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Abstract

In this paper, we obtain determinants and permanents of some Hessenberg
matrices that give the terms of k sequences of generalized order-k Fibonacci
numbers for k = 2. These results are important, since k sequences of gen-
eralized order-k Fibonacci numbers for k = 2 are general form of ordinary
Fibonacci sequence, Pell sequence and Jacobsthal sequence.
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1 Introduction

Fibonacci numbers F;,, Pell numbers P, and Jacobsthal numbers J,, are defined

F, = F, 1+ F,_9 forn > 2 aHdFleQI].,
Pn = 2Pnfl+Pn72 forn>1 andPg:O, Plzl,
Jp-1+2J,_0 forn>2 and J; = Jo =1,

-
I

respectively.
Generalizations of these sequences have been studied by many researchers.
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Er [3] defined k sequences of generalized order-k Fibonacci numbers (kSOLF)
as; forn >0,1<:<k
szn = chfk,zn—j (1)

J=1

with boundary conditions for 1 — k <n <0,

kn ™1 0 , otherwise,

where ¢; (1 < j < k) are constant coefficients, f,’, is the n-th term of i-th
sequence of order k generalization.

Example 1.1 f.} and f,2 sequences are

0,1, c1, ey +c3, 2c1c0 + ci’, c5 4 ¢t +3cicy, &+ 3cics + 4ciey,
c2 + c1 + 5cley + 6¢icy, cf +deics + 6cicy + 10cics,
cy+ &+ T8¢y +10c3c3 + 15¢ic3, . ..

and
2, 2 2, 3 3., 4 2 2
1, 0, 2, cica, 5+ 0102, 20102 + cjca, ¢+ ciea + 3cicy,
3cic5 + clcg +4clc3, ¢y + Sy + 6cics + Bejcs,
deicy + cleg + 10635 4+ 653, . . .
respectively.

A direct consequence of (1) is
fk,2n = C2fk,1n—1> for n > 0. (2)

Remark 1.2 Let fk’n, F,, P, and J, be kSOkF (1), Fibonacci sequence,
Pell sequence and Jacobsthal sequence, respectively. Then,

(i) Substituting c; = c; = 1 for k =2 in (1), we obtain fy;, , = F,.
(i) Substituting ¢, =2 and c; =1 for k =2 in (1), we obtain f,}, | = P,.

(11i) Substituting ¢; =1 and c; =2 for k=2 1in (1), we obtain f;),_ = Jy.
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Remark 1.2 shows that f,! is a general form of Fibonacci sequence, Pell
sequence and Jacobsthal sequence. Therefore, any result obtained from fk,}n
holds for other sequences mentioned above.

Many researchers studied on determinantal and permanental representa-
tions of k sequences of generalized order-k Fibonacci and Lucas numbers. For
example, Minc [7] defined an n x n (0,1)-matrix F'(n, k), and showed that the
permanents of F'(n, k) is equal to the generalized order-k Fibonacci numbers.

The author of [5, 6] defined two (0, 1)-matrices and showed that the per-
manents of these matrices are the generalized Fibonacci and Lucas numbers.
Ocal et al. [8] gave some determinantal and permanental representations of
k-generalized Fibonacci and Lucas numbers, and obtained Binet’s formula for
these sequences. Yilmaz and Bozkurt [9] derived some relationships between
Pell and Perrin sequences, and permanents and determinants of a type of Hes-
senberg matrices.

In this paper, we give some determinantal and permanental representations
of k sequences of generalized order-£ Fibonacci numbers for & = 2 by using
various Hessenberg matrices. These results are general form of determinantal
and permanental representations of ordinary Fibonacci numbers, Pell numbers
and Jacobsthal numbers.

