{1}, \ldots, r_{k+\ell-1}$ are the distinct roots of $g_{k, \ell}(x)=x^{k+\ell-1}-\frac{x^{k}-1}{x-1}$, then the general term of the sequence is given by $C_{n}^{(k, \ell)}=\sum_{i=1}^{k+\ell-1} a_{i} r_{i}$, with
\[

$$
\begin{align*}
a_{i}= & \frac{(-1)^{k+\ell+i-1}}{\prod_{j>i}\left(r_{j}-r_{i}\right) \prod_{j<i}\left(r_{i}-r_{j}\right)} \\
& \quad \times\left(\sum_{l=0}^{k-2} C_{l}^{(k, \ell)} \frac{r_{i}^{l+1}-1}{r_{i}^{l+1}\left(r_{i}-1\right)}+\sum_{l=k-1}^{k+\ell-3} C_{l}^{(k, \ell)} \frac{r_{i}^{k}-1}{r_{i}^{l+1}\left(r_{i}-1\right)}+C_{k+\ell-2}^{(k, \ell)}\right) \tag{1.3}
\end{align*}
$$
\]

Given the previous sequence, for every $j \geq 0$ we can define a matrix $A_{j, k, \ell}$ by

$$
A_{j, k, \ell}=\left(\begin{array}{ccccc}
C_{j}^{(k, \ell)} & C_{j+\ell}^{(k, \ell)} & C_{j+\ell+1}^{(k, \ell)} & \cdots & C_{j+k+2 \ell-3}^{(k, \ell)} \\
C_{j+1}^{(k, \ell)} & C_{j+\ell+1}^{(k, \ell)} & C_{j+\ell+2}^{(k, \ell)} & \cdots & C_{j+\ell)}^{(k, k)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{j+k+\ell-2}^{(k, \ell)} & C_{j+k+2 \ell-2}^{(k, \ell)} & C_{j+k+2 \ell-1}^{(k, \ell)} & \cdots & C_{j+2 k+3 \ell-5}^{(k, \ell)}
\end{array}\right)
$$

The main goal of this paper will be to find an explicit expression for $\operatorname{det}\left(A_{j, k, \ell}\right)$, thus extending (1.1) and (1.2).

2. Extending Cassini's identity

Before we proceed, we have to fix our initial conditions. In the original setting [7], when we start with a pair of rabbits that become mature ℓ months after their birth and die k months after their matureness, the $k+\ell-1$ initial conditions are given by $C_{0}^{(k, \ell)}=\cdots=C_{\ell-1}^{(k, \ell)}=1$ and $C_{n}^{(k, \ell)}=C_{n-1}^{(k, \ell)}+C_{n-\ell}^{(k, \ell)}$ for every $\ell \leq n \leq k+\ell-2$. Instead, in what follows we will consider the following initial conditions:

$$
\begin{gathered}
\widetilde{C}_{0}^{(k, \ell)}=1 \\
\widetilde{C}_{1}^{(k, \ell)}=\cdots=\widetilde{C}_{k-1}^{(k, \ell)}=0, \\
\widetilde{C}_{k}^{(k, \ell)}=\cdots=\widetilde{C}_{k+\ell-2}^{(k, \ell)}=1 .
\end{gathered}
$$

Note that this change in the initial conditions results only in a shift of indices. Namely, if $C_{n}^{(k, \ell)}$ denotes the original sequence and $\widetilde{C}_{n}^{(k, \ell)}$ denotes the sequence given by the same recurrence relation and these new initial conditions, then for every $n \geq 0$ we have

$$
C_{n}^{(k, \ell)}=\widetilde{C}_{n+k+1}^{(k, \ell)}
$$

Thus, if $\widetilde{A}_{j, k, \ell}$ is the corresponding matrix (defined in the obvious way), we have $A_{j, k, \ell}=$ $\widetilde{A}_{j+k+1, k, \ell}$. Hence, we can focus on finding a formula for $\operatorname{det}\left(\widetilde{A}_{j, k, \ell}\right)$.

