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Abstract
In this paper, we obtain determinants and permanents of some Hessenberg

matrices that give the terms of k sequences of generalized order-k Fibonacci
numbers for k = 2. These results are important, since k sequences of gen-
eralized order-k Fibonacci numbers for k = 2 are general form of ordinary
Fibonacci sequence, Pell sequence and Jacobsthal sequence.
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1 Introduction

Fibonacci numbers Fn, Pell numbers Pn and Jacobsthal numbers Jn are defined
by

Fn = Fn−1 + Fn−2 for n > 2 and F1 = F2 = 1,

Pn = 2Pn−1 + Pn−2 for n > 1 and P0 = 0, P1 = 1,

Jn = Jn−1 + 2Jn−2 for n > 2 and J1 = J2 = 1,

respectively.
Generalizations of these sequences have been studied by many researchers.
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Er [3] defined k sequences of generalized order-k Fibonacci numbers (kSOkF)
as; for n > 0, 1 ≤ i ≤ k

f i
k,n =

k∑
j=1

cjf
i
k,n−j (1)

with boundary conditions for 1− k ≤ n ≤ 0,

f i
k,n =

{
1 , if i = 1− n,
0 , otherwise,

where cj (1 ≤ j ≤ k) are constant coefficients, f i
k,n is the n-th term of i-th

sequence of order k generalization.

Example 1.1 f 1
k,n and f 2

k,n sequences are

0, 1, c1, c2 + c21, 2c1c2 + c31, c
2
2 + c41 + 3c21c2, c

5
1 + 3c1c

2
2 + 4c31c2,

c32 + c61 + 5c41c2 + 6c21c
2
2, c

7
1 + 4c1c

3
2 + 6c51c2 + 10c31c

2
2,

c42 + c81 + 7c61c2 + 10c21c
3
2 + 15c41c

2
2, . . .

and

1, 0, c2, c1c2, c
2
2 + c21c2, 2c1c

2
2 + c31c2, c

3
2 + c41c2 + 3c21c

2
2,

3c1c
3
2 + c51c2 + 4c31c

2
2, c

4
2 + c61c2 + 6c21c

3
2 + 5c41c

2
2,

4c1c
4
2 + c71c2 + 10c31c

3
2 + 6c51c

2
2, . . .

respectively.

A direct consequence of (1) is

f 2
k,n = c2f

1
k,n−1, for n ≥ 0. (2)

Remark 1.2 Let f i
k,n, Fn, Pn and Jn be kSOkF (1), Fibonacci sequence,

Pell sequence and Jacobsthal sequence, respectively. Then,

(i) Substituting c1 = c2 = 1 for k = 2 in (1), we obtain f 1
k,n−1 = Fn.

(ii) Substituting c1 = 2 and c2 = 1 for k = 2 in (1), we obtain f 1
k,n−1 = Pn.

(iii) Substituting c1 = 1 and c2 = 2 for k = 2 in (1), we obtain f 1
k,n−1 = Jn.
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Remark 1.2 shows that f 1
k,n is a general form of Fibonacci sequence, Pell

sequence and Jacobsthal sequence. Therefore, any result obtained from f 1
k,n

holds for other sequences mentioned above.
Many researchers studied on determinantal and permanental representa-

tions of k sequences of generalized order-k Fibonacci and Lucas numbers. For
example, Minc [7] defined an n× n (0,1)-matrix F (n, k), and showed that the
permanents of F (n, k) is equal to the generalized order-k Fibonacci numbers.

The author of [5, 6] defined two (0, 1)-matrices and showed that the per-
manents of these matrices are the generalized Fibonacci and Lucas numbers.
Öcal et al. [8] gave some determinantal and permanental representations of
k-generalized Fibonacci and Lucas numbers, and obtained Binet’s formula for
these sequences. Yılmaz and Bozkurt [9] derived some relationships between
Pell and Perrin sequences, and permanents and determinants of a type of Hes-
senberg matrices.

In this paper, we give some determinantal and permanental representations
of k sequences of generalized order-k Fibonacci numbers for k = 2 by using
various Hessenberg matrices. These results are general form of determinantal
and permanental representations of ordinary Fibonacci numbers, Pell numbers
and Jacobsthal numbers.

2 The Determinantal Representations

An n× n matrix An = (aij) is called lower Hessenberg matrix if aij = 0 when
j − i > 1, i.e.,

An =



a11 a12 0 · · · 0
a21 a22 a23 · · · 0
a31 a32 a33 · · · 0
...