2 The Determinantal Representations

An n x n matrix A, = (a;;) is called lower Hessenberg matrix if a;; = 0 when
j—1>1,ie.,

ai ai2 0 s O
a1 a2 a3 0
a3 a32 a33 s 0
A, = (3)
Ap-11 Ap—-12 Gp-13 ' Gp-1n
Qnp,1 Qp,2 Gn,3 e Qpn

Theorem 2.1 [2] Let A,, be an n x n lower Hessenberg matriz for alln > 1
and det(Ag) = 1. Then,

det(Al) = Q11

and forn > 2

n—1 n—1

det(A,) = ay,, det(A,_1) + Z (—1)" "an, H ajjr1det(A,_1)| . (4)

r=1 j=r
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Theorem 2.2 Let fQ% be the first sequence of 2SO2F and Q, = (qrs)nxn
be a Hessenberg matrix defined by

2

{z—l(f) Cif —1<r—s<2,
Qrs =

0 , otherwise,
that s
¢y ice O O 0 ]
1 ¢ tcg 0O 0
0 1 C1 ?:Cz cee 0
Qn = : : Y : ' ()
0 0 0 0 C1 iCQ
0 0 0 0 @ ¢ |
Then,

det(Qn) = fon, (6)

where co =1 and 1 = +/—1.

Proof. To prove (6), we use the mathematical induction on m. The result
is true for m = 1 by hypothesis.

Assume that it is true for all positive integers less than or equal to m,
namely det(Qy,) = f,,. Then, we have

det(Qm—H) = dm+1m+1 det(Qm) + Z (_1)m+1_TQm+1,T H dj,j+1 det(Qr—l)]
r=1 j=r
m—1 m
= det(Qm) + (_l)m—’—l_TQm—i-l,r H qj,j+1 det(Qk,r—l)
r=1 j=r

+ [(_1)Qm+1,QO,m+l det(@k,m—l)]
= c1det(Qm) + [(—1)icoi det(Qpm—-1)]
= c1det(Qn) + codet(Qrm—1)

by using Theorem 2.1. From the hypothesis of induction and the definition of
2502F, we obtain

det(Qm+1) = leQ}m + C2f2,1m—1 = f2,1m+1-

Therefore, (6) holds for all positive integers n.
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Example 2.3 We obtain f2716, by using Theorem 2.2

C1 iCQ 0 0 0
C1 ’iCQ 0 0
1 C1 7:02 0
0 1 C1 iCQ
0 0 1 C1 iCQ

0 0 0 0 i ¢ |
= ¢+ +5cjey +6cic;

1
= f2,6-

Theorem 2.4 Let f211 be the first sequence of 2SO2F and B,, = (bij)nxn be
a Hessenberg matriz, where

det(Qg) = det

S OO O .

—C2 ) Zf .7 =1+ 17
bij = Cci(;i}r)l ) Zf 0<1 _j < 27
0 , otherwise,
that is
i C1 —Co 0 0 0 ]
1 C1 —Cy - 0 0
0 1 c1 0 0
Bn = .
0 0 0 e C1 —Co
0 0 0 1 ¢ |
Then,

where cg = 1.

Proof. Since the proof is similar to the proof of Theorem 2.2 by using
Theorem 2.1, we omit the detail.

Example 2.5 We obtain fﬁ by using Theorem 2.4 that

CiT —Co 0 0
det(Bs) = det é 611 _CTZ _002
0 0 1 o

2 4 2

1
- f2,4-
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Corollary 2.6 If we rewrite Theorem 2.2 and Theorem 2.4 for ¢; = 1, then
we obtain det(Q,) = F,,, and det(B,) = F,,, respectively, where F,’s are

n n
the ordinary Fibonacci numbers.

Corollary 2.7 If we rewrite Theorem 2.2 and Theorem 2.4 for ¢y = 2 and
co = 1, then we obtain det(Q,) = P, and det(B,) = P, ,, respectively,
where P, ’s are the Pell numbers.

Corollary 2.8 If we rewrite Theorem 2.2 and Theorem 2.4 for ¢y =1 and
¢y = 2, then we obtain det(Q),,) = Jy41 and det(B,,) = J,11, respectively, where
Jn’s are the Jacobsthal numbers.

3 The Permanent Representations

Let A = (a;;) be an n x n matrix over a ring. Then, the permanent of A is

defined by
per(A) = Z Hai,a(i)7
oceS, i=1

where S,, denotes the symmetric group on n letters.

