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ON THE PARTITION OF HORADAM'S GENERALIZED SEQUENCES INTO
GENERALIZED FIBONACC!I AND GENERALIZED LUCAS SEQUENCES

A J.W. HILTON
The University of Reading, Reading, England

1. INTRODUCTION

If p,g are integers, p2 +4g # 0, let w = wip,q) be the set of those second-order integer sequences
(Wo) = (Wo, Wy, Wa, )

satisfying the relationship

Wy =pWo 1 +qgWpo (0> 2)
which are not also first-order sequences; i.e., they do not satisfy W, = cl¥,,_; (% ,/ for some ¢. In Horadam's papers
(131, [4], [5], [6]) our W, is denoted by W,fa,6; p,—g). In this paper we show that ¢v can be partitioned natur-
ally into a set J' of generalized Fibonacci sequences and a set L of generalized Lucas sequences; to each Fe F
there corresponds one L € L and vice-versa. We also indicate how very many of the well-known identities may be
generalized in a simple way.

2. THE PARTITION OF w(pqg/

If @, are the roots of 2 —px —g =0 d=+p* +4qg then the following relationships are true:
=p*td =p—d
a= ==, f=55=,
atf=p, ap = -y, a-f=4d,
n_ ppn
m W, = A=
where A=W, - WpB B=W; - W,a. Since (W,) is not a first-order sequence it follows that a= 0, §+0 A #
0, 8+ 0 When W/, isrepresented as in (1) we say that W,, is in Fibonacci ferm. On the other hand, with differ—
ent censtants £ and 0, W, could be represented as
W, = ca”+08" .
In this case, we say that W,, is in Lucas form.
When W, is in Fibonacci form (1) we may perform an operation ( ') to obtain a number W/}, where
Wy, = Aa" +Bp" .
We say that the sequence (I¥/;,/ is derived from the sequence (W, ). The sequence (#}) is a sequence of integers
since

(2) W’o = A+8 = W,—W06+W7—W0a = 2W7——W0(a+ﬁ) = 2W7—pr
and
(3) o = Aa+BB = (Wy — WoBla HWy — WoalB = Wila +B) - Woal = pWy +2qWp.

W;, may now be expressed in Fibonacci form. In that case

w, = Ala=G)a" ~ [-Bla -]

a—@

If we perform the operation { °) on W/}, we obtain

Wy = [Ala - )] a” + [(-B)fa — )] B”
_ 2 [Ad" - BB"
= f(a-8) L—CL—'_ﬁ&J
= d’w, .
339



340 ON THE PARTITION OF HORADAM'S GENERALIZED SEQUENCES INTO {DEC.

We have proved
Theorem 1. wy=d?w,  forall 0 >0

it is not hard to verify that the equation W, = Wy, (v,) cannot be true if (W) is not a first-order sequence.
Throughout this paper tet (X,), (Y,) € wipg) let X, =Y, (n=0,1,2 ) andlet Xp=a, X; = h
Then, from (2} and (3),
Yo = 2b — ap, Yy = pb +29a.
By theorem 1, therefore, or directly, it follows that

ad® = 2v;-pYy,  bd? =pY,+2gY,.
The following theorem now follows easily:
Theorem 2, (i)
(4) d?\2Y, —p¥,; and d2|pY,+2qY,y forall n>1.
(i) 1 (Wy) € wingl, d?|2W;—pWy and  d?|pW; +2gWp then (W,)=(X}) for some
Xl e wip,g)l
Proof of (ii). If
Wy~ oW Wy + 2qW,
Xo = _12!’_2' X; = /J_1__2_l1__0 and  (X,)ewlipygl,
then ) d . d
+2 W — pW, * -
Xp=2 pWq+ 2qWo s 2W; — pWp =Wy ad Xj=p pWq +2qWp +2 20 — pWo -w,
d? d? d? d?

