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1. INTRODUCTION

In [1] Professor Horadam has defined a certain generalized sequence

{Wn} = {Wn(alb; D;Q)}: Wo = a, Wy = b

and

W= pW__ - QW __ n = 2)

for arbitrary integers a and b. The nth
relation of the form:

term of this sequence satisfies a

where

a and B being the roots of the equation x% - px+q = 0. He also mentions
the particular cases of {wn} given by

w Lppad = u 9

w @,p;p,a) = v (0,0

wn(r, r+s; 1,-1) = hn(r, s)
n

wn(l, 1;1,-1) = f = u 1, -1 = hn 1, 0)

wn(2,1; 1,-1) = 1n = Vn(l,—l) = hy (2, -1)

wherein ¥, and L, are the famous Fibonacci and Lucas sequences respectively.
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SECTION 2

In this paper our object is to derive some relations connecting the sums
of the above sequences up to n terms.
We shall derive a formula for the sum of the most general sequence {wn}

and thereby obtain the sums of the other sequences.

Theorem:
n bT_ - aqT
w = g + __.9___1—1
Z r l1-p+g
r=0
where
T =1-2A_,
n n
and
An Uy WMy
Consider

‘ n n n
dow, = AY o" +BY "
r=0 r=9 r=0

a - B a-1 a - B B-1 ‘

This becomes, after simplification by using the facts @ +p) =p, aof = q,
a-f=d

[@+Db - ap) +aqlu, . -aqu _,)-b, - qu, )]/ -p+a)

Set
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Then, this becomes

[@+b - ap) + agh__ -bA 1/ -p+0Q)
[a@ - p+a-a+ar ) +b(1 -2 )]/Q-p+a)
a+ [-ag(l- A _)+b@A-2)]/0-p+aq)

let now

1- }\n = Tn s
therefore we finally obtain
n‘ an - aan_1
@ DV mat—ToIg T

=0
Hence the result.

From this we can obtain immediately the sums of Zur, EVT,EFI,, ) Lr’

etc.

is obtained by letting a = 1, b = p in (1)

n

) pT, -aT,_
Zur(P’CI) =1+ —12'__—5—_,_—3—'1'
‘ r=0
(2)
n

Y u o = T, /0-prae
r=0
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can be obtained by putting a

@)

In particular,

and

(i)

n
Z v.(0,q) =
r=0

n.
Z V.., Q)
r=0

Zwr(l, 1 1,-1) = ZFr

Z‘Wr(Z, 1, 1,-1) = ZLr

n

Z v, ;9

r=g
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2, b =p,p,q in (1)

is derived by putting a = b = p

In thiscase A =u_+u
n n

n

Zur(l,—l)

r=0

n-i

1]

pT

T

_ 2 + n-2q n-i

1-p+aq

T -qT

n-+i

n
Z ur(l’ -1
=0

1-p+gq

n-i

Eur(l, -1) = Zhr(l, 0)

Zvr(l, -1) = Zhr(2,—1).

i, g =-1 in (@),

=0 Therefore

I TR
1-1-1

1-[@-w )+ @-u)]
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n
3w, -1 = w,, - 1=Fy, -1 (3] -++ )
r=0

This can be verified for any n.

(ii) To get z:vr(l,-l) let a=2, b=p=1 ¢q=-1 in (1). Here also

= . S
}xn U 0

n

Al-u )+2(1-u)
— n+i n
Zvr(l,-l) = 2 + T
r=)
=2~-[3- 2u, - un+1]
= u.n + un-Pz -1
= Yy, - 1 e )

This also can be very easily verified for any n.

(iii) Now to evaluate

n
Zhr(p, a ,

=0
set

a=p, b=p+q, p=1, g =-1

in (1). Here again

Then
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n
D b0 = b - [+ Q@ -TFyy)+pl-T,)]
=0

+aF 4 +pF -®+q

= PF 5 *dF ) - +q)

n
Zhr(p’q) = hn+2 - (p +d by [2] (liii)

r=0

1, li’ (lﬁ), (liﬁ) can be proved for all (+ve) integers n by induction. We

shall here prove (1) as an illustration. Let us suppose that

k ka - aqu_1
@ D e
r=9

Next let us add Wy + to both sides, to get

kit bT, - aqT
W = q + ——li————-li-—i + W
r 1 - p +q k+1
=0
B b1 - w + quk_i) - aq(l - uk_1+quk_2)
= g +
1-p+a
+ Aak+1 + BBk+1
k-+1
b -u +qu ) -aql-uw_ +aqu )
4) w_ = a+ - =1 =
T 1-p+taq

=0
+ buk - aquy '

1
T g P - ey ay) - ad@ - uy Faw )]

k+1
ka 4y " aqu

L per

[
I_gé

1}

[

r=0
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Equation (4) is of the same form as (1)! with k replaced by k + 1. Hence, etc,
Similarly other results can be proved for all positive integral values of

n.
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