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Abstract

The k-Fibonacci polynomials are the natural extension of the k-Fibonacci numbers and many of their properties
admit a straightforward proof. Here in particular, we present the derivatives of these polynomials in the form of con-
volution of k-Fibonacci polynomials. This fact allows us to present in an easy form a family of integer sequences in a
new and direct way. Many relations for the derivatives of Fibonacci polynomials are proven.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

There is a huge interest of modern science in the application of the Golden Section and Fibonacci numbers [1–10].
The Fibonacci numbers Fn are the terms of the sequence f0; 1; 1; 2; 3; 5; . . .g wherein each term is the sum of the two
previous terms, beginning with the values F0 = 0, and F1 = 1. On the other hand the ratio of two consecutive Fibonacci
numbers converges to the Golden Mean, or Golden Section, / ¼ 1þ

ffiffi
5
p

2
, which appears in modern research, particularly

physics of the high energy particles [11,12] or theoretical physics [13–19].
The paper presented here was initially originated for the astonishing presence of the Golden Section in a recursive

partition of triangles in the context of the finite element method and triangular refinements. In [20] we showed the rela-
tion between the 4-triangle longest-edge partition and the k-Fibonacci numbers, as another example of the relation
between geometry and numbers. On the other hand in [21] the k-Fibonacci numbers were given in an explicit way
and, by easy arguments, many properties were proven. In particular the k-Fibonacci numbers were related with the
so-called Pascal 2-triangle.

From this point on, the present paper is organized as follows. In Section 2 a brief summary of the previous results
obtained in References [20–22] is given. Section 3 is focused on the k-Fibonacci polynomials which are the natural
extension of the k-Fibonacci numbers and many of their properties admit a straightforward proof. Here, in particular
we relate the Catalan’s numbers with the coefficients of the successive powers xn written as linear combination of Fibo-
nacci polynomials. Section 4 presents many formulas and relations for the derivatives of the Fibonacci polynomials.
For example, their derivatives are given as convolution of Fibonacci polynomials. This fact allows us to present a family
of integer sequences in a new and direct way.
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2. The k-Fibonacci numbers and properties

The k-Fibonacci numbers have been defined in [21] for any real number k as follows.

Definition 1. For any positive real number k, the k-Fibonacci sequence, say fF k;ngn2N is defined recurrently by
F k;nþ1 ¼ kF k;n þ F k;n�1 for n P 1: ð1Þ
with initial conditions
F k;0 ¼ 0; F k;1 ¼ 1 ð2Þ
Note that if k is a real variable x then F k;n ¼ F x;n and they correspond to the Fibonacci polynomials defined
by
F nþ1ðxÞ ¼
1 if n ¼ 0

x if n ¼ 1

xF nðxÞ þ F n�1ðxÞ if n > 1

8><
>:

9>=
>;
Particular cases of the k-Fibonacci sequence are

• If k = 1, the classical Fibonacci sequence is obtained:
F 0 ¼ 0; F 1 ¼ 1; and F nþ1 ¼ F n þ F n�1 for n P 1 :

fF ngn2N ¼ f0; 1; 1; 2; 3; 5; 8; . . .g
• If k = 2, the Pell sequence appears:
P 0 ¼ 0; P 1 ¼ 1; and P nþ1 ¼ 2P n þ P n�1 for n P 1 :

fP ngn2N ¼ f0; 1; 2; 5; 12; 29; 70; . . .g
• If k = 3, the following sequence appears:
H 0 ¼ 0;H 1 ¼ 1; and Hnþ1 ¼ 3Hn þ H n�1 for n P 1 :

fHngn2N ¼ f0; 1; 3; 10; 33; 109; . . .g
The well-known Binet’s formula in the Fibonacci numbers theory [1,8,21] allows us to express the k-Fibonacci
number in function of the roots r1 and r2 of the characteristic equation, associated to the recurrence relation (1)
r2 = kr + 1:
F k;n ¼
rn

1 � rn
2

r1 � r2

ð3Þ
If r denotes the positive root of the characteristic equation, the general term may be written in the form F k;n ¼ rn�r�n

rþr�1 ,
and the limit of the quotient of two terms is
lim
n!1

F k;nþr

F k;n
¼ rr ð4Þ
In addition, the general term of the k-Fibonacci sequence may be obtained by the formula:
F k;n ¼
1

2n�1

Xn�1
2b c

i¼0

n

2iþ 1

� �
kn�2i�1ðk2 þ 4Þi ð5Þ
or, equivalently, by
F k;n ¼
Xn�1

2b c

i¼0

n� 1� i

i

� �
kn�1�2i ð6Þ



Table 1
The first k-Fibonacci numbers

F k;1 ¼ 1
F k;2 ¼ k
F k;3 ¼ k2 þ 1
F k;4 ¼ k3 þ 2k
F k;5 ¼ k4 þ 3k2 þ 1
F k;6 ¼ k5 þ 4k3 þ 3k
F k;7 ¼ k6 þ 5k4 þ 6k2 þ 1
F k;8 ¼ k7 þ 6k5 þ 10k3 þ 4k
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2.1. The k-Fibonacci numbers and the Pascal 2-triangle

From the definition of the k-Fibonacci numbers, the first of them are presented in Table 1. From these expressions,
one may deduce the value of any k-Fibonacci number by simple substitution on the corresponding F k;n. For example,
the seventh element of the 4-Fibonacci sequence, fF 4;ngn2N , is F 4;7 ¼ 46 þ 5 � 44þ 6 � 42 þ 1 ¼ 5473.

