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Abstract

An integer sequence (xn)n≥0 is said to be Fibonacci-like if it satisfies the binary
recurrence relation

xn = xn−1 + xn−2, n ≥ 2.

We construct a new type of Fibonacci-like sequence of composite numbers.

1 The problem and previous results

In this paper we consider Fibonacci-like sequences, that is, sequences (xn)
∞
n=0 satisfying the

binary recurrence relation
xn = xn−1 + xn−2, n ≥ 2. (1)
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If x0 = 0 and x1 = 1 then xn = Fn, the classical Fibonacci sequence. Similarly, when x0 = 2
and x1 = 1 then xn = Ln, the Lucas sequence.

Graham [3] proved that there exist relatively prime positive integers x0 and x1 such that
the sequence (xn)

∞
n=0 defined by the recurrence above contains no prime numbers; x0 and

x1 have 33 and 34 digits, respectively. Knuth [6] improved on Graham’s method and found
a 17-digit pair. Soon after, Wilf [9] discovered a smaller 17-digit pair. Nicol [7] refined
Knuth’s idea and found a 12-digit pair. Finally, Vsemirnov [8] found a smaller pair of 12
and 11 digits: x0 = 106276436867, x1 = 35256392432.

Let us describe the common idea used in proving these results. Start by looking for a
finite set of quadruples (pi,mi, ri, ci), 1 ≤ i ≤ t with the following properties:

(a) each pi is a prime;

(b) every pi divides Fmi
, the mi-th Fibonacci number;

(c) every positive integer n satisfies a congruence n ≡ ri (mod mi) for some i = 1, 2, . . . , t.
In other words, {(ri,mi)}

i=t

i=0 is a covering system of the integers.

Next, define x0 and x1 as follows:

x0 ≡ ciFmi−ri
(mod pi) and x1 ≡ ciFmi−ri+1 (mod pi) for i = 1, 2, . . . , t. (2)

From the recurrence relation (1) it follows that in general, xn ≡ ciFn+mi−ri
(mod pi). The

divisibility property Fm |Fsm and condition (b) imply that pi | xn if n ≡ ri (mod mi).
Since xn is an increasing sequence and all primes pi are relatively small, condition (c)

guarantees that (xn)
∞
n=0 contains only composite numbers. The role of the parameters ci is

to minimize the solution corresponding to a given covering system.
As mentioned earlier, the current record is due to Vsemirnov whose construction is based

on the following set of t = 17 quadruples (pi,mi, ri, ci):

pi 3 2 5 7 17 11 47 19 61 23 107 31 1103 181 41 541 2521
mi 4 3 5 8 9 10 16 18 15 24 36 30 48 90 20 90 60
ri 3 1 4 5 2 6 9 14 12 17 8 0 33 80 18 62 48
ci 2 1 2 3 5 6 34 14 29 6 19 21 9 58 11 185 306

Table 1: Vsemirnov’s quadruples

Graham, Knuth and Wilf used similar covering systems except with primes 2207, 1087,
4481, 53, 109 and 5779 instead of 23, 1103, 107, 181 and 541. Nicol used primes 53, 109,
5779 instead of 107, 181, 541. A major factor in deciding the size of a solution is the product
of the primes in the covering system: P =

∏

t

i=1
pi. The smaller the value of P , the greater

the chance to find a smaller solution. Of all constructions mentioned above, Vsemirnov’s
attains the smallest P . It is not known whether a better covering system can be found.
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2 A new construction

We note that Izotov [5] was the first to propose an alternative approach to a different
problem, namely that of construction of Sierpiński numbers, for which the only known solu-
tions involved the use of covering systems. In fact, Erdős [4, Section F13] conjectured that
Sierpiński numbers could only be constructed by the use of covering systems.

Similarly, all known examples of Fibonacci-like sequences of composite numbers are based
on the existence of a finite covering set of primes {p1, p2, . . . , pt}. In other words, all examples
mentioned in the previous section have the property that for every positive integer n, there
exists an i ∈ {1, 2, , . . . , t} with xn ≡ 0 (mod pi).

In this paper we construct a Fibonacci-like sequence of composite numbers for which
such a covering set does not appear to exist. Our approach can be summarized as follows:

On one hand, we are going to choose two relatively prime positive integers x0 and x1, such
that for every nonnegative integer n, x2n+1 is equal to the product of two integers greater
than 1, both of which can be written explicitly in terms of n, x0 and x1.