Theorem 3.1 [8] Let A, be n x n lower Hessenberg matriz for all n > 1
and per(Ag) = 1. Then, per(Ay) = ay; and forn > 2

n—1 n—1
per(Ay) = apnper(A,_1) + Z A r H ajjr1per(Ar—1)| - (7)
r=1 j=r

Theorem 3.2 Let f,}, be the first sequence of 2502F and H,, = (h,) be
an n x n Hessenberg matrixz, where

h {i(r_s).‘j(;if;; ,if —1<r—s<2,
rs — 2

0 , otherwise,
that is
- C1 —’iCQ 0 .- 0 0
) C1 —iCQ 0 0
0 ) C1 0 0
0 0 0 R e 1
| 0 0 0o - 1 c1
Then,

per(Hn) = fzip
where co =1 and 1 = +/—1.
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Proof. This is similar to the proof of Theorem 2.2 using Theorem 3.1.
Example 3.3 We obtain f2§ by using Theorem 3.2 that

C1 —iCQ 0

per(Hy3) = per| i ¢ —icy
0 1 C1
= 2c1c0 + ci’
_ f 1
= J23

Theorem 3.4 Let f,), be the first sequence of 2SO2F and L,, = (l;;) be an
n X n lower Hessenberg matrix given by

- j’é;i;; . if 0<i—j<2,
Y 0 , otherwise,
that s
[ C1 Co 0O --- 0 0 ]
1 Ci Cp --- 0 0
0 1 c1 - 0 0
Ln = .
0 0 0 C1 Co
L0 0 0 1 ¢ |
Then,

peT(Ln) = fQ;N
where cg = 1.

Proof. This is similar to the proof of Theorem 2.2 by using Theorem 3.1.

Corollary 3.5 If we rewrite Theorem 3.2 and Theorem 3.4 for ¢; =1, we
obtain per(H,) = F,y1 and per(L,) = F, 11, respectively, where F,’s are the
Fibonacci numbers.

Corollary 3.6 If we rewrite Theorem 3.2 and Theorem 3.4 for ¢; =2 and
co = 1, we obtain per(H,) = P, and per(L,) = P,,,, respectively, where
P, ’s are the Pell numbers.

Corollary 3.7 If we rewrite Theorem 3.2 and Theorem 3.4 with ¢, = 1
and ¢y = 2, then we obtain per(H,) = J,y1 and per(L,) = J,.1, respectively,
where J,,’s are the Jacobsthal numbers.
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3.1 Binet’s formula for 2 sequences of generalized order—2
Fibonacci numbers (2SO2F)

[e.°]
Let > a,z"™ be the power series of the analytical function f such that
n=0

f(z) = i a,z" when f(0)#0
n=0

and
ay ap 0 - 0
a9 aq Qo 0
A,=|a a a - 0
L ap Ap—1 QAp—2 -~ A1 1nxn

Then, the reciprocal of f(z) can be written in the following form

1 [e.@]

glz) = = —1)"det An Zn,
()= i = (1) det(4)
whose radius of converge is inf{|\| : f(A) = 0}, [1].
Let
pe(2) =14 a2 + -+ ap2 9)

Then, the reciprocal of py(z) is

= —1)"det(Ag.n)z",
pk(2> 7;)( ) ( k, )
where
[a; 1 0 - 0]
Q9 aq 1 .- 0
as a9 aq .- 0
Ak,n - ap ap_q1 Qpo - 0 [8] (10)
0 Qg Qp—1 0
i 0 DR a’k e a‘l 1 nxn

Inselberg [4] showed that
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if p(2) has distinct zeros A; for j € {1,2,..., k}; where p)(2) is the derivative
of polynomial pi(2) in (9).

Theorem 3.8 Let f21n be the first sequence of 2SO2F. Then, for n > 2 and
(c1)? + 4cicy > 0,

LA B A
hetam(5) "

where p(z) = 1+c12 —cp2?

and p'(z) denotes the derivative of polynomial p(z).
Proof. This is immediate from Theorems 2.4 and (11).

Corollary 3.9 Let fin be the second sequences of 25SO2F. Then,

) k 1 1 n+1
f n = Ca. <)
Bt ;p’(&‘) Aj

forn > 2.
Proof. One can easily obtain the proof from (2) and Theorem 3.8.
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