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In o rde r to unders tand the p rope r t i e s of a set it is often worth 
while to study the complement of the set . When The Fibonacci Assoc i a -
tion and this Quar t e r ly were being es tabl ished, the w r i t e r began to 
think about non- Fibonacci number s as well as about Fibonacci n u m b e r s , 
but what is known about non- Fibonacci numbers ? With the hope of gen-
era t ing m o r e i n t e r e s t in non-Fibonacci number s , I posed as the f i rs t 
p rob lem in this Quar te r ly , p roblem H - 1 , the quest ion of finding a for-
mula for the n- th non-Fibonacci number . The purpose of the p r e sen t 
paper is to d i scuss the problem and give a solution to it . 

We begin with the concept of complementa ry sequences . A s e -
quence is an o rde red seto Two sets of na tura l n u m b e r s , say A and 
B, a r e called complementa ry if they a r e disjoint and thei r union is the 
set of al l na tura l n u m b e r s . Many examples a r e avai lable: Even num-
b e r s and odd number s ; p r i m e s and n o n - p r i m e s ; k- th powers and non 
k- th power s . But the r e a d e r may not r ea l i ze that formulas can be 
wr i t t en down for such sequences . Of course , even and odd number s 
a r e genera ted eas i ly by 2n and 2n- l where n is any na tura l number , 
but it is not as well known that a bonafide formula for the n- th non 
k- th power is given by the express ion 

n + [V n + [̂ ~ k £ 2 

where square b racke t s indicate the in tegra l p a r t of a number . Such a 
formula is quite enter ta ining, and is a special case given by Lambek 
a n d M o s e r [l l] in a genera l study of complementa ry sequences . They 
give seven examples , as well as a genera l r e su l t . 

A r e m a r k a b l e pa i r of complementa ry sequences was d i scovered 
about forty y e a r s ago by Samuel Beatty at the Univers i ty of Toronto. 
He posed his d i scovery as a problem in the Amer i can Mathemat ica l 
Monthly [2] . We may state Beat ty ' s theorem in the following equivalent 
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fo rm, If x and y a r e i r r a t i ona l number s such that l / x + 1/y •= 1, 
then the sequences [nx] and [ny] , n = 1, 2, 3, . • . , a r e complementa ry . 

This theorem has been r ed i scove red a number of t imes since 
1926, The short l ist of r e f e rences at the end of this paper will give 
some idea of what is known about complementa ry sequences . Beat ty ' s 
r e su l t has been fair ly popular in Canada. Bes ides the work in Canada 
by Lambek and Moser , the re was the work of Coxeter , and the m a s -
t e r ' s thes is by Ian Connell (published in pa r t in [3 J ). The in te res t ing 
extension by Myer Angel [ i j was wr i t t en when he was a second year 
student at McGill Univers i ty . Our ma in i n t e r e s t he re is in the 1954 
paper of Lambek and Moser . 

Let f(n), n= 1, 2, 3, . . . , be a non-dec reas ing sequence of pos i -
tive in tegers and define, as in [l Ij and [8, ed i to r ' s r e m a r k s ] , the ! in-
v e r s e 1 f by 

f (n) = number of k such that f(k) < n = X 1 . 
1 < k 

f(k) < n 
Thus f is the d is t r ibut ion function which one would expect to study 
in connection with any sequence. If f defines the sequence of p r i m e 
number s , then f' (n) = ^(n- l ) = number of p r i m e s < n. Note a lso that 
f = f. We shall a l so define F(n) = f ' (n+ l ) . Next, define r ecu r s ive ly 

FQ(n) = n; F ^ n ) = n + F ( F k ^ ( n ) ) , k > 0 . 

Moser and Lambek showred that if Cf(n) is the sequence complementa ry 
to f(n), then 

Cf(n) = k
L ™ „ Fk(n) . 

What is m o r e , they showed that the sequence F, (n) a t ta ins i ts l imit 
Cf(n) in a finite number of s teps when this l imit is finite. In fact one 
need not go beyond k = Cf(n) - n. 

Thus the n- th non-p r ime number is the l imit of the sequence n, 
n + fl'(n), n+ n(n + n"(n)), . . . . Often two steps a r e sufficient to a t ta in 
the l imit . Thus the n - th na tu ra l number which is not a perfec t k- th 
power is given by the exp res s ion enunciated at the outset of this paper . 
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The n- th na tu ra l number not of the form [e | with m > 1 is 
n + [log(n + 1 +[log(n+l)] ) ] . 

