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ABSTRACT

The Fibonacci operator approach inspired by Andrews (2004) is explored to investigate
g-analogs of the generalized Fibonacci and Lucas polynomials introduced by Chu and Vicenti
(2003). Their generating functions are compactly expressed in terms of Fibonacci operator
fractions. A determinant evaluation on ¢-binomial coefficients is also established which extends
a recent result of Sun (2005).

1. INTRODUCTION
The generalized Fibonacci and Lucas polynomials are defined in [11] by
Fropi(t) = F,(t) +tF,—1(t), n>1 (1)

with the initial conditions Fy(t) = a and F1(t) = b. When t = 1, they reduce, for a = b= 1 and
a =2 and b= 1, to Fibonacci and Lucas sequences, respectively, which have been extensively
studied for their many beautiful and interesting combinatorial properties.

For the case a = b = 1, several slightly different g-analogs of I, (¢) have been worked out
by Carlitz [4], Cigler [7] and Schur [10]. On the related literature of recurrence relations and
generating functions, refer to [1, 8] for the theory of orthogonal polynomials and [1, 2, 8, 9]
for the Rogers-Ramanujan identities.

Differently from the works just mentioned, Andrews [3] recently introduced the Fibonacci
operator n, by n.f(z) = f(aq) for any given function f(z). Then he obtained an unusual
operator expression for the generating function of ¢g-Fibonacci polynomials. Inspired by this
operator approach, we shall study the full g-analog of F,,(t) for a and b be arbitrary numbers
and establish the corresponding generating functions in terms of n-operator fractions. Then
we shall evaluate a determinant related g-binomial coefficients. Finally for some particular
values of a and b, we shall give g-analogs of some generating functions established in [6], again
in terms of np-operator fractions. We believe that these results on the g-incomplete Fibonacci
and Lucas polynomials are new.

For two indeterminate x and ¢, the shifted factorial is defined by

n—1

(x;q)o =1 and (x;q), = H(l —¢*x) with n=1,2,---.
k=0
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When |q| < 1, the infinite product

o0

(5000 = [J (1 = ¢"2)

n=0
is well defined, which leads us to the following expression

(3 9) oo

Tiq)n — for n € Z.
(wia) (¢"2; ) oo

The Gaussian g-binomial coefficient is defined by

S 1) PR
{ " } ! @m(@n—m’ 0<m<n,
" 0, otherwise.

2. ¢-ANALOGS OF THE GENERALIZED FIBONACCI
AND LUCAS POLYNOMIALS

The g-analogs of generalized Fibonacci and Lucas polynomials are introduced by [3]. Let
us define a sequence of polynomial S, (%, q) by the recurrence relation

Sni1(t,q) = Sn(t,q) + 14" 2 Sn_1(t,q), n > 1 (2)

where So(t,q) = a, S1(t,q) = b. It is obvious that S, (t,1) = F,,(t) with F,,(¢) being defined by
(1).

Theorem 1: (The generating function defined by recurrence relation (2)).

=) . 1
Z Sn(t7 Q)iC = m{a + (b — CL)iC}

n=0

Proof: Let o(x) stand for the expression on the left side of the equation in Theorem 1.
To prove Theorem 1, we need to check the following equivalent relation:

(1 -z —ta*n)o(x) = a+ (b—a)x.

According to the definition of (), we have

atbrt Y Sult,g)a™ =) Salt,g)a™ " —t> Sult,q)a" "

n>2 n>0 n>0

=a+br —ax+ Z{Sn(t7 q) - Sn—l(tv Q) - tqn_ZSn—Q(tv Q)}wn

n>2
which reduces to a + (b — a)x in view of recurrence relation (2). 0O
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In order to find explicit expression for S,,(t, q), we will need the following lemma.

