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There are many ways to generalize the Fibonacci sequence. Here, we examine some properties of integral sequences
{u,,} satisfying
(1 Up+1lp-1 — Uf = (-1)",
where necessarily ug = 0 and vy = +1. The Fibonacci polynomials f,,(x/ given by
(2) fueg(x) = xf (x) +f,_1(x), folx) =0, filx)=1,

evaluated at x = b provide special sequences {u,, } . Of course, £,,(7) = F,,, the Fibonacci numbers 0, 1, 1,2, 3,5, -,
and £,,(2) = P, the Pell numbers 0, 1, 2, 5, 12, 29, ---. Divisibility properties of the Fibonacci polynomials [1] and
properties of the Pell numbers and the general sequences {f,1 (b}} [2] have been examined in earlier Primer articles.
In the course of events, we will completely solve the Diophantine equations y2 —(a? 4)x? = +4 and show that
all of our generalized Fibonacci polynomials are special cases of Chebyshev polynomials of the first and secand kinds.

1. SOLUTIONS TO y2 — (a2 +4)x% = 24

Theorem 1. Let {u,} be a sequence of integers such that u,,+1uy,_s — uf = (—1)" for all integers n. Then
there exists an integer @ such that

3) Up+2 = Ayt + Uy
Proof. Set
up = auy +buy, uz = aup +buq
for some real numbersa and 4. By Cramer's rule,
bh = ‘“1 ol LU % =__u,u3—u§ =1
uy g Uy Uy I ut —u,u,

since vy u3 —ug =(~1)% and uguy — u12= (-1)1 by definition of {un} . Thus, a is an integer. In fact,u2 =auq +ug
and u3 = aup + uy yield

_Uz—up _uz—Ug

uz uy
Assume that v, +1 =au, +u,_y. Then
a = Up+1 — Un_g
uTl
and
2 2 2
- u —-u + + (—])nt1
Ay Uy, = U_”_f]_.uﬂ:_l U1 + U, = n+i -1 Y41 u, _ Uota (-1)
Uy uy, Uy,

UZ =

But, u, 421, — ey =~ 7)"*1 by definition of the sequence, so that

_ 7.2 :
Un+2 = [un+1 - ”VH-I]/Un; and  Uys2 = Aprs Fuy
for an integer a by the Axiom of Mathematical Induction.

Corollary 1.1. The sequence {tn} has starting values wg = 0, g = +1.
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Proof. By Theorem 1,uj =auy +ug. Thus,

2 _ .22 2 _
uy = a‘u] +Zall1u0+u1 = auq(auq +UO)+Ug = au1u2+ug.
Since also ug = uy — au 1, substituting above for u2, we have
2 _ 2 2 2
uy = augup +(uy—2aujuz +a uy), 0 = auqfaus —uz)

Now, either a =0, or vy =0, orup =auy. Ifa=0, uy = ug, and from uyug — u? = —1,ug=0and uq = #1 give the
only possible solutions. If u; = 0, then v = ug leads to uZZ =—1, clearly impossible for integers. If v = au¢, then
uz=auq =auy +ug forcesug = 0, and again vy = #17.

Theorem 2. Let {u.ﬂ} be a sequence of integers such that v, +1 uy+7 — uf =(—1)" for all n. Then x = u,, and
Y = Uy+1 * Uy_q are solutions for the Diophantine equation

(4) yZ—(a? +4)x? = 44,
where also uy,+1 = au,, *+ Uy,_1.
Proof. From Theorem 1, u,+1 = auy, + uy_q. Wy = uy4q + uy_q and x = u,,, then

Upti = Y —Un_g = Y —(Upsr1 —auy) = y— Up+q —ax
yielding
Up+q = (v —ax)/2.
Then
Upi = Y —lUpr1 = y—[y—ax)/2 = [y +ax)/2.

By definition of the sequence {u,,}
Untgln-g —uf = (=1)",

z;ax_y—zax_xz = 41,

(y2—azx2)—4)(2 =+,
y2 - (32 +4)x% = +4.

