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1 • In t h i s no te I respond t o two e a r l i e r n o t e s [1] and [2] on t h e decimal ex -

pans ion of some f r a c t i o n s t h a t a r e r e l a t e d t o t h e F ibonacc i numbers Fn and t h e 

Lucas numbers Ln, The s imp le s t example i s 

4n = .0112358 = T F 10"". 

21 

I propose to put these expansions into a context from which more examples can 

be drawn in abundance. The recently studied Tribonacci numbers (see [3], [4]) 

will also fit into this context. 

The Fibonacci and Lucas numbers can be defined by the recursions 

FQ = 0, F1 = 1, L0 = 2, L1 = 1, Fn+1 = Fn + Fn_l9 Ln+1 = Ln + Bn_li 

for n ^ 1, or equivalently, by the formulas 

Fn = -ir(a)n - (5M) , Ln = a)
n + oins (1) 

v5 

where co = %(1 + \/5) 5 co = %(1 - /5) . Taking this as a definition of Fn and Ln 

for arbitrary integers n, it follows from 

0)0) = -1 (2) 

that F_n = (-l)
n+1Fn5 L.n = (~D

nLn. 

First, I shall restate and prove Theorem 2 of [2] in the following form: 

Theorem 1. Let A, Bfa09 a± be arbitrary complex numbers. Define the sequence 

(an)n by the recursion an+1 = Aan + Ban_1. Then the formula 

y ^1 = a°Z + (a± " laq) (3) 
n = 1

 z
n
 z

1
 - Az - B 

holds for all complex z such that \z | is larger than the absolute values of the 

zeros of z
2
 - Az - B. 

Corollary 2. Let a rational function 

f(z) -
a0s + b1 

z - A z - B 

with arbitrary complex numbers A, B, a0, b1 be given. Then formula (3) holds 
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for sufficiently large \z\9 where the coefficients an are uniquely determined 
by the recursion a1 = b1 + AaQ9 an+1 = Aan + Ban_1. 

Proof: From the recursion, it is clear that an = 0(o
n
) for some o > 0. 

Therefore, the power series converges for \z\ > c. Let 

n = l 

Then i t follows tha t 

W3 + B)S = £ f ^ i + - ^ ) = 4a0 + £ 
n=l \ s " "

1
 2

n
 /

 n = 1 

n-l 

n-1 o>n 

»-» n + 1 n 

n = l s
n 

This implies (3) . As a power series expansion, (3) is valid in the largest an-
nulus |3| > v which does not contain a pole of the function represented. This 
proves the theorem, and the corollary follows immediately. 

2. As an application, I shall prove a result which shows that all decimal ex-
pansions in [1] can be regarded as special instances of Theorem 1 and, there-
fore, of Theorem 2 in [2], Moreover, I believe that this result clarifies the 
question of convergence in [1]. 

Theorem 3- Let k and I be integers, k ̂  1. Then the formula 

AFft(n-l) + & _
 F

l* + (~
l
^

F
k-Z (4) 

n-l Z
n
 Z

2
-LkZ + (-1)'* 

holds for all complex s that satisfy |s| > 0) k 

Proof: This is a direct consequence of (1), (2), (3), and the geometric 
sum formula: 

n-l *
n
 /En^O z

n+1 

_ -1 / o)£ 

1 /((/ - d3£)z + (oo^£ - 03£^)\ 

^ > + (-!)*>. k-A 

-32-Lfe2 + (-l)
k 

Corollary 2 now implies the recursion 

<* ̂  = ̂ a + (-l)k+1a n fora =F. ,. (5) 
n + 1 Ac n v ' n-l rc kn + £ 

One can also prove (5) directly and then obtain Theorem 3 as a consequence of 
Theorem 1. 
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3. Examples: For 1=0, formula (5) reads 

L
r k(n- 1) nk c 1 1 \ v , r^ 

—* - = — — for 2 > tx)
K
. (6) 

n = l Zn Z1 ~ LkZ + {~l)k 

This looks simpler than (5.1) and (5.2) in [1], and because of 

Lx + (L2 + L, + L6 + ••• + Llm) = LZm+19 

and 
L2 + (L3 + L5 + ••• + L^.,) - L2m, 

it is in fact equivalent with those formulas. All decimal expansions in [1] 
are special instances of (6) when z is a power of 10. I shall now write some 
instances of (4) with £ > 0. 

(a) Choose z = 102, I = 1, & = 2, 3. This yields 

102P - F 
QQ ±u r r 

* - = .010205133489..., 9 7 0 1 104 - 102L2 + 1 

99 1Q2Fi " F
2 

^ - = .01031355 9 3 9 9 104 - 102L3 - 1 233 
987 

For z = 102, the condition \z\ > bd
k is satisfied for k < 9, and therefore with 

£ = 1 there are similar expansions of the fractions 98/9301, 97/8899, 95/8201, 
92/7099, 87/5301, and 79/2399. 