On the other hand, we are going to find a finite set of prime numbers {p1, p2, . . . , pt} such
that for every nonnegative integer n, x2n ≡ 0 (mod pi) for some i ∈ {1, 2, . . . , t}.

We will thus obtain the desired Fibonacci-like sequence of composite numbers. Notice
that there are different reasons why xn is composite depending on the parity of n.

Theorem 1. Consider the sequence given by x0 = p2 + q2, x1 = 2pq + q2, xn = xn−1 + xn−2

for all n ≥ 2, where p and q are integers. Then for every n ≥ 0 we have

x2n+1 = (pFn + qFn+1)(pLn + qLn+1). (3)

In particular, if p ≥ 1 and q ≥ 2, then x2n+1 is composite for all n ≥ 0.

Proof. It is known that the Fibonacci numbers can be written in matrix form as below

[

Fn+1 Fn

Fn Fn−1

]

=

[

1 1
1 0

]n

for all n ≥ 1.

Using the fact that Am+n = AmAn with A =
[

1 1
1 0

]

it follows that

[

Fm+n+1 Fm+n

Fm+n Fm+n−1

]

=

[

Fm+1 Fm

Fm Fm−1

]

·

[

Fn+1 Fn

Fn Fn−1

]

from which

Fm+n+1 = Fm+1Fn+1 + FmFn.

In particular, taking m = n and m = n− 1 respectively, we obtain

F2n+1 = F 2

n+1 + F 2

n
, (4)

F2n = 2FnFn+1 − F 2

n
. (5)
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It is easy to prove by induction that xn = x0Fn−1 + x1Fn. It follows that

x2n+1 = x0F2n + x1F2n+1

which after using equalities (4) and (5) gives

x2n+1 = x0(2FnFn+1 − F 2

n
) + x1(F

2

n+1 + F 2

n
) = (x1 − x0)F

2

n
+ 2x0FnFn+1 + x1F

2

n+1. (6)

Regard the right hand term in the above equation as a quadratic form in the variables Fn

and Fn+1. We want this quadratic form to be reducible over the integers for all n, which is
equivalent to requiring the discriminant ∆ = x2

0 − (x1 − x0)x1 to be a perfect square.
In other words we want to choose x0 and x1 as solutions of the diophantine equation

x2

0 + x0x1 − x2

1 = k2. (7)

It is straightforward to check that x0 = p2 + q2, x1 = 2pq + q2 is a solution of the above
equation. Indeed, with the above choices for x0 and x1 we have

x2

0 + x0x1 − x2

1 = (p2 + q2)2 + (p2 + q2)(2pq + q2)− (2pq + q2)2 =

= p4 + 2p3q − p2q2 − 2pq3 + q4 = (p2 + pq − q2)2.

This solution can be obtained by using the techniques for solving the general equation ax2+
bxy + cy2 = k2; the interested reader may consult [1, Chapter XIII, pp. 404–409]. This
explains our choices for x0 and x1. Substituting now x0 = p2 + q2 and x1 = 2pq+ q2 into (6)
we obtain

x2n+1 = (2pq − p2)F 2

n
+ 2(p2 + q2)FnFn+1 + (2pq + q2)F 2

n+1 =

= p2(2FnFn+1 − F 2

n
) + pq(2F 2

n
+ 2F 2

n+1) + q2(2FnFn+1 + F 2

n+1) =

= p2Fn(2Fn+1 − Fn) + 2pq(F 2

n
+ F 2

n+1) + q2Fn+1(2Fn + Fn+1).

We use now some basic identities relating the Fibonacci and the Lucas numbers.

2Fn+1 − Fn = Fn+1 + (Fn+1 − Fn) = Fn+1 + Fn−1 = Ln.

2Fn + Fn+1 = Fn + (Fn + Fn+1) = Fn + Fn+2 = Ln+1.

2(F 2

n
+ F 2

n+1) = Fn(2Fn + Fn+1) + Fn+1(2Fn+1 − Fn) = FnLn+1 + Fn+1Ln.