By doing k ¼ 1; 2; 3; . . . the respective k-Fibonacci sequences are obtained whose first elements are
Table
The fir

fF 1;ng
fF 2;ng
fF 3;ng
fF 4;ng
fF 5;ng
fF 6;ng

Table
The Pa

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
fF 1;ngn2N ¼ f0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55 . . .g
fF 2;ngn2N ¼ f0; 1; 2; 5; 12; 29; 70; 169; 408; 985; 2378 . . .g
fF 3;ngn2N ¼ f0; 1; 3; 10; 33; 109; 360; 1189; 3927; 12970; 42837; . . .g
fF 4;ngn2N ¼ f0; 1; 4; 17; 72; 305; 1292; 5473; 23184; 98209; 416020; . . .g
Sequence fF 1;ng is the classical Fibonacci sequence and fF 2;ng is the Pell sequence. It is worthy to be noted that only the
first 11 k-Fibonacci sequences are referenced in The On-Line Encyclopedia of Integer Sequences [23] with the numbers
given in Table 2. For k even with 12 6 k 6 62 sequences {Fk,n} are referenced without the first term Fk,0 = 0 in [23].

It is worthy to be noted that the coefficients arising in the previous list, see Table 1, can be written in triangular posi-
tion, in such a way that every side of the triangle is double, and for this reason this triangle has been called Pascal 2-
triangle [21]. See Table 3.
2
st 11 k-Fibonacci sequences as numbered in The On-Line Encyclopedia of Integer Sequences [23]

A000045 fF 7;ng A054413
A000129 fF 8;ng A041025
A006190 fF 9;ng A099371
A001076 fF 10;ng A041041
A052918 fF 11;ng A049666
A005668

3
scal 2-triangle

1
1

1 1
1 2

1 3 1
1 4 3

1 5 6 1
1 6 10 4

1 7 15 10 1
1 8 21 20 5

1 9 28 35 15 1
1 10 36 56 35 6

1 11 45 84 70 21 1
1 12 55 120 126 56 7



Table 4
New table from the Classical Pascal triangle

1 1 1 1 1 1 1 . . .

1 2 3 4 5 6 7 . . .

1 3 6 10 15 21 28 . . .
1 4 10 20 35 56 84 . . .

1 5 15 35 70 126 210 . . .

1 6 21 56 126 252 462 . . .

. . .
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Note that the numbers belonging to the same row of the Pascal 2-triangle are the coefficients of F k;n as they are
expressed in Eq. (6). Also the elements belonging to the odd rows in inverse way build the Modified Numerical Triangle

(MNT) introduced by Trzaska in [24–26], and defined by the recurrence equation T nþ2ðxÞ ¼ ð2þ xÞT nþ1ðxÞ � T nðxÞ, for
n ¼ 0; 1; 2; . . ., with initial values T0(x) = 1 and T1(x) = 1 + x. On the other hand, the even rows, written in inverse way,
form the so-called (MNT2) triangle introduced by Trzaska in [26], and defined by the recurrence equation
P nþ2ðxÞ ¼ ð2þ xÞP nþ1ðxÞ � P nðxÞ, for n ¼ 0; 1; 2; . . ., with initial values P0(x) = 1 and P1(x) = 1.

A simple explanation of the Pascal 2-triangle may be given by considering two sets of points in the coordinate axes
X ¼ fx ¼ ðx; 0Þ=x 2 Ng and Y ¼ fy ¼ ð0; yÞ=y 2 Ng. A path between an x-point and a y-point is the not reversing path
in the first quadrant from x to y by horizontal and vertical unit segments. For example, from point x ¼ ð2; 0Þ to point
y ¼ ð0; 1Þ there are three paths: fð2; 0Þ; ð1; 0Þ; ð0; 0Þ; ð0; 1Þg, fð2; 0Þ; ð1; 0Þ; ð1; 1Þ; ð0; 1Þg, and fð2; 0Þ; ð2; 1Þ; ð1; 1Þ; ð0; 1Þg.
Then, as it can be easily checked, the diagonals in the Pascal 2-triangle give the number of such paths between an x-
point and an y-point.

Each one of the different lines of couples of adjacent numbers on the Pascal 2-triangle as shown in Table 3, from
right to left and from first row to bottom is called double diagonal [21]. For example, the third double diagonal is
f1� 3; 6� 10; 15� 21; 28� 36; . . .g. These lines are also called antidiagonals. In addition, each line of numbers from
left to right and from top to bottom is called simple diagonal. For example, the third simple diagonal is
f1; 3; 6; 10; 15; 21; 28; 36; . . .g:
Note that the ith double diagonal is equal to the same order simple diagonal, and, therefore, they can be named diag-
onal (simple) or antidiagonal (double).

For many properties of the Pascal 2-triangle see, for example [21].
Writing down the diagonals of the classical Pascal 2-triangle in rows is obtained Table 4.
Between the properties of this table, we emphasize the following ones. Each entrance of the row beginning with

f1; i; . . .g gives precisely the number of terms in the expansion of ða1 þ a2 þ a3 þ � � � þ aiÞn, for n ¼ 0; 1; 2; 3; . . ., and this

number is
nþ i� 1

n

� �
. Each entrance in the diagonal beginning with f1; j; . . .g reports the number of terms in the

expansion of ða1 þ a2 þ a3 þ � � � þ anþ3�jÞn, for n P j� 2, and this number is
2nþ j� 4

n� 2

� �
. For instance, diagonal

f1; 4; 15; 56; 210; . . .g means the number of terms in the expansion of ða1 þ a2 þ a3 þ � � � þ an�1Þn for n P 2, which is

2n� 2
n� 2

� �
. In particular, by dividing each term of this diagonal respectively by 1; 2; 3; 4; . . . the sequence of Catalan’s

numbers is obtained.