...
... · · · ...

an−1,1 an−1,2 an−1,3 · · · an−1,n
an,1 an,2 an,3 · · · an,n


. (3)

Theorem 2.1 [2] Let An be an n×n lower Hessenberg matrix for all n ≥ 1
and det(A0) = 1. Then,

det(A1) = a11

and for n ≥ 2

det(An) = an,n det(An−1) +
n−1∑
r=1

(−1)n−ran,r
n−1∏
j=r

aj,j+1 det(Ar−1)

 . (4)
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Theorem 2.2 Let f 1
2,n be the first sequence of 2SO2F and Qn = (qrs)n×n

be a Hessenberg matrix defined by

qrs =

 i|r−s|. cr−s+1

c
(r−s)
2

, if − 1 ≤ r − s < 2 ,

0 , otherwise,

that is

Qn =



c1 ic2 0 0 · · · 0
i c1 ic2 0 · · · 0
0 i c1 ic2 · · · 0
...

...
...

. . . . . .
...

0 0 0 0 c1 ic2
0 0 0 0 i c1


. (5)

Then,

det(Qn) = f 1
2,n, (6)

where c0 = 1 and i =
√
−1.

Proof. To prove (6), we use the mathematical induction on m. The result
is true for m = 1 by hypothesis.

Assume that it is true for all positive integers less than or equal to m,
namely det(Qm) = f 1

2,m. Then, we have

det(Qm+1) = qm+1,m+1 det(Qm) +
m∑
r=1

(−1)m+1−rqm+1,r

m∏
j=r

qj,j+1 det(Qr−1)


= c1 det(Qm) +

m−1∑
r=1

(−1)m+1−rqm+1,r

m∏
j=r

qj,j+1 det(Qk,r−1)


+ [(−1)qm+1,mqm,m+1 det(Qk,m−1)]

= c1 det(Qm) + [(−1)ic2i det(Qk,m−1)]

= c1 det(Qm) + c2 det(Qk,m−1)

by using Theorem 2.1. From the hypothesis of induction and the definition of
2SO2F, we obtain

det(Qm+1) = c1f
1

2,m + c2f
1

2,m−1 = f 1
2,m+1.

Therefore, (6) holds for all positive integers n.
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Example 2.3 We obtain f 1
2,6, by using Theorem 2.2

det(Q6) = det



c1 ic2 0 0 0 0
i c1 ic2 0 0 0
0 i c1 ic2 0 0
0 0 i c1 ic2 0
0 0 0 i c1 ic2
0 0 0 0 i c1


= c32 + c61 + 5c41c2 + 6c21c

2
2

= f 1
2,6.

Theorem 2.4 Let f 1
2,n be the first sequence of 2SO2F and Bn = (bij)n×n be

a Hessenberg matrix, where

bij =


−c2 , if j = i+ 1,
ci−j+1

c
(i−j)
2

, if 0 ≤ i− j < 2,

0 , otherwise,

that is

Bn =



c1 −c2 0 · · · 0 0
1 c1 −c2 · · · 0 0
0 1 c1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · c1 −c2
0 0 0 · · · 1 c1


Then,

det(Bn) = f 1
2,n,

where c0 = 1.

Proof. Since the proof is similar to the proof of Theorem 2.2 by using
Theorem 2.1, we omit the detail.

Example 2.5 We obtain f 1
2,4 by using Theorem 2.4 that

det(B5) = det


c1 −c2 0 0
1 c1 −c2 0
0 1 c1 −c2
0 0 1 c1


= c22 + c41 + 3c21c2

= f 1
2,4.
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Corollary 2.6 If we rewrite Theorem 2.2 and Theorem 2.4 for ci = 1, then
we obtain det(Qn) = Fn+1 and det(Bn) = Fn+1, respectively, where Fn ’s are
the ordinary Fibonacci numbers.

Corollary 2.7 If we rewrite Theorem 2.2 and Theorem 2.4 for c1 = 2 and
c2 = 1, then we obtain det(Qn) = Pn+1 and det(Bn) = Pn+1, respectively,
where Pn ’s are the Pell numbers.

Corollary 2.8 If we rewrite Theorem 2.2 and Theorem 2.4 for c1 = 1 and
c2 = 2, then we obtain det(Qn) = Jn+1 and det(Bn) = Jn+1, respectively, where
Jn’s are the Jacobsthal numbers.

3 The Permanent Representations

Let A = (ai,j) be an n × n matrix over a ring. Then, the permanent of A is
defined by

per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i),

where Sn denotes the symmetric group on n letters.