Substituting these into the last equality, we obtain

x2n+1 = p2FnLn + pq(FnLn+1 + Fn+1Ln) + q2Fn+1Ln+1 = (pFn + qFn+1) · (pLn + qLn+1).

Thus, equation (3) is satisfied. If p ≥ 1 and q ≥ 2 it follows that for all nonnegative
integers n we have that pFn + qFn+1 ≥ q ≥ 2 and pLn + qLn+1 > p+ q ≥ 3. It follows that
x2n+1 is always composite. The proof is complete.
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From Theorem 1 it follows that if one chooses x0 = p2 + q2 and x1 = 2pq + q2, then for
every n ≥ 0 we have that x2n+1 is composite. It remains to ensure that for every n ≥ 0,
x2n is also composite. In order to achieve this, we construct a finite partial covering set as
described below.

We are looking for a collection of quadruples {(pi,mi, ri, ci)}
i=t

i=1 such that

(a) each pi is a prime;

(b) every pi divides Fmi
, the mi-th Fibonacci number;

(c) every even positive integer 2n satisfies at least a congruence 2n ≡ ri (mod mi) for some
i = 1, 2, . . . , t. In other words, {(ri,mi)}

i=t

i=0 is a partial covering system, as it covers
all even integer values.

For every 1 ≤ i ≤ t, we have 1 ≤ ci ≤ pi − 1. These values are going to come into play later
on, as we will require a certain system of congruences to be compatible.

Suppose we found such a set of quadruples. Choose x0 and x1 such that

x0 ≡ ciFmi−ri
(mod pi), x1 ≡ ciFmi−ri+1 (mod pi) for all 1 ≤ i ≤ t. (8)

Let n ≥ 0 and let 1 ≤ i ≤ t be such that 2n ≡ ri (mod mi). The existence of such i is
guaranteed by condition (b). From (2), we have

x2n = x0F2n−1 + x1F2n ≡ ci(Fmi−ri
· F2n−1 + Fmi−ri+1 · F2n) (mod pi)

≡ ci F2n+mi−ri
(mod pi)

≡ ci Fsmi
(mod pi)

≡ 0 (mod pi).

Thus, x2n ≡ 0 (mod pi) and therefore composite. There is however one major difficulty in
finding a partial covering system with the properties (a), (b) and (c) listed above, as every
odd prime pi has to satisfy the congruence pi ≡ 1 (mod 4).

Let us explain why that is the case. First, we need the following simple result.

Lemma 2. For any positive odd integer m, the Fibonacci number Fm has no prime factors

of the form 4l + 3.

Proof. Let m be odd and let p |Fm. From Cassini’s identity, we have F 2
m+1 − FmFm+2 =

(−1)m, which after reducing modulo p gives F 2
m+1 ≡ −1 (mod p). This implies that −1 is a

quadratic residue modulo p. By the quadratic reciprocity law this is true only when p ≡ 1
(mod 4).

Recall that in Theorem 1 we chose x0 and x1 such that x2
0 + x0x1 − x2

1 = k2. On the
other hand, we selected x0 and x1 as in (8). It follows that for every 1 ≤ i ≤ t we have that

c2
i
(F 2

mi−ri
+ Fmi−ri

· Fmi−ri+1 − F 2

mi−ri+1) ≡ k2 (mod pi) (9)
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Using Cassini’s identity again, the above congruence can be simplified to c2
i
·(−1)mi−ri+1 ≡ k2

(mod pi). In particular, (−1)mi−ri+1 is a quadratic residue modulo pi for every 1 ≤ i ≤ t.
We want that for every n ≥ 0, the congruence 2n ≡ ri (mod mi) holds for some 1 ≤ i ≤ t.

If mi is even, then ri is even as well, and therefore (−1)mi−ri+1 = −1, which is a quadratic
residue modulo pi if and only if pi ≡ 1 (mod 4). If mi is odd, then condition (b) states that
pi |Fmi

, and hence pi ≡ 1 (mod 4) follows from Lemma 2.
Hence, none of the primes pi in the partial covering system with properties (a), (b) and

(c) can be of the form 4l + 3. Consider the set {(pi,mi, ri, ci)}
i=30
i=1 given in Table 2. It is

straightforward to check that this system of quadruples has the desired properties.