First of all, observe that $\operatorname{det}\left(\widetilde{A}_{j, k, \ell}\right)=(-1)^{k+\ell-2} \operatorname{det}\left(\widetilde{A}_{j-1, k, \ell}\right)$ because $\widetilde{A}_{j, k, \ell}$ is obtained from $\widetilde{A}_{j-1, k, \ell}$ by replacing the first row by the sum of the first k rows of the matrix, and then permuting the rows so that the first row becomes the last one. If we apply this idea repeatedly, we obtain that $\operatorname{det}\left(\widetilde{A}_{j, k, \ell}\right)=(-1)^{j(k+\ell-2)} \operatorname{det}\left(\widetilde{A}_{0, k, \ell}\right)$. Hence, it is sufficient to compute this latter determinant.

We shall focus now on computing this determinant, which explicitly is

$$
\operatorname{det}\left(\widetilde{A}_{0, k, \ell}\right)=\operatorname{det}\left(\begin{array}{ccccc}
\widetilde{C}_{0}^{(k, \ell)} & \widetilde{C}_{\ell}^{(k, \ell)} & \widetilde{C}_{\ell+1}^{(k, \ell)} & \ldots & \widetilde{C}_{k+2)}^{(k, \ell)} \\
\widetilde{C}_{1}^{(k, \ell)} & \widetilde{C}_{\ell+1}^{(k, \ell)} & \widetilde{C}_{\ell+2}^{(k, \ell)} & \ldots & \widetilde{C}_{k+2 \ell-2}^{(k, \ell)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\widetilde{C}_{k+\ell-2}^{(k, \ell)} & \widetilde{C}_{k+2 \ell-2}^{(k, \ell)} & \widetilde{C}_{k+2 \ell-1}^{(k, \ell)} & \ldots & \widetilde{C}_{2 k+3 \ell-5}^{(k, \ell)}
\end{array}\right) .
$$

To do so, recall that we have $\widetilde{C}_{n}^{(k, \ell)}=\sum_{s=1}^{k+\ell-1} a_{s} r_{s}^{n}$, where the a_{i} 's are given by (1.3). We substitute this in the above determinant and use multilinearity in the columns to expand it into the sum

$$
\sum_{1 \leq s_{1}, \ldots, s_{k+\ell-1} \leq k+\ell-1}\left(\prod_{j=1}^{k+\ell-1} a_{s_{j}}\right) \operatorname{det}_{1 \leq i \leq k+\ell-1}\left(r_{s_{1}}^{i-1} r_{s_{2}}^{i+\ell-1} r_{s_{3}}^{i+\ell} \cdots r_{s_{k+\ell-1}}^{i+k+2 \ell-4}\right)
$$

Now, if in this sum two of the s_{j} 's should equal each other, then the corresponding two columns in the determinant would be dependent so that the determinant would vanish. We can therefore restrict the sum to permutations of $\{1,2, \ldots, k+\ell-1\}$. With $S_{k+\ell-1}$ denoting the set of these permutations, this leads to