As for the Fibonacci and non-Fibonacc i number s , let f(n) = f 
' n 

be a Fibonacci number , defined r ecu r s ive ly by f , . = f + f , with 
1 J n+1 n n-1 

f. = 1 , f? = 2, Let g designate the non-Fibonacci n u m b e r s . The 
following table will i l l u s t r a t e the calculat ions involved. n 1 
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In the table, successive columns indicate the steps in evaluation 

of the limit g = Cf(n) as follows: 

A = n + F(n), 

B = F(n + F(n)), 

C = n + F(n + F(n)), 

D = F(n + F(n + F(n))), 

E = n + F(n + F(n + F(n))) 0 

Three iterations were found necessary to generate the non-Fibonacci 

numbers g , at least up to n = 40. It is left as a research problem 

for the reader to determine if more than three iterations are ever 

necessary. 

It is evident that to obtain an elegant formula for g we have 

then two problems: (a) the number of steps required to find Cf(n); (b) 

a neat formula for the distribution function F(n) or equivalently the 

inverse f (n). 

The study of F or f corresponds to the study of the distribu-

tion of prime numbers, but because of the regular pattern of distribu-

tion we can supply a fairly neat.formula for F(n). It was noted by K, 

Subba Rao [13] that we have the asymptotic result: 

F(n) ~ \^MJL 9 a s n-^oo x ' log a 
where 

1 + \/5 
a = — - — . 

As a matter of fact one can prove much more. We have the following 

THEOREM. Let F(n) = number of Fibonacci numbers f ^ n. Then 

F(n) ~ !"Qg n + log J5 - 1 = 2 . 08 log n + 0. 67 ' log a & a & 

and, for n > n , F(n) is the greatest integer 1 this value0 Column F 

in the table gives the value of the expression 2.08 log n + 0.67 as 

computed from a standard 10-inch slide rule. Even this crude cal-

culation is good enough to show how closely the formula comes to F(n). 
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Thus we have the following approximate formula for the n- th 
non-Fibonacc i number : 

g = n + F(n + F(n + F(n)» , 

with 

F(n) = [logan + \ loga5 - l ] for n > 2 , 

= [2 ,08 log n 4- 0, 67] 

We shall conclude by noting some cur ious generat ing functions for 
the d is t r ibut ion function (or inverse ) f (n). For any non-dec reas ing 
sequence of posi t ive in tegers f(n), we have [8 , ed i to r ' s r e m a r k s ] 

x 2 xf ( n ) = (1 - x) 2 f(n) x n , 
n=l n=l 

a n d 

n f(k) f(n) n 
2 2 A = 2 I „ A , 

k=l j=l J , K j=l k=l +£ (j) J , K 

the l a t t e r identi ty holding for an a r b i t r a r y a r r a y of number s A. , , 
being m e r e l y an example of summing in the one case by rows and in 
the other case by columns f i r s t . As an example with applicat ion to 
formulas involving the Fibonacci numbers we may note that 

f i f 

n k n n 
2 2 A = 2 2 A . 

k=l j=l J , K j=l k=l + F ( j - l ) J ' K 

In this formula, take A = 1 ident ical ly. Then we find the formula 
J> k 

f 
2 F ( k - 1) = n f n - fn+2 + 2 , (F(0) = 0) 

k=l 

this being but one of many in te res t ing re la t ions connecting f and 
F(n). F r o m Theorem 2 of [l l] we have that the sequences n + f and 
n + F ( n - l ) a r e complementa ry . The r e a d e r may find it of i n t e r e s t to 
develop the cor responding formulas for non-Lucas numbe r s or other 
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r e c u r r e n t sequences , In a for thcoming paper [lO] Holladay has given 
a very genera l and closely reasoned account of some r e m a r k a b l e r e -
sults for complementa ry sequences . If a pe r sona l r e m a r k be allowed, 
his paper is an outgrowth of d i scuss ions concerning problem H- l and 
the applicat ion of complemen ta ry sequences to ce r t a in p rob lems in 
game theory . 

As a final r e m a r k , the re is the quest ion of the d is t r ibut ion of 
non-Fibonacci number s and ident i t ies which they may satisfy. It is 
hoped to d i scuss other p r o p e r t i e s of non-Fibonacc i number s and other 
formulas for them in a la ter pape r . 
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Correc t ions to "Summation Fo rmu lae for Multinomial Coefficients" 
by Selmo Tauber , Vol. Ill, No. 2: 

(5) line 3 (p. 97) N+l 

(6) las t line (p. 97) k 
2 I ^ X ^ , . . . etc 

a=l 

(8) lines 3 and 4, upper index of mult , coeff. (p. 99) 

N+h+1 
N+q-1 
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