/

which proves part (ii).
The basic linear relationships connecting {X,;/ and (Y,, } are described in the following theorem.
Theorewm 3. The foliowing are equivalent:

i) (Xp) = (Ynl,
(ii) Yo = 2Xpe1—pX, foral n=0,
(iii) Yp+r = pPXper + 29X, foral n>0,
(iv) Yo = Xpe1+GXpg forall n>1,
2 -
() X, = 2Yni1 = P¥n forall n=>0,
d2
(v Xprq = PYar1*24Yn forall n=0,
0’2
(vii) x, = Yor1 8ot i psy,
d2

NOTE: For each of {ii), -, {vii} we need only require that the expression is true for two adjacent values of 7.
Proof. (i) =(i). If (X,)=(Y,), thenfrom (2) and (3), Yp=2X; —pX, and Y;=pX;+q2Xg=2X2—pX;
since Xo=pXq+gXg Let m>2 and assume (ii} is true for 0 <n <m. Then
Yin = PYm-1%Ym-2 = pl2Xpy — p X1 ) + @(2X i1 = pPXip-2) = 2Xppe1 =0 Xy -
The result now follows by induction.
(i) < {iii) < -« {vii). This follows easily using

Xntt = pXntqXpg and  Ypuq = pYp+qYp g (n>1).
Lii), (i), - tvii)] = (i). Since
S i=pYe X; - oY1+24Yp
l"/2 d2

Xo

it follows from (2) and {3} that
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eY1+24Yg 2Yy—pYp
—— |\
d d
and similarly X7=Y;. Hence (X;,)=(Y,). This completes the proof of Theorem 3.
We now describe the partition of w(p,q) previously referred to:

if (W,)ewlpg) and d = 1 let Wn=u’2m w, forall » >0 where m >0 isaninteger, {w,} € w and
d<f w, foratleastone n >0 Then

Wye L i d°%|2w;-pwy and  d?lpw;+2q0p ,
W,)eF ifeither d2f20w;-pwy or d?lpw;+2gwg .
If (W,) e wipg) and d=1 let

Xp =2 =Yg

W,) e L it W;—Wpa <0,
(Wn) eF if Wq—Wga > 0.

The assignment of (W) to L or F is natural in the case d #7, butif d =7, although the partition itself is nat-
ural, it is not true to say that a sequence is “like” the Lucas sequence rather than the Fibonacci- sequence or vice-
versa. In view of Theorem 3 if (W) is a member of &' {or L) then any “tail” of (IW,} is also a member of F (or
L, respectively).

Theorem 4. (X,) e F ifandonlyif (¥,) e L

Proof. Casel. d=1 (X,je F

= X, = Ad” — BB", where B <0
= Y, = Ad" +BB"
= {Y,) e L.

Case 2. d #1. (i) If (X,) e F suppose that X, u’2'"x,, forall n >0 where m =0 is an integer,
(x, ) e Fand d2lx,, forat least one n >0 Clearly d2}’x0 or d2fx;. By Theorem 3, Yp=2X; - pXp and
Y,-pX7+2qX0 Let ¥, o’ y, forall n>0. Then yg = ”7)(7—,0)(0 and y, =px+2qx,. Since (x,) <
F, either d ,{’2)(7 —pxg or d {px, +2qxg. Therefore either o< J/yo or d *y, But it is easy to verify that
ys—pyp = d?xg and pvs+2qyg = a? X7,
Therefore (y,/ €L andso Y,/ L.

(i) 1f (Y,) e L suppose that Y, dzmv forall n >0, where m >0 Is an integer,
fvpo) € L and d ,i’y,, for atleast one n >0, Clearly d *yo or d )(y; By Theorem 3,
Yi—pY, Yi+2gY
Xo=g—7p0, x, = PY1+23%
d? d?

Let X, =d?"x, forall n >0 Then

_1=rvo - Py1t2aye

T —, X7 = ———=,
Since (v,)eL, R 5

d?|2y1-pyo and d?lpys+20v0 .
so xg and x; are integers, so {x,/< w: But
2x;—pxg = yo and pxy*+2qxg = yi.

and since d‘?}’yg or dz}/y7 it follows that either d24’2x1-pxo or dZ/I’pX7+2qx0. Therefore (x,)eF and

so (X,) € F. This completes the proof of Theerem 4.
Here are same examples of members of F' alongside the corresponding member of L,

011235813~ 2134713
G1,p0p°+q, 2,p,p2+2q,
01,3715 -, 20 =1, 23,6917, . 20+1, -
01,2512 29, 2.2.6, 14,

(Pell’s sequences)
4, b, ga, qb, g%, g%, - 2b, 2qa, 2qb, 2%, 24°,
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3. BINOMIAL IDENTITIES

Many identities involving Fibonacci and Lucas numbers are readily derived from the binomial theorem; for exam-
ple see [1], [2] or [8]. They can nearly always be generalized to hecome identities involving generalized Fibonacci
and Lucas numbers.