$$
\begin{aligned}
& \operatorname{det}\left(\widetilde{A}_{0, k, \ell}\right)=\sum_{\sigma \in S_{k+\ell-1}}\left(\prod_{j=1}^{k+\ell-1} a_{\sigma(j)}\right) \operatorname{det}_{1 \leq i \leq k+\ell-1}\left(r_{\sigma(1)}^{i-1} r_{\sigma(2)}^{i+\ell-1} r_{\sigma(3)}^{i+\ell} \cdots r_{\sigma(k+\ell-1)}^{i+k+2 \ell-4}\right) \\
&=\left(\prod_{j=1}^{k+\ell-1} a_{j}\right) \sum_{\sigma \in S_{k+\ell-1}}\left(\prod_{j=2}^{k+\ell-1} r_{\sigma(j)}^{\ell+j-2}\right)_{1 \leq i, j \leq k+\ell-1}^{\operatorname{det}}\left(r_{\sigma(j)}^{i-1}\right) \\
&=\left(\prod_{j=1}^{k+\ell-1} a_{j}\right) \sum_{\sigma \in S_{k+\ell-1}}(\operatorname{sgn} \sigma)\left(\prod_{j=2}^{k+\ell-1} r_{\sigma(j)}^{\ell+j-2}\right)_{1 \leq i, j \leq k+\ell-1}^{\operatorname{det}}\left(r_{j}^{i-1}\right) \\
&=\left(\prod_{j=1}^{k+\ell-1} a_{j}\right)\left(\prod_{1 \leq i<j \leq k+\ell-1}\left(r_{j}-r_{i}\right)\right)_{\sigma \in S_{k+\ell-1}}(\operatorname{sgn} \sigma)\left(\prod_{j=2}^{k+\ell-1} r_{\sigma(j)}^{\ell+j-2}\right) \\
&=\left(\prod_{j=1}^{k+\ell-1} a_{j}\right)\left(\prod_{1 \leq i<j \leq k+\ell-1}\left(r_{j}-r_{i}\right)\right) \operatorname{det}_{1 \leq i \leq k+\ell-1}\left(1 r_{i}^{\ell} r_{i}^{\ell+1} \cdots r_{i}^{k+2 \ell-3}\right) \\
&=\left(\prod_{j=1}^{k+\ell-1} a_{j}\right)\left(\prod_{1 \leq i<j \leq k+\ell-1}\left(r_{j}-r_{i}\right)\right)\left(\prod_{i=1}^{k+\ell-1} r_{i}\right)^{k+2 \ell-3} \\
& \times{ }_{1 \leq i \leq k+\ell-1}^{\operatorname{det}}\left(r_{i}^{-k-2 \ell+3} r_{i}^{-k-\ell+3} r_{i}^{-k-\ell+4} \cdots 1\right)
\end{aligned}
$$

$$
\begin{align*}
=\left(\prod_{j=1}^{k+\ell-1} a_{j}\right) & \left(\prod_{1 \leq i<j \leq k+\ell-1}\left(r_{j}-r_{i}\right)\left(r_{i}^{-1}-r_{j}^{-1}\right)\right)\left(\prod_{i=1}^{k+\ell-1} r_{i}\right)^{k+2 \ell-3} \\
& \times h_{\ell-1}\left(r_{1}^{-1}, \ldots, r_{k+\ell-1}^{-1}\right) \tag{2.1}
\end{align*}
$$

In the last line we have used the following notations and facts: first of all, $h_{m}\left(x_{1}, \ldots, x_{N}\right)$ denotes the m-th complete homogeneous symmetric function in N variables x_{1}, \ldots, x_{N}, explicitly given by

$$
h_{m}\left(x_{1}, \ldots, x_{N}\right)=\sum_{1 \leq i_{1} \leq \cdots \leq i_{m} \leq N} x_{i_{1}} \cdots x_{i_{m}}
$$

Furthermore, the Schur function indexed by a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ in the variables x_{1}, \ldots, x_{N} is defined by

$$
s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\frac{\operatorname{det}_{1 \leq i, j \leq N}\left(x_{i}^{\lambda_{j}+N-j}\right)}{\operatorname{det}_{1 \leq i, j \leq N}\left(x_{i}^{N-j}\right)}=\frac{\operatorname{det}_{1 \leq i, j \leq N}\left(x_{i}^{\lambda_{j}+N-j}\right)}{\prod_{1 \leq i<j \leq N}\left(x_{i}-x_{j}\right)}
$$

It is well-known (cf. [5, p. 41, Eq. (3.4)]) that for $\lambda=(m, 0, \ldots, 0)$ the Schur function $s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)$ reduces to $h_{m}\left(x_{1}, \ldots, x_{N}\right)$. These facts together explain the last line in the above computation.