Lemma 2: (The Fibonacci operator composition)

(x + tx’n,)"z? = 2" thacj {n} gy, (3)
720 J
(x + tan,)"w = 2" thacj {?} 7 (4)
720

Proof: We can proceed with induction principle. For n = 0, the first equation asserts
x? = 2?. Now suppose the first equation is true for n. Then we can verify it for n + 1 as

follows:

(o + taPna) Va? = (@4 taPn,)a™ 3 ol m 7o
j=0

—g 3 thxj {<n>} qj(j+1) 4ot th+1£vj " qn+2+j<j+2)
720 J 720
— 3 thibj {<n>} qj(j+1) +$n+3 thibj { ) ﬁ . qn+1+j2
720 J 720 J
8 N g 7 D) ”} nl—j | M } }
=z t’x .|+ .
Z% ! {L ! J—=1
7>
;WHEZyﬂ¢UH>”T1}
Jj=0 J
where the last line has been justified by ¢-binomial identity
0= Glee 2]
j j i1

This proves the first equation. The equation (4) can be established similarly. O
Corollary 3: (Explicit expression for S, (¢, q))

n—2—1}¢w+w+b§:y{n—l—y}¢?
j =~ j

Sn(t,q) = a Z P+

720
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Proof: According to the geometric series expansion, we have

" 1
Z Sp(t, g™ = m(a + (b — a)x)
n>0
= Z(m + tan) {a + (b — a)x}
n>0
= Z(:c +ta®n)"a + Z(w + ta?n, )" (b — a)x
n>0 n>0
=a Z(m +ta?n,) "o+ tz?) + (b—a) Z(w + ta?n, )"
n>0 n>0
_ n g | T J " n+l 34 { ] } FG+L)
ST [N v a5
n> 7=0 n>0 7=0
+(b—a) Zx”“ ijtj {n} 7
n>0 5>0 J

Extract the coefficient of 2™ and we get Corollary 3. O
In view of Corollary 3, we can easily deduce that

Sn,k — [tk]sn(tv Q)

= [tF]$ad

n=2—=7| iG+1)
j }q

j=20
oy [r1-9]
j=20 J
o n—1—k E(k—1) n—1—k k2
a{ P }q + b i q° .

For B,k = Sont1,n—k, it is trivial to see that

?

n+2kz+2z} 20 4 p {n+211;+2z} o

B i kti — @
n+k+¢,k+i n—1

then we have the following determinant evaluation.

Theorem 4: (determinant identity on ¢-binomial coefficients).

m(mt1) 511 (@503
_ bm+1q 5 (14-5m+61) H )

det  [Bpyrtikti]
o @

0<kn<m
When ¢ — 1, we recover from this theorem a binomial determinant identity appeared in [11].
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Proof: Note that B, ;x4 ks is a polynomial of degree n in ¢**F with the leading coefficient

b<q q1> q2 137+ We can write By, g yixps formally as

/ i b(=1)" = n-4i
Brikyigti = Z)\ ij with  A,(n) = ( )q2(1+3 +44)

where {\;(n)}7_, are constants independent of ¢*.
For each n with 0 < n <m, defining further

Ajn)=0 if n<j<m

then we have the following determinant factorization

Brgktiktil = 2K det  [A;(n)].
Ogg,itgm[ nheti ki) Og(ljstgm [q ] X Ogj,ggm[ i(n)]

The former is the Vadermonde determinant whose evaluation reads as

det [¢*M] = [ (@7 -4¢*)

0<k,j<m :
0<y<i<m
1+ il
= ()T (5 ¢7)ne
n=0

The latter is the determinant of a diagonal matrix, which is evaluated by the product of the
diagonal elements:

m 2 (1+4+3n-+4i)
' - 1+m 1+m q 2
oo, W] = I dalm) = HO

Multiplying both evaluations just displayed and then simplifying the result, we get the deter-
minant identity stated in the theorem. 0O

3. -ANALOGS OF THE INCOMPLETE FIBONACCI
AND LUCAS POLYNOMIALS

For the initial values a = b = 1, (1) reduces to the ¢-Fibonacci polynomial of Calitz [4].
Similarly for a = 2,6 = 1, (1) reduces to the g-analog of the incomplete Lucas polynomial in
[6].