In this section we could derive along list of such identities; but this seems unnecessary in view of the proofs in [2]
and [8], and also it would take up a lot of space, as the constant muitipliers which have to be introduced seem to
make the generalized formulae up to twice as long as the formulae in [2] and [8]. Instead we derive one set of iden-
tities as an example and show how further identities may be derived.

There often seem to be two very similar identities, one featuring Fibonacei numbers, the other Lucas numbers,
When there are two such identities they may often be derived from one identity by using the fact that T and /5 are
linearly independent over the rationals, although this is not the procedure adopted in {21 or [8]. With generalized
Fibonacci and Lucas numbers such a process would not be appropriate, but, as the examples show, the method of
proof which is natural doeslead to a single identity, from which the two identities may be obtained by specialization,

For this section (F,J and (L.} dencte a pair of sequences such that (F,) e F, {L,) e L and (F,)’ =(L,}. Also,
C=Fy—FoB, D=F;- Fpa.

The natural method of proof is firstly to derive a single identity involving (X, ) and (Y, Then either of the
following sets of substitutions may be made:

1. Xn = Fper

Yn = Lo#r
A=Xi—XgB= Freg—FB=Ca"
B=Xy—Xpa=Fpq—Fa=08".
{The third of these follows since

r+1 r+7 r Rl IR_ rat r+f
Fr+1 = Ca a:gﬂ = (ca Dﬁ )ﬁa—%aj"'ca = rﬁ'f' Car ,

and the fourth follows similarly.)
Or
i, X,y = Lt

Y, = d%Fpe
A= Xg=XgB= Lrry— L = Cda”
B=X;~Xpa= [pg~Loa= —DdB" .
Then each of these sets of substitutions leads to one of the two derived identities mentioned above.
EXAMPLES OF BINOMIAL IDENTITIES

EXAMPLE 1 Since ‘
m _. Xm"'dxm
2A ‘

om = Yn W

2B

it follows that

n n .
a™ = (247" Y ALY ( 7), and B = (28)" 3 (~1)'d' X}, Y,';,"( ;’)
=0 =0
Therefore,

i l\ n . - . -
Yo # X = (24)77 S di Xl v ( 7). and Vo= dXpy = (28)77 5 (—Il’d’x,',,y,';,"( ;’).
=0 =0
Therefore,

1
X = 7707 5 (dxm)"yg"'(;’) [AT"—(-1)'BT)
=0
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A similar formula may be derived for ¥,,,,.
Making the first set of substitutions, we obtain

n
Fronsr = 27707 5" (dF e ) Lk ( ) (lca’] "™ (-1} [pg']"™") .

=0
But | ’ -
T-n_r-rm _ ¢ q4jint-nor-rn _ pi-n [ Lrorn tdF e )_(_7)10 -n(Lr—m_dFr-rn}
C'"a {-1)p'™"g ¢ ( 70 20
- L';"( Lyt Eem ( 2oy L)
. cl’ DI’ ‘Cn Dn
Therefare
n
= gn-1 1 i )i 7 i1 7 7
Fomer = 2714 z_; (dFm,L,)’qu,’L,Q n )3 Ly (07 -1 )+dF,_m< St )é )

Making the second set of substitutions we gbtain

1.
Lomtr = 277077 3" (AL e ) (02 F,,,+,)"'f( ! )([ cda’] N — (1) [-Dag’] ")
=0

7 R . N
= 2 3 W e L (7 )(100T] T = (=1 =1) T 0 )
i=0

=27 2, (”’Fm+r)i%i’ir( 7) (fcar]™™" +(-1) (og]"").

=0
But
- _r- i i Jt? off= L, P i1

cl-ngqr rn+(_”107 nﬁr rn /2rn( z.;’7 +(__7)ID_fn ) +dF,pp ( CTL. _(_”157) .