To proceed further, let us first observe that, by reading off the constant coefficient of $g_{k, \ell}(x)$, we obtain

$$
\prod_{i=1}^{k+\ell-1} r_{i}=(-1)^{k+\ell}
$$

Furthermore, we have

$$
\begin{aligned}
g_{k, \ell}(x) & =x^{k+\ell-1}-\frac{x^{k}-1}{x-1}=\prod_{i=1}^{k+\ell-1}\left(x-r_{i}\right)=(-1)^{k+\ell-1} \prod_{i=1}^{k+\ell-1} r_{i}\left(1-r_{i}^{-1} x\right) \\
& =-\prod_{i=1}^{k+\ell-1}\left(1-r_{i}^{-1} x\right)
\end{aligned}
$$

Hence, we obtain

$$
\begin{aligned}
\sum_{m=0}^{\infty} h_{m}\left(r_{1}^{-1}, \ldots, r_{k+\ell-1}^{-1}\right) x^{m} & =\frac{1}{\prod_{i=1}^{k+\ell-1}\left(1-r_{i}^{-1} x\right)} \\
& =\frac{1}{\frac{x^{k}-1}{x-1}-x^{k+\ell-1}} \\
& =\frac{1-x}{1-x^{k}-x^{k+\ell-1}+x^{k+\ell}} \\
& =1-x+x^{k}-x^{k+1}+\cdots+O\left(x^{k+\ell-1}\right)
\end{aligned}
$$

In order to evaluate $h_{\ell-1}\left(r_{1}^{-1}, \ldots, r_{k+\ell-1}^{-1}\right)$, we just have to extract the coefficient of $x^{\ell-1}$ in the expansion on the right-hand side. This is easy: if $\ell-1$ equals a multiple of k
then we obtain 1 , if $\ell-2$ equals a multiple of k then we obtain -1 , and in all other cases we obtain 0 .

We continue evaluating the other factors in (2.1). We have

$$
\begin{aligned}
\prod_{1 \leq i<j \leq k+\ell-1}\left(r_{j}-r_{i}\right)\left(r_{i}^{-1}-r_{j}^{-1}\right) & =\prod_{1 \leq i<j \leq k+\ell-1} \frac{\left(r_{j}-r_{i}\right)^{2}}{r_{i} r_{j}} \\
& =\frac{\prod_{1 \leq i<j \leq k+\ell-1}\left(r_{j}-r_{i}\right)^{2}}{\left(\prod_{i=1}^{k+\ell-1} r_{i}\right)^{k+\ell-2}} \\
& =\frac{1 \leq i<j \leq k+\ell-1}{(-1)^{k+\ell}}
\end{aligned}
$$

Furthermore, we must compute $\prod_{j=1}^{k+\ell-1} a_{j}$. To begin with, recall the formula (1.3) and the fact that $\widetilde{C}_{0}^{(k, \ell)}=\widetilde{C}_{k}^{(k, \ell)}=\cdots=\widetilde{C}_{k+\ell-2}^{(k, \ell)}=1$ and $\widetilde{C}_{1}^{(k, \ell)}=\cdots=\widetilde{C}_{k-1}^{(k, \ell)}=0$. With this in mind, we get

$$
\begin{aligned}
\prod_{j=1}^{k+\ell-1} a_{j} & =\frac{\prod_{j=1}^{k+\ell-1}(-1)^{k+\ell+j-1}}{\prod_{1 \leq i<j \leq k+\ell-1}\left(r_{j}-r_{i}\right)^{2}} \prod_{j=1}^{k+\ell-1}\left(\frac{r_{j}-1}{r_{j}\left(r_{j}-1\right)}+\sum_{i=1}^{\ell-2} \frac{r_{j}^{k}-1}{r_{j}^{k+i}\left(r_{j}-1\right)}+1\right) \\
& =\frac{(-1)^{\frac{(3 k+3 \ell-2)(k+\ell-1)}{2}}}{\prod_{1 \leq i<j \leq k+\ell-1}\left(r_{j}-r_{i}\right)^{2}} \prod_{j=1}^{k+\ell-1}\left(\frac{1}{r_{j}}+\sum_{i=1}^{\ell-2} \frac{r_{j}^{k}-1}{r_{j}^{k+i}\left(r_{j}-1\right)}+1\right) .
\end{aligned}
$$