Now, let the generalized Lucas and Fibonacci numbers £,, and 7, be defined in terms of Fibonacci polynomials as
in Eq. (2):

(5) Ly = T+t (a)+fn—1 (a)
Fy = falal.
Since [2]
(6) st (g (x) = F2(x) = (=1)",
(7 L2 (a?+a)F? = 14

by Theorem 2. Thus, the generalized Lucas and Fibonacci numbers give solutions to the Diophantine equation {4).

Theorem 3. The generalized Lucas and Fibonacci numbers ¢,, and &, are the only solutions to the Diophan-
tine equation

(4) y2 — (a2 +a)x? = #4.

Proof. Now, y‘2 — (2% + 4)x? = +4 has solution x = 0,y =2, aswell asasolutionx =17,y =3ifa=17, butno
solution for x = 7 when a > 7. The other equation yZ - (aZ +4)x? = —4 has solution x = 1,y=a Thecasea=1
was solved by Ferguson [3]. We use a method of infinite descent which is an extension of the method of Ferguson
[3], and take a > 7, x > 7. Thus, y - (a2 + 4)x2 = +4 implies that

ax <y < (a+2)x
since
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v = @2+ +4 = %% +ax? + 4 < a%x? +4ax? +ax?
forces
(ax)? < y? < (a +2)%x2 .

Since y and ax must have the same parity, let
y = ax+2t, T<t<x.
Assume that x is the smallest non-Fibonacci solution. Replace y with ax + 2t in (4), yielding
(ax +2t)? — (a2 +4)x’ 4 = 0
4XZ—4axt—4t2f4 =0.
Solve the quadratic for 2x, yielding
2x = attJa* +4)t* £ 4
But, 2x is an integer, and therefore
(a? +4)t? +4 = 5?
for an integer s so that t = u,, and s = u,, 11 +u,,_y are solutions by Theorem 2. Since x > 0,
2x = at +\/(a* +4)t* £ 4

at+s

auy * (Up+q +Up_1)

(auy +Un_1)+ tn_1
= 2Up+1

so that x = uy,+7. But, if x is the smallest non-Fibonacci solution, then x cannot be the next larger Fibonacci solution
after ¢ This is a contradiction, and there is no first non-Fibonacci solution. Thus, the Diophantine equation

y2 —(a? +4)x? = 14
has solutions in integers if and only if

y = t8y = fueqla) +f,_4(a) and x = £F, = f,(a).

2. SPECIAL SEQUENCES {4, } AND THE EQUATION y2 — (2% — 4)x? = +4

Now, all of these sequences {un} have starting values ugp = 0 and vy = £17. It is interésting to note some special
cases. Notice that the sequence

-,1,0101,01,01,1,2,3,5, -
due to Bergum [4] satisfiesug =0, uy = 1, and
Up+1Un_1 —U,f = (-1)",
where the left-hand part of the sequence has

Up+2 = Uy = O-Upyq +uy
while the right-hand part has
Un+2 = T-Ups1 *uy.
Itisinteresting to note that special cases of the sequences { u,, | satisfying u,,+1 u,,_1 — uj =(-1)" occur from [2]
(8) To-k Lntk — 1:5 = (- 7)"+k+11"i
for the generalized Fibonacci numbers given in Eq. (5). Let

‘ Fnleke Tkt — T2 = (—1)" TR 2
be rewritten
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2
_T(n—l )k Tn+1)k Tnk _ (— 7}(n+1)k+1
Th Tk T:

Now, since 7,2/ T, is known to be an integer [1], letu,, = 7,; /7%, and the equation above becomes

Un+ilUn-1 — U,f = (- 7}(n+1}k+1 ,

where (—7)("* 1R+ ¢ (1) if kis odd but (—7) if k is even. In particular, if kK = 2, the sequence of Fibonacci num-
bers with even subscripts, { 0,1,3,8, 21, } , gives a solution to v, 11 uy,_1 — uf = —1. Another solution is u,, = n,
since (n + 7)(n — 1) —n? = —1 for all n.