pi mi ri ci
2 3 1 1
5 5 1 2
13 7 1 5
17 9 3 11
29 14 2 5
41 20 4 3
61 15 2 41
181 90 8 46
241 120 14 109
281 28 4 207
421 21 3 171
541 90 38 243
1009 126 90 294
1601 80 34 1259
2161 40 10 1706

pi mi ri ci
2521 60 20 636
3041 80 74 790
8641 360 18 4664
20641 120 110 1405
31249 126 42 901
103681 72 54 80856
109441 45 23 16635
141961 35 12 12156
721561 420 180 529617
1461601 252 186 970625
35239681 63 6 25860534
764940961 252 0 562105967
8288823481 105 33 83463210
10783342081 180 162 7785411056

571385160581761 504 222 49367403415248

Table 2: A finite partial covering system with no primes ≡ 3 (mod 4)

Let us notice that in order to check condition (c), it suffices to test the even numbers ≤ 5040.
This is indeed the case since 5040 is the least common multiple of all the mi, 1 ≤ i ≤ 30.

We are now in position to state the main result of this paper.

Theorem 3. Let p = 1 and q = 12951150255508108245872399074061259209531943793351−
2025195406541068394745828231264515958532145970461367703231950382110924410768870.

Define a sequence (xn)n≥0 by x0 = p2+q2, x1 = 2pq+q2, xn = xn−1+xn−2, for all n ≥ 2.
Then gcd(x0, x1) = 1 and xn is composite for all n ≥ 0.

Proof. By our choice of x0 and x1, Theorem 1 immediately implies that x2n+1 is composite
for every integer n ≥ 0.
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We claim that for every n ≥ 1, x2n has a factor in the set {p1, p2, . . . , p30}, where the
primes are those in Table 2. Indeed, let us first choose x0 and x1 according to (8)

x0 ≡ ciFmi−ri
(mod pi), x1 ≡ ciFmi−ri+1 (mod pi) for all 1 ≤ i ≤ 30,

where (pi,mi, ri, ci) are those given in Table 2. Since p = 1, x0 = p2 + q2 and x1 = 2pq + q2,
these congruences can be written as

1 + q2 ≡ ciFmi−ri
(mod pi), 2q + q2 ≡ ciFmi−ri+1 (mod pi) for all 1 ≤ i ≤ 30. (10)

pi q mod pi
2 0
5 0
13 0
17 11
29 20
41 34
61 55
181 149
241 134
281 45
421 140
541 307
1009 818
1601 1347
2161 799

pi q mod pi
2521 1934
3041 455
8641 1277
20641 13565
31249 24574
103681 22094
109441 43164
141961 112001
721561 170379
1461601 442479
35239681 5419606
764940961 483887978
8288823481 6095337569
10783342081 54018520

571385160581761 504780818763137

Table 3: Set of congruences satisfied by the solution of (10)

The choices of ci ensure that this system has solutions: in particular, a solution is given
by the set of congruences listed in Table 3.

The Chinese remainder theorem guarantees that there exists a q that satisfies all the above
congruences. The smallest such value is the 129-digit number mentioned in the statement of
Theorem 3.

It remains to argue why we believe this particular sequence (xn)n≥0 does not have a
finite covering set of primes. Computer verifications show that there are 803 values of
0 ≤ n ≤ 200000 such that xn has no prime factor ≤ 2 × 106 or a prime factor among the
primes p1, p2, . . . , p30 given in table 2. Moreover, any two such terms are mutually prime.

Also, it can be checked that for these choices for p and q, the numbers pF913 + qF914,
pL913 + qL914, pF943 + qF944 and pL943 + qL944 are all primes of lengths 319, 320, 326 and
326, respectively. Since (3) gives that x1827 = (pF913 + qF914)(pL913 + qL914) and x1887 =
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(pF943 + qF944)(pL943 + qL944), it follows that x1827 and x1887 are both products of exactly
two primes, with the least prime factor having lengths 319 and 326, respectively.

As a result, if a finite covering with primes would exist, it has to have at least 803 primes
larger than 2× 106, and among these, at least two primes of length 319 or greater. It seems
difficult to prove that the least prime factor of xn is unbounded as n tends to infinity. As
already noticed by Filaseta, Finch and Kozek [2], this type of question is open even for much
simpler sequences such as Fn, 5 · 2

n + 1 or 11 · 5n − 1.
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