Moreover, observe that

$$
\begin{aligned}
\frac{1}{r_{j}}+\sum_{i=1}^{\ell-2} \frac{r_{j}^{k}-1}{r_{j}^{k+i}\left(r_{j}-1\right)}+1 & =\frac{1}{r_{j}}+\frac{r_{j}^{k}-1}{r_{j}-1} \sum_{i=1}^{\ell-2} \frac{1}{r_{j}^{k+i}}+1 \\
& =\frac{1}{r_{j}}+r_{j}^{k+\ell-1} \sum_{i=1}^{\ell-2} \frac{1}{r_{j}^{k+i}}+1 \\
& =\frac{r_{j}^{\ell}-1}{r_{j}\left(r_{j}-1\right)}
\end{aligned}
$$

Here, to obtain the second line, we have used the fact that $1 \neq r_{j}$ is a root of $x^{k+\ell-1}-$ $\frac{x^{k}-1}{x-1}$.

Now, to conclude we must compute $\prod_{j=1}^{k+\ell-1} \frac{r_{j}^{\ell}-1}{r_{j}\left(r_{j}-1\right)}$. To do so, let ω be a primitive ℓ-th root of unity. Then

$$
\begin{aligned}
\prod_{j=1}^{k+\ell-1}\left(r_{j}^{\ell}-1\right) & =\prod_{j=1}^{k+\ell-1} \prod_{i=1}^{\ell}\left(r_{j}-\omega^{i}\right)=\prod_{i=1}^{\ell} \prod_{j=1}^{k+\ell-1}\left(r_{j}-\omega^{i}\right) \\
& =\left(\prod_{j=1}^{k+\ell-1}\left(r_{j}-1\right)\right)\left(\prod_{i=1}^{\ell-1} \prod_{j=1}^{k+\ell-1}\left(r_{j}-\omega^{i}\right)\right) \\
& =\left(\prod_{j=1}^{k+\ell-1}\left(r_{j}-1\right)\right)(-1)^{(k+\ell-1)(\ell-1)}\left(\prod_{i=1}^{\ell-1} g_{k, \ell}\left(\omega^{i}\right)\right)
\end{aligned}
$$

Furthermore, $g_{k, \ell}\left(\omega^{i}\right)=\omega^{i(k+\ell-1)}-\frac{\omega^{i k}-1}{\omega^{i}-1}=-\frac{\omega^{i(k-1)}-1}{\omega^{i}-1}$. Consequently, we have

$$
\prod_{j=1}^{k+\ell-1} \frac{r_{j}^{\ell}-1}{r_{j}\left(r_{j}-1\right)}=(-1)^{(k+\ell) \ell}\left(\prod_{i=1}^{\ell-1} \frac{\omega^{i(k-1)}-1}{\omega^{i}-1}\right)
$$

Finally observe that

$$
\prod_{i=1}^{\ell-1} \frac{\omega^{i(k-1)}-1}{\omega^{i}-1}= \begin{cases}1, & \text { if } \operatorname{gcd}(\ell, k-1)=1 \\ 0, & \text { otherwise }\end{cases}
$$

We can now collect all the work done to obtain the following result.
Theorem. For all integers k and ℓ with $k, \ell \geq 2$, we have

$$
\operatorname{det}\left(\widetilde{A}_{0, k, \ell}\right)= \begin{cases}(-1)^{\frac{(k+\ell)(k+\ell-1)}{2}+1}, & \text { if } \ell-1=\alpha k \text { and } \operatorname{gcd}(\ell, k-1)=1 ; \\ (-1)^{\frac{(k+\ell)(k+\ell-1)}{2}}, & \text { if } \ell-2=\beta k \text { and } \operatorname{gcd}(\ell, k-1)=1 \\ 0, & \text { otherwise }\end{cases}
$$