Is there a sequence {un} of positive terms for which v, 170,71 — uf = +1? Considering Fibonacci numbers with

odd subscripts, {1, 2, 5,13, 34, } , we observe that u,, = F5, .+ is asolution, and that u,,+7 = 3u,, - .1 Using
Up+1Uy_q —"uf =1 and solving u,,+1 = au,, + bu,_4 as in Theorem 1 yields v, +1 =au,, —u,_1. Ifwelety =u, 1 -
uy_q1 and x = u,,, proceeding as in Theorem 2, we are led to the Diophantine equation y “ — (a2 — 4)x% = -4 We
summarize as

Theorem 4. 1 {u,} is a sequence of integers such that
Up+1lp_1 — Uf = +1
for all n, then there exists an integer a such that
Un+2 = ain+1 —Upn
and y = u,+1 — U,_1 and x = u,, are solutions of the Diophantine equation
(9) y? - (az —4)x? = 4.
Theorem 5. The odd-subscripted Fibonacci and Lucas numbers give the only solutions to the Diophantine
equation
(9) yZ—(a? -4)ix? = -4
Proof. We show that (9) has no integral solutions if |a| # 3, proceeding in the manner of the proof of Theorem

3. Here,
(a—=2)x <y < ax.

Since y and ax must have the same parity, let
y = ax—2t, 1<t<ux
Notice that, if x = 7, y2 — (a2 — 4) = —4 becomes a? - y2 =8, which is solved only bya =3,y = 1.
Let x be the first solution greater than one. Replace y with ax — 2t in (9), yielding
(ax—2t)% — (a2 —4)x? +4 = 0
4x? —gaxt +4t? +4 = 0.
Solving the quadratic for Zx gives

2x = at - \J(a* —4Jt* — 4.
Since 2x is integral, we must have (a% - 4)t? — 4 = 5% for some integer s. By Theorem 4, ¢ = u,, is a solution where
t > 1. But, since x_is the first solution greater than 1, and x > ¢, we have a contradiction, and
y2—(a?—4)x? = —4

is not solvable in positive integers unless a = 3. When a = 3, the equation becomes y2 — 5x? = —4, which is solved
only by

y = Lan+g, X = Faneq,
odd-subscripted Lucas and Fibonacci numbers [5].
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Theorem 6. If {u,} is a sequence of integers such that
Up+1lp-1 — ”5 = -1
for all n, then there exists an integer a such that
Up+2 = alyiq — Uy and Y = Up+q — Un-1 and X = Uy
are solutions of the Diophantine equation
(10) y?2—(a?—4)x? = +4.
Proof. Proceed as in Theorem 4.
Theorem 7. The Fibonacci and Lucas numbers with even subscripts give solutions to the Diophantine equation
yZ—(a? —a)x? = +4.
Proof. Seta=23 and refer to Lind [5].
3. GENERALIZED FIBONACCI POLYNOMIALS

Next, in order to write solutions for the Diophantine equation (10), we consider a type of generalized Fibonacci
polynomial. Let

(11) hofx) =0, hylx) =1, and h,2(x) = xhyeq(x) = hy(x)
and

golx) = 2, g1(x) = x,
where

Ipt2(x) = XGns1(x) +95_1(x).
We note that {h,,, (a}} is a special sequence {un} since

hl’H‘I (a)hﬂ—l (a) - /)3(3} =.—7.
Then

_ aj(x)—aj(x) ) _
hy(x) = T —agh * # 2 hn(2) = n,

Inlx) = a’l(x) +a%(x) = hys1(x) = hy_1(x),
where a¢(x) and a(x) are roots of

Moxm+1 =0
(By way of comparison, the Fibonacci polynomials 7, (x) have the analogous relationship to the roots of
M_m-1=0.