(b) Choose z = 103, k = 5, and let I run from 1 to 4. With 

N = 106 - 103L5 - 1 = 988999, 

this yields 

997 
988999 

(10dF1 - FJ/N = .001008089987..., 

1002 = ( 1 Q 3 F + F )/N = .001013144 
988999 1 5 9 7 

1999 /lo3 = (103F» - FJ/tf = .002021233 
988999 - - 2 5 g 4 

^||||g - (103F4 + FJ/N = .003034377 
4181 

For z = 103, the series (4) converges if k < 14. Generally, if 3 is fixed and 
\z\ is large, the range of values of k for which Theorem 3 applies is easily 
read from a table of Lucas numbers because, by (1) and |co| < 2/3, Ln is a good 
approximation for U)

n
. 
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Remark: The reasoning in the proof of Theorem 3 can also be applied to the 
Lucas numbers. The result is 

- L
Hn-l) + i =

 L
l
Z " (-1)£Lfe-£ 

n = l Z
n
 Z

2
-LkZ + (-l)

k 

v / c + 1 

for \z I > ix)
k
9 (7) 

a
n+l = L

k
a
n + (-1) a

n-l f o r a
n = L

kn+l> (8) 

4. Theorem 1 and its proof can easily be generalized for sequences with a more 
complicated recursion, and any rational function can be dealt with in this way. 

Theorem 4. Let arbitrary complex numbers AQ, A19 ..., Am9 a0, alf . .., am be 
given. Define the sequence (an)n by the recursion 

a
n+l =

 A
0

a
n +

 A
i
a
n-1

 +
 ' " •

 + A
m^n-m' <

9
> 

Then for all complex z such that \z\ is larger than the absolute values of all 
zeros of 

Anz
m
 - Az™-

1 - ••• - Ami (10) 

the 

q(z) = zm+1 - . 

formula 

n= 1 Z 

. PC*) 
" <7(a) 

(11) 

holds with 

p(s) = aQz
m + fc^"1 + ••• + 1 ) ^ 

(12) 
k-1 

h
k =

 a
k " S A

j
a
k-l-j f ° r X ̂  fc ̂  m* 

j =0 

Corol lary 5- Let any rational function f(z) = p(z)/q(z) be given such that the 
degree of the polynomial p is less than that of q. Then there are complex num-
bers AQ9 A±y . .., Am, aQ9 a1 •> ..., am such that, for \z\ sufficiently large, 
formula (11) holds with the sequence (an)n defined by the recursion (9). 

Proof: From (9) it follows that an = 0(o
n
) for some o > 0. Therefore, the 

power series in (11) converges for \z\ > o. With 

n = l 

it follows that 

(AQz
m + A^-

1 + ••• + AJS = S OV* + A^-
1 + ••• + V^-i2"* 

n = 1 

n = l 

+ ^ ( a ^ - 2 + axz
m
~

z + - - • + am_2) + • • • + ̂ .-^0 
(continued) 
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= E am+nz-
n
 + AQa0z

m
-

1
 + Ufa + Afa)z

m
~* + ••• 

n = 1 

= zm + 1S - aQzm - b ^ - 1 - b2z
m~2 - ••• - bm, 

where the by_ are defined as in (12). This implies (11). As a power series 
expansion, (11) is valid in the largest annulus \z\ > v which does not contain 
a pole of the function p/q. This proves the theorem. The corollary follows at 
once, because the constants A , A , ..., Am, a0, a , ..., am can be read from 
(10) and (12). 

The coefficients an are uniquely determined by the function p/q. The re-
cursion (9), however, is not unique unless one requires m to be minimal. 

5- One must ask for good examples to illustrate Theorem 4 and its corollary. 
In view of (1), one may think of units in cubic number fields. An example of 
this kind is provided by the so-called Tribonacci numbers Tn (see [3], [4]). I 
will discuss these numbers briefly in section 6. 

As a first example, I choose 

q(z) - z3 - z - 1 

for the denominator in (11) . This means that I consider sequences (an)n that 
satisfy the recursion 

an = an_2 + an_3. (13) 

There are a real zero u)1= 1.32471... and a pair of conjugate complex zeros a)2, 
0)3 = oô" of the polynomial q. Define 

Xn = a)" + a)£ + ojg for n any integer. (14) 

Since Xn is symmetric in the roots of q that are algebraic units, it is plain 
that all Xn must be rational integers. This can also be shown as follows. The 
roots of q satisfy 

0) 1 + 03 2 + 033 = 0 , 0) 1 0) 2 + C02OJ3 + CO 3 00 x = - 1 , Ud-Lb}2b)3 = 1 . (15) 

This implies 

A2 = 03̂  + OJ2 + (OO-L + OJ2)
 2 = 2(o)J + OJ2) + 20̂ 0) 

= 2(X2 - cup + — = 2X2 - 20^ + 2(d)
2 - 1) = 2X2 - 2, 

whence X2= 2, and from oô  = GJV + 1 it follows that Xn = Xn_2 + Xn_3 for all n. 
Thus, the Xn satisfy recursion (13), the starting values being A0 = 3, X1 = 0, 
X2 = 2. The Xn may be regarded as an analogue to the Lucas numbers. A short 
table of these numbers is shown below. 

n -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 

Xn I -3 2 1 - 1 3 0 2 3 2 5 5 7 10 12 17 22 

N o t e t h a t ao1a)2aJ3 = 1 i m p l i e s 

X_n = (aj2oo3)
n
 + (0)3(1)!)".'+ (o ) 1 o) 2 )

n
. 