Therefore
‘ i =i 1 i 1 1 i 1
Lopntr = Z-n—1 E (dFm+r)IL1!r;7—:"r (T)g Lr-rn g &7 +(_7)I‘D_n) +dFr-—m( '5,7 _(_HIF, ) .
=0 { j
EXAMPLE 2. Since
dXy, = 28a7 - Y, and dXpy = —(2BB7 — Y1)

it follows that

n n ) . )
akd"X,r,'., - E (~ ym}i(ZA)n-—i (ri;)amn—mﬁk and Bkan;% (—1)7 z (——Ym)'(é’B)n”' (7) ﬁmn-m/+k-
=0 ' =0

Therefore

n -
Yed"Xpy+ Xied ™M X = S (—Ym)’IZA)""( 7 )f Ymn-mitk * X mp-mivk/
=0
and

n
Vid " Xfy = Xd ™ X5, = (=1)" 30 (=Y (280" 7N it = DX -
=0
Therefare
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n
XXy = =L S =Y 27 (7)) (Y ik A7 = (=167 + Xl AT # (1))
24" i

and
7 7 co o : : : .
VX = o 3 (=1 Y2 () 1Y oA # (1078 X i (A" = (1)),
=0

Making the first set of substitutions we ¢htain

n
FiFiy = Lo 32 (1P L2 1) ik (€77 = (=1"07) # 0 F i (€7 + (110" )
24" 5 '

and
n » . . . - . -
L FR = - (=1)' L1 2" TV L papgeiniei (€7 + (= 1) D" ) + dF pyepnienc (€7 = (=1)7 D)) .
Zdn H
=0

Making the second set of substitutions we ebtain

n
d2F LD = Zflﬁ 3 (~1)d?F ) 2 (7) [02F pypy-misicd €7 4 (= 1) (= 7)1 g p i)

=0

+ dLmn—mHk (dn-icn—i - (- ”n(_ ”n—idn—iDn-i)]
so that ,

n
Fell = 2—[71 3 (dF ) 27 ( 4 ) LAF i (O (= 1)C™ ) = L it (B = (=1)€77)]
=0
and
n . . o f - - - . -
I—kqu = nI+1 Z (_ Ill(szm}IZn_/ l\ 7 ) [dZan—mi+k{dn_lcn_l - (_7}"(_7}n-ldn—lnn—ll’
24m7

+ dLmn—mi+k (dn—icn-i + (_ 7)”(_ ”n—idn—iDn—i}]
so that

n
Lty = L3 (aF )2 ( 7)[L,,,,,_,,7,-+k(0”"' H(=1)C") = dF e (0™ = (=1)C")].
=0
Further three term identities from which binomial identities may be derived in the way described are
dX, = Aa" - BB" ,
Y, = Aa" +B83" ,

(5) Ad™ = X a™ T rgX,, g0,
(®) BE™" = X" # 4 Xim-16"
a® = pa+q,
82 = pB+q,
(7) v2 = d2X2+44B(—q) ,

Ad®™ = Y,,a™ - Bl—g)™ ,

AgZm = dXa™ + Bl-g)™
BB?™ = ¥B" — Al~g)™ . BBZT = —dX,,87 + Al-g)7 .
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Most of these identities are obvious, or nearly so. Identity (5) may be proved as follows:

AQ™ = BY Bl Xy = Xy + 2gX g +dX ) = Xm( Pzd) + gt = X F G Xt
and identity (6) is proved similarly. identity (7) is proved as follows:

n 2
Y2=(Ad"+BB")2 = (Ad" — BP") + 4ABlaf)" = (a— B)? ( @aj—gﬁ'—) +4AB(~q)" = d2X2 +4AB(—q)",
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Hohciokdolok

ERRATA

Please make the following corrections te “Fibonacci Sequences Modulo M, appearing in the February 1974 (Vol.
12, No. 1) issue of The Fibonacci Quarterly, pp. 51—-64.
On page 52, last line, last sentence, change “If 2/f(p),” to read “If 2ff(p).”

On page 53, change the fourth line of the third paragraph from “which (a,6,p%) = 7, to: “which (a,b,p%) #1.”

On page 58, third paragraph of proof, tenth line should read:
“_isgivenby 5% — 5262 _y.526-2 - 4, 52e-1

On page 61, change the second displayed equation to read:
2
afk) =2—=1 .
Line 7 from the bottom should read:

“for i=t, -,e~1 "~