Corollary. Let $k_{0}, \ell_{0} \geq 2$ be any integers. Then the following hold:
i) The sequence $\left\{\alpha_{\ell}\right\}_{\ell \geq 2}$ given by $\alpha_{\ell}=\left|\operatorname{det}\left(\widetilde{A}_{0, k_{0}, \ell}\right)\right|$ is periodic, and its period is a divisor of $k_{0} \cdot \operatorname{rad}\left(k_{0}-1\right)$.
ii) The sequence $\left\{\beta_{k}\right\}_{k \geq k}$ given by $\beta_{k}=\left|\operatorname{det}\left(\widetilde{A}_{0, k, \ell_{0}}\right)\right|$ is eventually zero.

Proof. i) Clearly $\operatorname{gcd}\left(\ell, k_{0}-1\right)>1$ implies that $\operatorname{gcd}\left(\ell+k_{0} \cdot \operatorname{rad}\left(k_{0}-1\right), k_{0}-1\right)>1$. In the same way, if $\ell-1$ and $\ell-2$ are not multiples of k_{0}, then neither are $\ell+k_{0} \cdot \operatorname{rad}\left(k_{0}-1\right)-1$ or $\ell+k_{0} \cdot \operatorname{rad}\left(k_{0}-1\right)-2$. Consequently, if $\alpha_{\ell}=0$, also $\alpha_{\ell+k_{0} \cdot \operatorname{rad}\left(k_{0}-1\right)}=0$ as claimed.
ii) If $k \geq \ell_{0}$ obviously neither $\ell-1$ nor $\ell-2$ can be multiples of k and therefore $\beta_{k}=0$ for every $k \geq \ell_{0}$.

References

[1] Alfred B.U., Exploring Fibonacci numbers, Fibonacci Quart. 1 (1963), no. 1, 57-63.
[2] Alfred B.U., Dying rabbit problem revived, Fibonacci Quart. 1 (1963), no. 4, 482-487.
[3] Cohn, J.H.E., Letter to the editor, Fibonacci Quart. 2 (1964), 108.
[4] Hoggat V.E., Lind D.A., The dying rabbit problem, Fibonacci Quart. 7 (1969), no. 5, 482487.
[5] Macdonald, I.G., Symmetric funtions and Hall polynomials, 2nd ed., Oxford University Press, New York/London, 1995.
[6] Miles, E., Generalized Fibonacci numbers and related matrices, Amer. Math. Monthly 67 (1960), 745-752.
[7] Oller-Marcén, A.M., The dying rabbit problem revisited, Integers 9 (2009), 129-138.
[8] Stakhov, A.P., Fibonacci matrices, a generalization of the "Cassini formula", and a new coding theory, Chaos Solitons Fractals 30 (2006), no. 1, 1108-1109.
[9] Vajda, S., Fibonacci and Lucas numbers, and the golden section, John Wiley \& Sons, New York, 1989.

Fakultät für Mathematik, Universität Wien, Nordbergstrasze 15, A-1090 Vienna, Austria. WWW: http://www.mat.univie.ac.at/~kratt.

Centro Universitario de la Defensa, Ctra. de Huesca s/n, 50090 Zaragoza (España)
E-mail address: oller@unizar.es

[^0]: 2010 Mathematics Subject Classification. Primary 11B39; Secondary 05A10 05A19 11C20.
 Key words and phrases. generalized Fibonacci numbers, Cassini's identity, determinant evaluation.
 ${ }^{\dagger}$ Research partially supported by the Austrian Science Foundation FWF, grants Z130-N13 and S9607-N13, the latter in the framework of the National Research Network "Analytic Combinatorics and Probabilistic Number Theory".