The antidiagonals in Table 4 correspond to the rows of the classical Pascal triangle, which are
n
i

� �
. Term ai;j of

Table 4 verifies ai;j ¼ ai�1;j þ ai;j�1. The square matrices obtained from term a1;1 have determinant equal to 1. They
are also symmetric with respect to the diagonal f1; 2; 6; 20; 70; . . .g.
3. The Fibonacci polynomials

Note that if k is a real variable x then F k;n ¼ F x;n and they correspond to the Fibonacci polynomials defined by
F nþ1ðxÞ ¼
1 if n ¼ 0

x if n ¼ 1

xF nðxÞ þ F n�1ðxÞ if n P 2

8><
>:

9>=
>; ð7Þ
from where the first Fibonacci polynomials are
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F 1ðxÞ ¼ 1

F 2ðxÞ ¼ x

F 3ðxÞ ¼ x2 þ 1

F 4ðxÞ ¼ x3 þ 2x

F 5ðxÞ ¼ x4 þ 3x2 þ 1

F 6ðxÞ ¼ x5 þ 4x3 þ 3x

F 7ðxÞ ¼ x6 þ 5x4 þ 6x2 þ 1

F 8ðxÞ ¼ x7 þ 6x5 þ 10x3 þ 4x
and from these expressions, as for the k-Fibonacci numbers we can write:
F nþ1ðxÞ ¼
Xn

2b c

i¼0

n� i

i

� �
xn�2i for n P 0 ð8Þ
Note that F2n(0) = 0 and x = 0 is the only real root, while F 2nþ1ð0Þ ¼ 1 with no real roots. Also for x = k 2 N we obtain
the elements of the k-Fibonacci sequences.

By iterating recurrence relation of Formula (7) the following property is straightforwardly deduced.

Proposition 2. For 1 6 r 6 n � 1 holds:
F nþ1ðxÞ ¼ F rðxÞF n�ðr�2ÞðxÞ þ F r�1ðxÞF n�ðr�1ÞðxÞ ð9Þ
Proposition 3 (Binet’s formula). The nth Fibonacci polynomial may be written as
F nðxÞ ¼
rn � ð�rÞ�n

rþ r�1
ð10Þ
being r ¼ xþ
ffiffiffiffiffiffiffi
x2þ4
p

2
.

Proof. Note that the characteristic equation for the k-Fibonacci polynomials is r2 � x � r � 1 ¼ 0 with roots

r1 ¼ r ¼ xþ
ffiffiffiffiffiffiffi
x2þ4
p

2
, and r2 ¼ �r�1, from where Formula (10) is deduced. h

From Binet’s formula, and in the same way that for the k-Fibonacci numbers [21] the following propositions may be
proved:

Proposition 4 (Asymptotic behaviour of the quotient of consecutive terms).
If r ¼ xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4
p

2
; then lim

n!1

F nþ1ðxÞ
F nðxÞ

¼ r �
As a consequence, the quotient between two consecutive terms of the k-Fibonacci sequence fF k;ng ¼ f0; 1; k; k2þ
1; k3 þ 2k; . . .g tends to the positive characteristic root r = rk. For each integer k, r = rk is called the kth metallic ratio
[10]: Golden Ratio, for k = 1, Silver Ratio, for k = 2, and Bronze Ratio for k = 3.

Proposition 5 (Honsberger’s formula). For n, m integers it holds:
F mþnðxÞ ¼ F mþ1ðxÞF nðxÞ þ F mðxÞF n�1ðxÞ ð11Þ
Proof. Eq. (11) follows by changing in Eq. (9) n � r + 2 by n and r by m + 1. h

In particular,

• For m = n � 1 an expression for the polynomial of even degree is obtained: F 2n�1ðxÞ ¼ F 2
nðxÞ þ F 2

n�1ðxÞ.
• For m = n it is obtained:
F 2nðxÞ ¼ F nþ1ðxÞF nðxÞ þ F nðxÞF n�1ðxÞ ¼ F nðxÞðF nþ1ðxÞ þ F n�1ðxÞÞ

or, equivalently: F 2nðxÞ ¼

F 2
nþ1
ðxÞ�F 2

n�1
ðxÞ

x .
Previous argument may be applied for m ¼ 2n; 3n; . . . from which it is deduced that the r Æ n order Fibonacci polynomial
is multiple of the n order polynomial, and hence
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• GCD½F mðxÞ; F nðxÞ� ¼ F GCD½m;n�ðxÞ

Proposition 6 (Catalan’s identity). For n, r integers and n > r, then
F n�rðxÞF nþrðxÞ � F 2
nðxÞ ¼ ð�1Þn�r�1F 2

r ðxÞ
Proof. By applying Binet’s formula (10) to the left-hand side (LHS) results:
ðLHSÞ ¼ rn�r � ð�1Þn�rr�nþr

rþ r�1
� r

nþr � ð�1Þnþrr�n�r

rþ r�1
� rn � ð�1Þnr�n

rþ r�1

� �2

¼ r2n � ð�1Þnþrr�2r � ð�1Þn�rr2r þ r�2n

ðrþ r�1Þ2
� r2n � 2ð�1Þn þ r�2n

ðrþ r�1Þ2

¼ ð�1Þn�r�1r�2r þ ð�1Þn�r�1r2r � 2ð�1Þn�1

ðrþ r�1Þ2
¼ ð�1Þn�r�1 rr � r�r

rþ r�1

� �2

¼ ðRHSÞ �
Straightforward corollaries of Catalan’s identity are

• Cassini’s or Simson’s identity (by doing r = 1): F n�1ðxÞF nþ1ðxÞ � F 2
nðxÞ ¼ ð�1Þn.

• By changing n by 4n and r by 2n, results: F 2nðxÞðF 2nðxÞ þ F 6nðxÞÞ ¼ F 2
4nðxÞ, and therefore the (LHS) is a perfect

square [27].
• By changing n by 2n + r, results: F 2nðxÞF 2nþ2rðxÞ þ F 2

r ðxÞ ¼ F 2
2nþrðxÞ, and therefore the (LHS) is a perfect square.

