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Abstract 

The Fibonacci sequence has been studied extensively and generalized in many ways.Hordam[ 5 ] has 

considered a generalized Fibonacci sequence 
0 1 2
, , ...   .w w w defined by 

1 2
,  n 2 

n n n
w pw qw

 
    with 

initial condition 
0 1

,w a w b  . In this paper ,We present some identities of Fibonacci like sequence. 
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Introduction: sequence have been  fascinating topic for mathematicians for centuries.The Fibonacci Sequences 

is a source of many nice and intresting identities identities.It is well known that the Fibonacci numbers and 

Lucas numbers are closely related. 

Horadam [ 5 ] has considerd a generalized Fibonacci Sequences  n
w  defined b  

1 2
,  n 2 

n n n
w pw qw

 
   with initial condition 

0 1
,w a w b  .                   (1.1) 

Where p and q are arbitrary integers, Although the sequence  n
w  has been studied extensively for years. For 

example as in [2-4]. ] B.Singh,Pooja Bhadouria and O.P. Sikhwal [ 1]present Some Identities involving 

common factor of Fibonacci and lucas numbers . 

Here is some special cases of the sequence  n
w , namely the following Fibonacci Like and Lucas Like 

sequences. 
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Where m is positive integer. 

By (1.1) ,the Binets forms for the sequences    ,
n n

S T  can be easily obtained as follows 
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Now we present some Identities involving Binets formula of Fibonacci like sequence.   

2.Some Identities: 
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Theorem2.1    2
1 . ,  n 1,p 0

n

n p p n n p
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 
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              By (1.4) and (1.5) 
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Corollary 2.2 For different values of p,(2.1) can be expressed for even and odd numbers.  

If p=0, then  
2

.
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Corollary 2.4:     Ifp=0 then (2.3) can be expressed in the following way.  

                             
2
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Theorem 2.5    2
1 5 .   Where n 1,p 0.
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3. Conclusion: This paper describes some identities of Fibonacci like sequences. Many similar identities can be 

developed for higher order Fibonacci like sequence.  
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