For a=b=1and a = 2,b = 1 the generating function of F,,(t,q) and L,(t, q) are given
by Theorem 1 as follows:

Z Fn(t7 q)acn = _;2 (5)

oy 1 —a—1ta*n,
S Lt = — (2w (6)
— 1 —a —tan,
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where equation (5) has first been established by Andrews [3].
From them we can derive also the explicit generating functions.

Theorem 5: (Generating functions)

Z Fn(tv Q)mn - Z

n>0 >0

Z Ln(tv Q)mn - Z

n>0 >0

(@3 9)j41

(55; Q)j+1

{2-2¢}. (8)

Proof: By means of geometric series and equations (3)-(4), we can compute

1
m — Z(£C+ tibznx)nl = Z(lE + tZCzﬁx)n_l(iC +t$2)
Mz n>0 n20

DR Ll FAET) DELD DE Kl P
n>0 §>0 L7 n>0 §>0 ’

S Y i “fl}qﬂ'uzxnzw{”fl}qm—w
n>0 §>0 L7 n>0 §>0 J

=Y "y alv 7?} PU=D = N gty {nf?} P,
n>0  j0 L 7,520 J

Recalling (5) and then applying the ¢-binomial formula

Z{nﬂﬂ 1

320

1
T5q) g1

we get the generating function (7). Similarly, one can derive the generating function (8). 0O

Theorem 6: (Generating functions)

Fn(tv q) + £thn_2Fn_1(t7 Q)
1 —a —tan,

Z Fi(t, q)ak = 2" 9)

k>n

Ln (tv q) + £thn_2Ln_1 (tv Q)
1 —a —ta?n,

Z Li(t, )z = 2™ . (10)

k>n

Proof: Let us denote by d(x) the expression on the left side of the equation in (9). We
prove equivalently the relation:

(1 — 2 —ta®n,)0(x) = {Fu(t,q) + xtq" 2 F,_1(t,q) ™.
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This can be accomplished as follows:

(1 —x— ta’n,) Z Fi.(t, q)a®

k>n
=Y Filt,q)a" = ) Filt, )™ = > Felt, g ¢*
k>n k>n k>n

=Fu(t, )" + Fupa (8, @)™ — Fu(t, g)a™™

> {Fir2(t.a) = Fen(t,a) - Fult, q)tg" 2ot
k>n

- {Fn(t7 Q) + £Ct(]n_zl??”b—l(t Q)} z".

Therefore (9) is valid. The equation (10) follows in the same way. O
Letting a =b=1 and a = 2,6 =1 in corollary 3, we have

fn(tv Q) - Z 7t

320

~3 {” fj} PRICY
J

”—2—3} EAREE {”—1—3} 7
J 320 J

j=0
u@ﬂ)2}2#“<”_2_]ﬂqﬂ””+§:ﬁ{("_1_]ﬂqf
>0 J >0 J

o R )

320 =1

For two incomplete polynomial sequences defined by
and

Their generating functions defined respectively by

o0

n
) = S Fualt,qa™y" wh <m<®
(z,y) ot @)™y where 0<m 5
and

V(z,y) = Z Ly (t,q)2"y" where 0<m < g
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are given by the following:

Theorem T7: (Generating function)

1 1
d = . 11
@) = T Ty (1)
1 1

g = . 2—y). 12
@) = T Ty 2 (12

Proof: This generating function can be obtained through triple sum

Dey)= Y YW {”;’} ¢y

m,n=0 37=0
e .
— Y gy {n ’ .7} Jo
0<j<m<+ n=0 J

For the inner sum, changing the summation index by n = ¢ 4+ 25 and then evaluating it as

00 . . 25
25 ittt } Y
Y Y : = N
; { J (¥ @)j+1
we can simplify the double sum as follows:

25
O(z,y) = Z a7 Il 1)+

gxkz

=0 yqj+1

Tt I 1)q2

1 1
l—z 1—y-—tay?n,

where equation (5) and (7) have been combined for justifying the last step. This proves the
identity (11). Similarly we can deduce the identity (12). 0O
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