If x = 1 we have F nðxÞ ¼ F n and hence F 1ð1Þ ¼ F 2ð1Þ ¼ 1, and the set fF 2n; F 2nþ2; F 2nþ4; 4F 2nþ1F 2nþ2F 2nþ3g is a
Diophantine quadruple [28,29] which means that the product of two of them plus +1 is a perfect square. For
example: F 2n � F 2nþ2 þ 1 ¼ F 2

2nþ1, F 2n � F 2nþ4 þ 1 ¼ F 2
2nþ2, F 2n � 4F 2nþ1F 2nþ2F 2nþ3 þ 1 ¼ ð2F 2nþ1F 2nþ2 � 1Þ2, F 2nþ2�

F 2nþ4 þ 1 ¼ F 2
2nþ3, F 2nþ2 � 4F 2nþ1F 2nþ2F 2nþ3 þ 1 ¼ ð2F 2

2nþ2 þ 1Þ2, and F 2nþ4 � 4F 2nþ1F 2nþ2F 2nþ3 þ 1 ¼ ð2F 2nþ2

F 2nþ3 þ 1Þ2.

Proposition 7 (General bilinear formula). For a, b, c, d and r integers, with a + b = c + d:
F aðxÞF bðxÞ � F cðxÞF dðxÞ ¼ ð�1ÞrðF a�rðxÞF b�rðxÞ � F c�rðxÞF d�rðxÞÞ ð12Þ
Proof. As it is well-known if Q is a square matrix and a, b, c and d are real numbers with a + b = c + d then
Qaþb ¼ Qcþd . Let Q be the square matrix ðRk�1 � LÞn which was introduced in [20]. Matrix Q for Fibonacci polynomials

is of the form ðRk�1 � LÞn ¼ F nþ1ðxÞ � F nðxÞ F nðxÞ
xF nðxÞ F nðxÞ � F n�1ðxÞ

� �
.

By substituting this matrix in Qa � Qb�1 ¼ Qc � Qd�1, and considering (1,2) entrances of the result, it is obtained:
F aðxÞF bðxÞ � F cðxÞF dðxÞ ¼ ð�1Þ½F a�1ðxÞF b�1ðxÞ � F c�1ðxÞF d�1ðxÞ�
Now, by applying the same process r times, identity (12) is obtained. h

Corollary 8 (d’Ocagne’s identity). For n 6 m integers:
F nþ1ðxÞF mðxÞ � F nðxÞF mþ1ðxÞ ¼ ð�1Þn�1F m�nðxÞ
Proof. It is enough to do a = n + 1, b = m, c = n, d = m + 1 and r = n � 1 in Eq. (12). h

Binet’s formula (4) allows us to express the sum of the first n polynomials in an easy way. See [21, Proposition 8] for
a proof.
Proposition 9 (Sum of the first n polynomials).
Xn

i¼1

F iðxÞ ¼
F nþ1ðxÞ þ F nðxÞ � 1

x
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3.1. Expression of xn as a function of the Fibonacci polynomials

Note first, that the equations for the Fibonacci polynomials may be written in matrix form as F = B Æ X, where
F ¼ ðF 1ðxÞ; F 2ðxÞ; F 3ðxÞ; . . . ÞT, X ¼ ð1; x; x2; x3; . . . ÞT, and B is the lower triangular matrix with entrances the coefficients
appearing in the expansion of the Fibonacci polynomials in increasing powers of x:
B ¼

1

0 1

1 0 1

0 2 0 1

1 0 3 0 1

0 3 0 4 0 1

1 0 6 0 5 0 1

0 4 0 10 0 6 0 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
Note that in matrix B the non-zero entrances build precisely the diagonals of the Pascal triangle and the sum of the
elements in the same row gives the classical Fibonacci sequence. In addition, matrix B is invertible, and
B�1 ¼

1

0 1

�1 0 1

0 �2 0 1

2 0 �3 0 1

0 5 0 �4 0 1

�5 0 9 0 �5 0 1

0 �14 0 14 0 �6 0 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
and, therefore, xn may be written as linear combination of Fibonacci polynomials:
1 ¼ F 1ðxÞ
x ¼ F 2ðxÞ
x2 ¼ F 3ðxÞ � F 1ðxÞ
x3 ¼ F 4ðxÞ � 2F 2ðxÞ
x4 ¼ F 5ðxÞ � 3F 3ðxÞ þ 2F 1ðxÞ
x5 ¼ F 6ðxÞ � 4F 4ðxÞ þ 5F 2ðxÞ
x6 ¼ F 7ðxÞ � 5F 5ðxÞ þ 9F 3ðxÞ � 5F 1ðxÞ
x7 ¼ F 8ðxÞ � 6F 6ðxÞ þ 14F 4ðxÞ � 14F 2ðxÞ
These expansions are given in closed form in the following theorem, which is the version of the Zeckendorf’s theorem
for the Fibonacci polynomials. Zeckendorf’s theorem establishes that every integer may be written in a unique way as
sum of non-consecutive Fibonacci numbers: n ¼

Pr
i¼1eiF ðiÞ, where ei = 1, or ei = 0 and ei Æ ei+1 = 0 [30,31]. For the

Fibonacci polynomials we have the following result.