Theorem 3.1 [8] Let An be n × n lower Hessenberg matrix for all n ≥ 1
and per(A0) = 1. Then, per(A1) = a11 and for n ≥ 2

per(An) = an,nper(An−1) +
n−1∑
r=1

an,r n−1∏
j=r

aj,j+1per(Ar−1)

 . (7)

Theorem 3.2 Let f 1
2,n be the first sequence of 2SO2F and Hn = (hrs) be

an n× n Hessenberg matrix, where

hrs =

 i(r−s). cr−s+1

c
(r−s)
2

, if − 1 ≤ r − s < 2,

0 , otherwise,

that is

Hn =



c1 −ic2 0 · · · 0 0
i c1 −ic2 0 0
0 i c1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · c1 −ic2
0 0 0 · · · i c1


. (8)

Then,

per(Hn) = f 1
2,n,

where c0 = 1 and i =
√
−1.
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Proof. This is similar to the proof of Theorem 2.2 using Theorem 3.1.

Example 3.3 We obtain f 1
2,3 by using Theorem 3.2 that

per(H4,3) = per

 c1 −ic2 0
i c1 −ic2
0 i c1


= 2c1c2 + c31
= f 1

2,3.

Theorem 3.4 Let f 1
2,n be the first sequence of 2SO2F and Ln = (lij) be an

n× n lower Hessenberg matrix given by

lij =


ci−j+1

c
(i−j)
2

, if 0 ≤ i− j < 2,

0 , otherwise,

that is

Ln =



c1 c2 0 · · · 0 0
1 c1 c2 · · · 0 0
0 1 c1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · c1 c2
0 0 0 · · · 1 c1


.

Then,

per(Ln) = f 1
2,n,

where c0 = 1.

Proof. This is similar to the proof of Theorem 2.2 by using Theorem 3.1.

Corollary 3.5 If we rewrite Theorem 3.2 and Theorem 3.4 for ci = 1, we
obtain per(Hn) = Fn+1 and per(Ln) = Fn+1, respectively, where Fn’s are the
Fibonacci numbers.

Corollary 3.6 If we rewrite Theorem 3.2 and Theorem 3.4 for c1 = 2 and
c2 = 1, we obtain per(Hn) = Pn+1 and per(Ln) = Pn+1, respectively, where
Pn ’s are the Pell numbers.

Corollary 3.7 If we rewrite Theorem 3.2 and Theorem 3.4 with c1 = 1
and c2 = 2, then we obtain per(Hn) = Jn+1 and per(Ln) = Jn+1, respectively,
where Jn’s are the Jacobsthal numbers.
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3.1 Binet’s formula for 2 sequences of generalized order−2
Fibonacci numbers (2SO2F)

Let
∞∑
n=0

anz
n be the power series of the analytical function f such that

f(z) =
∞∑
n=0

anz
n when f(0) 6= 0

and

An =



a1 a0 0 · · · 0
a2 a1 a0 · · · 0
a3 a2 a1 · · · 0
...

...
...

. . .
...

an an−1 an−2 · · · a1


n×n

.

Then, the reciprocal of f(z) can be written in the following form

g(z) =
1

f(z)
=
∞∑
n=0

(−1)n det(An)zn,

whose radius of converge is inf{|λ| : f(λ) = 0}, [1].
Let

pk(z) = 1 + a1z + · · ·+ akz
k. (9)

Then, the reciprocal of pk(z) is

1

pk(z)
=
∞∑
n=0

(−1)n det(Ak,n)zn,

where

Ak,n =



a1 1 0 · · · 0
a2 a1 1 · · · 0
a3 a2 a1 · · · 0
...

...
... · · · ...

ak ak−1 ak−2 · · · 0
0 ak ak−1 · · · 0
...

...
... · · · ...

0 · · · ak · · · a1


n×n

[8]. (10)

Inselberg [4] showed that

det(Ak,n) =
k∑
j=1

1

p′k(λj)

(
−1

λj

)n+1

(n ≥ k) (11)
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if pk(z) has distinct zeros λj for j ∈ {1, 2, . . . , k}; where p′k(z) is the derivative
of polynomial pk(z) in (9).

Theorem 3.8 Let f 1
2,n be the first sequence of 2SO2F. Then, for n ≥ 2 and

(c1)
2 + 4c1c2 > 0,

f 1
2,n =

k∑
j=1

1

p′(λj)

(
−1

λj

)n+1

, (12)

where p(z) = 1+c1z−c2z2 and p′(z) denotes the derivative of polynomial p(z).

Proof. This is immediate from Theorems 2.4 and (11).

Corollary 3.9 Let f 2
2,n be the second sequences of 2SO2F. Then,

f 2
2,n+1 = c2.

k∑
j=1

−1

p′(λj)

(
1

λj

)n+1

for n ≥ 2.

Proof. One can easily obtain the proof from (2) and Theorem 3.8.
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