Also note that h,,(3) = F3,.)
It is easy to establish from ay (x)az(x) = 1 that

2a7 = gnlx) + [a1(x) = az(x)]h, (x)

2a} = gulx) - [ag(x) — az(x)]hy(x)
with a;(x) — az(x) = \/x*> — 4. From this it readily follows that

1= al(xlajix) = [gZ(x) - (x? — 42 (x)] /4
or
a20) = (x2 =42 (x) = +.
Now, we are interested in the sequences of integers formed by evaluating ,,(x/ and g,,(x) at x = a. Thus
(12) 02(a) - (a® —4h2(a) = +4.
and we do have solutions to
y2—(a?—4)x? = 4.
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Theorem 8. The generalized Fibonacci numbers {h,,(a)} and generalized Lucas numbers {g, (a)} provide the
only solutions to the Diophantine equation

(10) v2 (a2 —a)x? = +4.

Proof. Note that if x = 7, then y =4, and if x = 0, then y = 2. Now one can proceed as follows. We can write, as
before,
fa—2)x <y < ax.

Clearly, y and ax must have the same parity, so that we can let
y = ax—2t 1<t <x

where x is the first positive integer which is greater than 1, not equal to 4, (a), and a solution. Then, as before, re-
place y with ax — 2t in (10), yielding

(ax —2t)> — (a? —4x? ~4 = 0

4x? —gaxt +4t° -4 = 0.
Solving the quadratic for 2x,
(13) 2x = at +/(a* — 4)t* +4 .
Since 2x is an integer, there exists an integer s such that

(a? —ap?+4 = 52,
with a solution given by
t = h,fa) and s = g,la) = hyrqla) —hy_q(a)
by Eq. (12). Then, (13) taken with the plus sign gives
2x = ahy(a) +hyeq(a) — hy_1(a) = 2h,41(a)

and x = h,,+1(a), a contradiction, since x was defined as not having the form h,,, (a/.
Next, we consider the case of Eq. (13) taken with the minus sign. The casesa = 7 or a = 0 are not very interesting.
We need a lemma:

Lemma. Fora> 1, the sequence { ,,(a)} is a strictly increasing sequence.
Proof of the Lemma.
hofa) =0, hyla) =1, hola) =a hyso(a) = ah,ey(a) —h,(a).

Since
hyr1la) = ahyla) —h,_qla) > (a— 1)h,(a)
if
hy_qla) < hyfla),
then

hy+ila) > hyla).
Thus, if we choose the minus sign in Eq. (13), then we have
2x = ah,(a) — (hy+1(a) = hy_1(a))
= ah,(a) — hy+1(a) +hy_1(a) = 2h,_1(a)

or x = h,,_1(a) which contradicts the restriction that ¢ <x. Thus, we must choose the plus sign in {13), which yield-
ed x = h,,+1 (a). So, even if x is the first integer greater than one for which we have a solution for

yZ—(a?—4)x? = 4

and where x # h,, (a), we find x = h,+1(a). This shows that there is no first positive integer which solves Eq. (10)
which is not of the form x = f1,,,(a). This concludes the proof of Theroem 8.
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We note that the case a = 2 yields y = £2 and x any integer. The recurrence
Uptp = 2Uyi1 — Uy
is satisfied by any arithmetic progression b, b +d, b +2d, ---, B +nd, ---. However, the restriction
Up+qlp_q1 — l.l,f = -1

limits these to the integersn = u,, .
In summary, we have set down the complete solutions to the Diophantine equations

yZ—(a?t4)x? = 14
y% — (a2 +4)x? has solution x = 0, y = 2, for all a. For
y2—(a?+4)x? = 4,
we get x = 1, y = a. Both solutions are starting pairs for the recurrence
Up+2 = alp+1 * Uy,

andy =2, a, -leadsto f,,+4(a) + f,_1(a), and x = 0, 1, -, leads to f,, (a), where f,, (x) are the Fibonacci polynom-
; 2 _ n 2 2 2 _ ; = ;
ials. Here, uy, 11 uy_ 1 — uf = (—1)" lead to y ¢ — (a“ +4)x* = +4 via uy+2 = aUy+1 + Uy, But either