Theorem 10. For every integer n P 1, xn�1 may be written in a unique way as linear combination of the n first Fibonacci

polynomials as
xn�1 ¼
Xn

2b c

i¼0

ð�1Þi
n

i

� �
�

n

i� 1

� �� �
F n�2iðxÞ ð13Þ
where
n
�1

� �
¼ 0.
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Proof. By induction. Eq. (13) is trivially true for n = 1. Let us suppose the Eq. (13) is true for every integer less or equal
than n � 1. Then
Table
Anoth

0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Table
Catala

0.
1.
2.
3.
4.
5.
6.
xn�2 ¼
Xbn�1

2 c

i¼0

ð�1Þi
n� 1

i

� �
�

n� 1

i� 1

� �� �
F n�1�2iðxÞ
where by multiplying by x and having in mind that xF n�2i�1ðxÞ ¼ F n�2iðxÞ � F n�2i�2ðxÞ then from the second term all the
terms cancel and Eq. (13) for n is obtained. h

Corollary 11. Every polynomial P nðxÞ ¼
Pn

i¼0aixi may be written in a unique way as linear combination of Fibonacci

polynomials.
3.2. Fibonacci polynomials and Catalan’s triangle

The coefficients, in absolute value, of the successive powers xn written by increasing order of Fibonacci polynomials
may be written in a 2-triangle, as the Pascal 2-triangle. See Table 5.

Note that in this 2-triangle the first double antidiagonal is of 1’s. Then each element of any row is the sum of the two
elements of the previous row: that on the same place on the row and the preceding one. That is, the recurrence law is
anðiÞ ¼ an�1ðiÞ þ an�1ði� 1Þ. Finally for all even row, at the end is added the same last element of the previous row. Also
note that if the diagonals of this 2-triangle are written as the rows of a new triangle we get the so-called Catalan’s tri-
angle. See Table 6.

Catalan’s triangle shows many properties. Note, for example, that the sum of the elements in a row is equal to the
last element of the following row, and the first diagonal coincides with the second one and gives precisely the Catalan’s
sequence: C1 ¼ f1; 1; 2; 5; 14; 42; 132; 429; . . .g. This sequence is the second column of matrix B-1 without considering
the sings of the entrances.

Catalan’s numbers may be obtained by the following formulas: Cn ¼ 1
nþ1

2n
n

� �
or Cnþ1 ¼

Pn
i¼0CiCn�i.
5
er Pascal 2-triangle

1
1

1 1
1 2

1 3 2
1 4 5

1 5 9 5
1 6 14 14

1 7 20 28 14
1 8 27 48 42

1 9 35 75 90 42
1 10 44 110 165 132

1 11 54 154 275 297 132
1 12 65 208 429 572 429

6
n’s triangle

1
1 1

1 2 2
1 3 5 5

1 4 9 14 14
1 5 14 28 42 42

1 6 20 48 90 132 132
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Since given two sequences {an} and {bn} their convolution is the new sequence {cn}, where cn ¼
Pn

i¼0aibn�i [32], diag-
onal Ci ¼ f1; i; . . .g is precisely the convolution of order i of Catalan’s sequence C1, so Ci ¼ �iC1. Also it is verified
Ci ¼ Ci�1 � C1.

Last formula for Catalan’s numbers says that each Catalan’s number is obtained by the convolution of the preceding
terms.

A simple explanation of the Catalan’s numbers is that they give the number of possible partitions in triangles of a
regular polygon, such that the triangles have their vertices in the polygon vertices. Also, Catalan’s numbers give the
number of monotone paths in the plane between points (0,0) and ðn; nÞ. A path between points (0,0) and ðn; nÞ is mono-
tone if consists on unitary segments from left to right and from bottom to top and never goes through the diagonal.
4. Derivative of the Fibonacci polynomials

In this section we shall study the sequences obtained by deriving the Fibonacci polynomials. Then by giving to var-
iable x integer values x ¼ 1; 2; 3; . . . many integer sequences are generated. Several properties of these sequences, and the
relations between the Fibonacci polynomials and their derivatives are proved.

4.1. Polynomials obtained by deriving the Fibonacci polynomials

By deriving the Fibonacci polynomials it is obtained:
Table
The de

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Table
Triang

1.
2.
3.
4.
5.
F 01ðxÞ ¼ 0

F 02ðxÞ ¼ 1

F 03ðxÞ ¼ 2x

F 04ðxÞ ¼ 3x2 þ 2

F 05ðxÞ ¼ 4x3 þ 6x

F 06ðxÞ ¼ 5x4 þ 12x2 þ 3

F 07ðxÞ ¼ 6x5 þ 20x3 þ 12x

F 08ðxÞ ¼ 7x6 þ 30x4 þ 30x2 þ 4
Considering only the coefficients of the derivative polynomials, they may be written again in a double triangle, as shown
in Table 7.

An interesting property of this triangle is that by summing up the elements of two alternate rows and dividing the
result by the order of the second row the Fibonacci number corresponding to that order is obtained. For example, by
7
rivative Pascal 2-triangle

1
2

3 2
4 6

5 12 3
6 20 12

7 30 30 4
8 42 60 20

9 56 105 60 5
10 72 168 140 30

8
le from the quasi-diagonals and the Pascal triangle

1 1
2 2 1 1

3 6 3 ! 1 2 1
4 12 12 4 1 3 3 1

5 20 30 20 5 1 4 6 4 1



Table 9
The derivative scaled by the antidiagonal Pascal 2-triangle

1. 1
2. 2
3. 3 1
4. 4 3
5. 5 6 1
6. 6 10 4
7. 7 15 10 1
8. 8 21 20 5
9. 9 28 35 15 1
10. 10 36 56 35 6
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summing up the fifth row and the seventh row and dividing by 7 it is obtained F7(1) = 13. This result will be proved later
in Proposition 17.

Note that by rearranging the terms of the derivative Pascal 2-triangle writing down by rows the terms appearing in
the respective quasi-diagonal, a new triangle arises (see Table 8 (left)). If the ith file of this triangle is divided by i, again
the classical Pascal triangle appears (see Table 8 (right)).

Note also that by dividing by i each element of the ith antidiagonal in Table 7, the triangle obtained is shown in
Table 9, which actually is the same Pascal 2-triangle after deleting the first antidiagonal (see Table 3).