The table indicates that Xn + 5-X n + t f=X n; this is easily shown for any sequence 
(an)n that satisfies (13). Another consequence from (15) is |OJ2|

2 = 1/cOx < 1. 
Therefore, the power series Hn=1Xn_1z~

n converges for \z\ > o)15 and the fol-
lowing analogue to Theorem 3 has a wider range of validity than Theorem 3: 
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Theorem 6. Let Xn be defined as in (14), and let k and I be integers, k ^ 1. 
Then the formula 

£ = (16) 
n = 0 z

n + 1
 z

3 - \kz
2 + \_kz - 1 

holds for all complex z that satisfy'\z\ > oô . The numbers cn = Xfen + Jl satisfy 
the recursion 

cn = \kcn_1 - \-kcn.2 + cn_3. (17) 

Proof: We proceed exactly as in the proof of Theorem 3, using the geometric 
sum formula and the relations (15) to obtain (16). Recursion (17) then follows 
from Corollary 5. 

For numerical examples, choose z = 102, k - 3, % = 0 , 1, 2. This yields 

29402 ~ X
3n 

.030305122968 
970199 n^olo2(n + i) ' 1 5 g 

201 ^ X
3n + 1 £ —?ILLL- = .000207173990 

970199 n^0l02(n + i) 2 Q 9 

19899 _ £ _}jn + 2 m e 0 2 0 5 1 0 2 2 5 1 

970199 n^0 102(n + i) n 9 

The particular choice of the numbers Xn is not essential for the conclusion 
in Theorem 6. In fact, let arbitrary complex numbers aQ9a19 a2 be given. Then 
the system of three linear equations 

d^l + d2tx)2 + 6Z3o)3
 = a

n (
n
 = °> !» 2) (18) 

has the unique solution 

a) - u /a v 
£? = f ha.Iu).1+a9]etc., 

where D = -23 is the discriminant of q. Use (18) to define an for all integers 
n. Then, from U)3 = u)v + 1, it follows that the an satisfy (13). Thus, any se-
quence (an)n which obeys (13) can be represented in the form (18). Therefore, 
we may proceed as in the proof of Theorem 3, and the result is 

oo a1 „ a0z
2 + (av,0 - Xva0)z + an 1 

— = for \z\ > a)x. (19) 
n
 = ° z

n+
 z

3
 - Xkz

2 + \.kz - 1 

It suffices to state and prove (19) for £ = 0, since the case of a general £ 
can be reduced to £ = 0 by a modification of aQ, a±, a2. 

6. The validity of a result like (19) does not depend on the particular choice 
of the polynomial q. Let 

q(z) = z
m+1

 - AQz
m
 - AYz

m
~

Y
 - ••• - A m 

be any polynomial with only simple zeros co1, ..., ttim+1. Then it follows as in 
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(18) that any sequence (a„)n which satisfies recursion (9) can be represented 
in the form 

an = d-^\ + • • • + <4 + 1a)JJ + 1 
with uniquely-determined coefficients d1, . .., dm + 1. Thus, an analogue to for-
mula (19) must hold for any such sequence. 

As a final example, let me discuss the polynomial 

q(z) = z3 - z2 - z - 1 

and sequences (an)n which obey 

an = an_1 + an_2 + an_3. (20) 

The numbers Tn that satisfy T0 = 1, T1 = 1, T2 = 2 and the recursion (20) (with 
an replaced by Tn) have been called the Tribonacci numbers in [3] and [4]. An 
equivalent of formula (11) for this particuler sequence (Tn)n has been proved 
in [4]. The zeros of q(l/z) have been computed in [3]; q(z) has a real zero 
-̂L = 1.83928... and a pair of conjugate complex zeros £2, £3 = T^~. An appro-
priate analogue to Ln and \ n are the numbers 

An = C, + C2 + e"; 
they satisfy A0 = 3, A1 = 1, A2 = 3 and the recursion (20) (with an replaced 
by A n). The corresponding formula for the Tribonacci numbers is 

Tn = d1?» + dzT,\ + d&, 

where 

. ^3 - ^ 2 

d1 = £ , etc., 
VD 

and D = -44 is the discriminant of q. The analogue to (19) reads 

y akn =
 a^2 + K - Vo>g + C 

" = o2 s3 - hvz
2 + A 7,s- 1 

and any sequence (an)n that satisfies (20). 
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