2 2 _
Upsqlp-g—U, = =1 O Uppqly g —u, = +1

lead to the recurrence vy, +2 = au,+1 — u,,, and lead to y2 —(a% - 4)x? = +4. Now yZ — (2% — 4)x? = +4 allows x
=0,y=2and x = 1, y = a as starting solutions, where x =0, 1, -, leads to h,,(a), and y = 2, a, -, leads to A, (a) —
hy,_1(a) for the generalized Fibonacci polynomials A, (x). Finally, y2 — (a2 — 4)x? =4 hassolutionx = 7,y = 1
when |a| = 3, but no solution if |a| # 3. This then becomes y? — 5x? = —4 which is satisfied only by the oddly sub-
scripted Fibonacci and Lucas numbers, which satisfy the recurrence v, +7 = 3u,, — u,,_1, so that

Font1 = hp+1(3) = hu(3),

and, of course, F2,,+1 = f2,+1(7). In all cases, the only solutions arise from sequences of Fibonacci polynomials
f,, (x) evaluated at x = a, or generalized Fibonacci polynomials /1,,(x/ evaluated at x = a. We can then state

Theorem 9. The Diophantine equations
y2—(a?—a)x?=14

y2—(a? +4)x? = 14

have solutions in positive integers if and only if
yZ—(a?-4ix? =4

has a solutionx = 7 or
y?—(a? +4)x? = 4

hasa solution x = 7. Every solution is given by terms of a sequence of Fibonacci polynomials evaluated at 3, {fn (a/},
or generalized Fibonacci polynomials evaluated at x = a, {hn (a}}.

4. CHEBYSHEV POLYNOMIALS
There are Chebyshev polynomials of two kinds:
Un+2(x) = 2xUp+1(x) = Up(x)

Tut2(x) = 2xTpe1(x) = Tpix)

with To(x) =7 and T (x) =x, and Uy (x) = 1 and Uy (x) = 2x. The T,, (x) are the Chebyshev polynomials of the first
kind, and the U,,(x/ are the Chebyshev polynomials of the second kind [8]. There are also related polynomials

Sulx) = U,(x/2) and  C,(x) = 2T, (x/2)
which are tabulated in [8]. Our h,,(x/) and g,, (x) are related to S,,(x) and C,,(x) as follows:
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hplx) = Spq(x) and Gulx) = Culx).

An early article by Paul F. Byrd [10] explains the close connection between Fibonacci and Lucas polynomials and
the U,,(x) and T,,(x). See also Hoggatt [9], and Buschman [11].

5. ANOTHER CONSEQUENCE OF u,,,1t,_; — u? = (—1)"

Finally, we examine another consequence of
Un+1lUp-1 — U;f = (=1)".
We note that
(U, Ups1) =1, Uy, Up-q1) = 1.

Note that 1, -1, —u,,_y, u,,_1 are incongruent modulo u,,, v > 5, and form a multiplicative subgroup of the multi-
plicative group of integers modulo v,,. Since the order of the multiplicative group of integers mod u,, is ¢(u,,), where
@(n) denotes the number of integers less than n and prime to n, and since the order of subgroup divides the order of
a group, 4|p(u,,). This method of proof was given by Montgomery [6] as solution to the problem of showing that
@(F,,) is divisible by 4 if n > 5. The same problem also appeared in a slightly different form in the Fibonacci Quar-
terly [7].We can generalize to

2m+2|80/1'. 2My), n =5,

for the generalized Fibonacci numbers 7,, = f,,(a) by virtue of ¢(s) = 2k = 2 for positive integerss > 2, and’ Ty; =
T84 Since {7,0.4) = 1 or 2, then
@lT2e) = o(Ti)ola),

where a= £, or £;/2 so that 9(a) =2k > 2. Thus,

Tomy = TpluLonlgn, =,
where
ATy )L LonLan ) = 4:2™r
for some integerr > 7.
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