If we derive again, we will get the second derivatives of the Fibonacci polynomials:
Table
The se

1.
2.
3.
4.
5.
6.

Table
Triang

1.
2.
3.
4.
5.
F 001ðxÞ ¼ 0

F 002ðxÞ ¼ 0

F 003ðxÞ ¼ 2

F 004ðxÞ ¼ 6x

F 005ðxÞ ¼ 12x2 þ 6

F 006ðxÞ ¼ 20x3 þ 24x

F 007ðxÞ ¼ 30x4 þ 60x2 þ 12

F 008ðxÞ ¼ 42x5 þ 120x3 þ 60x
From where we may write the coefficients again in triangular shape. See Table 10 (left). In this triangle, by dividing each
element of the ith antidiagonal between i(i + 1) the triangle shown Table 10 (right) results. Note that this last triangle is
precisely the Pascal 2-triangle without its two first antidiagonals.

As before, by rearranging the terms of the second derivative Pascal 2-triangle in the same form as indicated previ-
ously, we get again the classical Pascal triangle (see Table 11 (right)).

And this procedure follows for any successive derivative of Fibonacci polynomials.
10
cond derivative Pascal 2-triangle

2 1
6 3

12 6 6 1
20 24 ! 10 4

30 60 12 15 10 1
42 120 60 21 20 5

11
le from the 2nd-derivative triangle and the Pascal triangle

2 1
6 6 1 1

12 24 12 ! 1 2 1
20 60 60 20 1 3 3 1

30 120 180 120 30 1 4 6 4 1
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4.2. Numerical sequences obtained from the derivatives of Fibonacci polynomials

Different numerical sequences are obtained by simple substitution of variable x for an integer into the derivative of
Fibonacci polynomials. For example, for the first derivative, we get
fF 0nð1Þg ¼ f0; 1; 2; 5; 10; 20; 38; 71; 130; 235; . . .g
fF 0nð2Þg ¼ f0; 1; 4; 14; 44; 131; 376; 1052; 2888; 7813; . . .g
fF 0nð3Þg ¼ f0; 1; 6; 29; 126; 516; 2034; 7807; 29382; . . .g
fF 0nð4Þg ¼ f0; 1; 8; 50; 280; 1475; 7472; 36836; 178000; . . .g
Sequence fF 0nð1Þg is studied in [23], in which it is numbered as sequence A001629. In that site is underlined that the kth
term of the sequence represents the number subsets of f1; 2; . . . ; k � 1g with no consecutive integers. For example:
a(5) = 10 because there are 10 subsets of f1; 2; 3; 4g that have no consecutive elements:
fg; f1g; f2g; f3g; f4g; f1; 3g; f1; 4g; f2; 4g; f1; 2; 4g; f1; 3; 4g (Emeric Deutsch (deutsch@duke.poly.edu), December 10,
2003). Sequence fF 0nð2Þg is also studied in [23], and numbered as sequence A006645. Sequences fF 0nð1Þg and fF 0nð2Þg
are the only ones appearing in [23]. It should be noted, however, that these two integer sequences, along with the other
in the list verify the general formulas and identities which we will show later on.

The same scheme followed with the list of polynomials fF 0nðxÞg can be observed in order to obtain other numerical
sequences from the list of mth derivative polynomial. So, for example, from the second derivative, follows:
fF 00nð1Þg ¼ f0; 0; 2; 6; 18; 44; 102; 222; 466; 948; . . .g
fF 00nð2Þg ¼ f0; 0; 2; 12; 54; 208; 732; 2424; 7684; 23568; . . .g
fF 00nð3Þg ¼ f0; 0; 2; 18; 114; 612; 2982; 13626; 59474; . . .g
fF 00nð4Þg ¼ f0; 0; 2; 24; 198; 1376; 8652; 50928; 286036; . . .g
While for the third derivative, we get
fF 000n ð1Þg ¼ f0; 0; 0; 6; 24; 84; 240; 630; 1536; 3564; . . .g
fF 000n ð2Þg ¼ f0; 0; 0; 6; 48; 264; 1200; 4860; 18192; . . .g
fF 000n ð3Þg ¼ f0; 0; 0; 6; 72; 564; 3600; 20310; 105408; . . .g
fF 000n ð4Þg ¼ f0; 0; 0; 6; 96; 984; 8160; 59580; 399264; . . .g
Proposition 12 (Asymptotic behaviour of the quotient of consecutive terms). If r ¼ kþ
ffiffiffiffiffiffiffiffi
k2þ4
p

2 , then
lim
n!1

F nþ1ðxÞ
F nðxÞ

¼ lim
n!1

F 0nþ1ðxÞ
F 0nðxÞ

¼ lim
n!1

F 00nþ1ðxÞ
F 00nðxÞ

¼ � � � ¼ r
However, the rate of convergence to the corresponding metallic mean decreases when the order of derivation increases.
For example, for k = 3 and n = 9, and without considering the initial null terms is obtained: F 10ð3Þ

F 9ð3Þ
¼ 42837

12970
¼ 3:3027,

F 0
10
ð3Þ

F 0
9
ð3Þ ¼ 108923

29382
¼ 3:7071,

F 00
10
ð3Þ

F 00
9
ð3Þ ¼ 250812

59474
¼ 4:2171,

F 000
10
ð3Þ

F 000
9
ð3Þ ¼ 514956

105408
¼ 4:8853, when r3 ¼ 3þ

ffiffiffiffi
13
p

2
¼ 3:3027.

4.3. First relation between the derivative sequence and the Fibonacci sequence

Proposition 13.
F 0nðxÞ ¼
nF nþ1ðxÞ � xF nðxÞ þ nF n�1ðxÞ

x2 þ 4
ð14Þ
Proof. By deriving into the Binet’s formula (10) it is obtained:
F 0nðxÞ ¼ n
rn�1 � ð�rÞ�n�1

rþ r�1
r0 � rn � ð�rÞ�n

ðrþ r�1Þ2
ð1� r�2Þr0

ffiffiffiffiffiffiffip

being r ¼ xþ x2þ4

2
, and therefore r0 ¼ r

rþr�1, 1� r�2 ¼ x
r, and then
F 0nðxÞ ¼ n
rn þ ð�rÞ�n

ðrþ r�1Þ2
� rn � ð�rÞ�n

rþ r�1
� x

ðrþ r�1Þ2
¼ n

rn þ ð�rÞ�n

ðrþ r�1Þ2
� xF nðxÞ
ðrþ r�1Þ2
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On the other hand, F nþ1ðxÞ þ F n�1ðxÞ ¼ rnþ1�ð�rÞ�n�1

rþr�1 þ rn�1�ð�rÞ�nþ1

rþr�1 ¼ r
r2þ1
½rn�1ðr2 þ 1Þ � ð�rÞ�n�1ð1þ r2Þ� ¼ rnþ

ð�rÞ�n.
From where, after some algebra Eq. (14) is obtained. h

Since F nþ1ðxÞ ¼ xF nðxÞ þ F n�1ðxÞ Eq. (14) may be re-written as F 0nðxÞ ¼
xðn�1ÞF nðxÞþ2nF n�1ðxÞ

x2þ4
.

In particular, if x = 1 results F 0nð1Þ ¼
ðn�1ÞF nþ2nF n�1

5
[4].

4.4. Expression of the derivative of the Fibonacci polynomials

Deriving in Eq. (8) it is obtained:
F 0nþ1ðxÞ ¼
Xn�1

2b c

i¼0

ðn� 2iÞ
n� i

i

� �
xn�1�2i for n P 1 ð15Þ
while F 01ðxÞ ¼ 0.
And, in the same way, an explicit formula for any derivative may be obtained. For example for the second derivative

of the Fibonacci polynomials we have
F 00nþ1ðxÞ ¼
Xn�2

2b c

i¼0

ðn� 2iÞðn� 1� 2iÞ
n� i

i

� �
xn�2�2i for n P 2 ð16Þ
while F 00nðxÞ ¼ 0 for n ¼ 1; 2.

4.5. Second relation between the derivative sequence and the Fibonacci sequence

Sequence fF 0nðxÞgn2N may be obtained by the self-convolution of the x-Fibonacci sequence, as the following Prop-
osition establishes.

Proposition 14 (The derivative of the Fibonacci polynomials and the convolved Fibonacci polynomials).
F 01ðxÞ ¼ 0; and F 0nðxÞ ¼
Xn�1

i¼1

F iðxÞF n�iðxÞ for n > 1 ð17Þ
Proof (By induction). For n = 2 is trivial, since F 02ðxÞ ¼ F 1ðxÞF 1ðxÞ ¼ 1. Let us suppose that the formula is true for
every polynomial F 0kðxÞ with k 6 n. Then, F 0n�1ðxÞ ¼

Pn�2
i¼1 F iðxÞF n�1�iðxÞ; F 0nðxÞ ¼

Pn�1
i¼1 F iðxÞF n�iðxÞ By deriving in equa-

tion: F nþ1ðxÞ ¼ xF nðxÞ þ F n�1ðxÞ and using previous expression it is obtained:
F 0nþ1ðxÞ ¼ F nðxÞ þ xF 0nðxÞ þ F 0n�1ðxÞ ¼ F nðxÞ þ x
Xn�1

i¼1

F iðxÞF n�iðxÞ þ
Xn�2

i¼1

F iðxÞF n�1�iðxÞ

¼ F nðxÞ þ xF n�1ðxÞF 1ðxÞ þ
Xn�2

i¼1

xF iðxÞF n�iðxÞ þ
Xn�2

i¼1

F iðxÞF n�1�iðxÞ

¼ F nðxÞ þ xF n�1ðxÞ þ
Xn�2

i¼1

F iðxÞ½xF n�iðxÞ þ F n�1�iðxÞ� ¼ F nðxÞF 1ðxÞ þ F n�1ðxÞF 2ðxÞ þ
Xn�2

i¼1

F iðxÞF nþ1�iðxÞ

¼
Xn

i¼1

F iðxÞF nþ1�iðxÞ �
It should be noted the similarity between the expression (17) for the derivative of the Fibonacci polynomials and the
convolution formula for the Catalan’s numbers. Also by using Eq. (14) together with Eq. (17) yields
Xn�1

i¼1

F iðxÞF n�iðxÞ ¼
xðn� 1ÞF nðxÞ þ 2nF n�1ðxÞ

x2 þ 4
for n > 1
which for x = 1 gives the corresponding formula for the Fibonacci numbers, see [32, Eq. (7.61)].
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4.6. Third relation between the derivative sequence and the Fibonacci sequence

Proposition 15.
F 0nþ1ðxÞ ¼
Xn�1

2b c

i¼0

ð�1Þiðn� 2iÞF n�2iðxÞ for n P 1 ð18Þ
Proof (By induction). For n = 1 the formula is true since F 02ðxÞ ¼
P0

i¼0ð�1Þið1� 2iÞF 1�2iðxÞ ¼ 1. Let us suppose that
Eq. (18) is held till the derivative of the nth Fibonacci polynomial. Let us also suppose that n is an even integer, that

is n = 2p. Then F 02pþ1ðxÞ ¼
Pp�1

i¼0 ð�1Þið2p � 2iÞF 2p�2iðxÞ and F 02pðxÞ ¼
Pp�1

i¼0 ð�1Þið2p � 1� 2iÞF 2p�1�2iðxÞ ¼
Pp�1

i¼0

ð�1Þið2p � 2iÞF 2p�1�2iðxÞ þ
Pp�1

i¼0 ð�1Þiþ1F 2p�1�2iðxÞ. Now, since F 2pþ2ðxÞ ¼ xF 2pþ1ðxÞ þ F 2pðxÞ, F 02pþ2ðxÞ ¼ F 2pþ1ðxÞþ
xF 02pþ1ðxÞ þ F 02pðxÞ and Eq. (18) is verified for n = 2p + 2 after some algebra. The case for n an odd integer is analo-
gously checked. h

For instance, F 06ð2Þ is given by F 06ð2Þ ¼
P2

i¼0ð�1Þið5� 2iÞF 5�2ið2Þ ¼ 5F 5ð2Þ � 3F 3ð2Þ þ F 1ð2Þ ¼ 5 � 29� 3 � 5þ
1 ¼ 131.

4.7. Fourth relation between the derivative sequence and the Fibonacci sequence

In this section we shall establish a new relation between the Fibonacci polynomials and their derivatives.

Proposition 16.
F nðxÞ ¼
1

n
½F 0nþ1ðxÞ þ F 0n�1ðxÞ� ð19Þ
Proof. By Eq. (8) F nþ1ðxÞ ¼
Pbn2c

i¼0

n� i
i

� �
xn�2i, and F n�1ðxÞ ¼

Pbn�2
2 c

i¼0

n� 2� i
i

� �
xn�2�2i, and, hence their sum

results:
F nþ1ðxÞ þ F n�1ðxÞ ¼ xn þ
Xbn2c
i¼1

n� i

i

� �
xn�2i þ

Xbn�2
2 c

i¼0

n� 2� i

i

� �
xn�2�2i ¼ xn þ

Xbn2c
i¼1

n� i

i

� �
þ

n� 1� i

i� 1

� �� �
xn�2i
Now, taking into account that
n� i

i

� �
þ

n� 1� i

i� 1

� �
¼

n� 1� i

i� 1

� �
n� i

i
þ 1

� �
¼

n� 1� i

i� 1

� �
� n

i

we can deduce that F nþ1ðxÞ þ F n�1ðxÞ ¼ xn þ n
Pbn2c

i¼1

n� 1� i
i� 1

� �
1
i xn�2i, where by deriving it is obtained:

F 0nþ1ðxÞ þ F 0n�1ðxÞ ¼ n � xn�1 þ n
Pbn2c

i¼1

n� 1� i
i� 1

� �
n�2i

i xn�1�2i and hence
F 0nþ1

ðxÞþF 0n�1
ðxÞ

n ¼
Pbn�1

2 c
i¼0

n� 1� i
i

� �
xn�1�2i ¼

F nðxÞ. h

Note that, from Eq. (19) F 0nþ1ðxÞ ¼ nF nðxÞ � F 0n�1ðxÞ, and then, given the x-Fibonacci sequence fF nðxÞgn2N and hav-
ing in mind that F 01ðxÞ ¼ 0 the derivative sequence fF 0nðxÞgn2N may be easily obtained.

4.8. Generating function for the derivative polynomials

Function fkðxÞ ¼ x
1�kx�x2 is the generating function of the k-Fibonacci polynomials [20]. Therefore, a simple way for

obtaining the generating function for the derivative of the Fibonacci polynomials is by deriving function fk(x) with
respect to variable k. In this form f ðrÞk ðxÞ ¼ r!ð t

1�xt�t2 Þrþ1 is the generating function of the rth derivative of the Fibonacci
polynomials.

Another equivalent way for obtaining the generating function of the Fibonacci polynomials consists in the use of the
convolution theorem, since the derivative Fibonacci polynomials may be seen as the self-convolution of the Fibonacci
polynomials [32]. So, the generating function of the derivative sequence fF 0nþ1ðxÞg is the square of the generating func-
tion of sequence fF nþ1ðxÞg, that is Gð1Þn ðxÞ ¼ G2

nðxÞ. From where, by deriving, it can be obtained the generating function
of the sequence fF 00nþ1ðxÞgn2N , and so on.
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4.9. A recurrence relation into the derivative sequence

Proposition 17.
F ðrÞnþ1ðxÞ ¼
0; if n < r

r!; if n ¼ r
1

n�r ½nx � F ðrÞn ðxÞ þ ðnþ rÞF ðrÞn�1ðxÞ�; if n > r

8><
>:

9>=
>; ð20Þ
It should be noted that all non-null terms on the rth derivative are obtained from the first non-null term, which is r!,
and therefore all the terms are multiple of r!. As a consequence, sequence fF ðrÞn ðkÞgn2N is of the form

fF ðrÞn ðkÞgn2N ¼ r!f0; � � � ; 0
zfflfflfflffl}|fflfflfflffl{r

; 1; ðr þ 1Þk; . . .g.
4.10. The integral of the Fibonacci polynomial

From Eq. (19) is straightforwardly obtained the following result.

Proposition 18.
Z x

0

F nðxÞdx ¼ 1

n
ðF nþ1ðxÞ þ F n�1ðxÞ � F nþ1ð0Þ � F n�1ð0ÞÞ
If n is even, then F nþ1ð0Þ ¼ F n�1ð0Þ ¼ 1 and, in this case
R x

0 F nðxÞdx ¼ 1
n ðF nþ1ðxÞ þ F n�1ðxÞ � 2Þ. If n is odd, then

F nþ1ð0Þ ¼ F n�1ð0Þ ¼ 0 and, in this case
R x

0
F nðxÞdx ¼ 1

n ðF nþ1ðxÞ þ F n�1ðxÞÞ.
5. Conclusions

The k-Fibonacci polynomials are the natural extension of the k-Fibonacci numbers. Many of their properties have
been straightforwardly proven. In particular, the derivatives of these polynomials have been presented as convolution
of the k-Fibonacci polynomials. This fact allows us to present in an easy way a family of integer sequences in a new and
direct form.
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