Journal of Integer Sequences, Vol. 17 (2014), Article 14.4.7

A Simplified Binet Formula for k-Generalized Fibonacci Numbers

Gregory P. B. Dresden
Department of Mathematics
Washington and Lee University
Lexington, VA 24450
USA
dresdeng@wlu.edu
Zhaohui Du
Shanghai
China
zhao.hui.du@gmail.com

Abstract

In this paper, we present a Binet-style formula that can be used to produce the k-generalized Fibonacci numbers (that is, the Tribonaccis, Tetranaccis, etc.). Furthermore, we show that in fact one needs only take the integer closest to the first term of this Binet-style formula in order to generate the desired sequence.

1 Introduction

Let $k \geq 2$ and define $F_{n}^{(k)}$, the $n^{\text {th }} k$-generalized Fibonacci number, as follows:

$$
F_{n}^{(k)}= \begin{cases}0, & \text { if } n<1 \\ 1, & \text { if } n=1 \\ F_{n-1}^{(k)}+F_{n-2}^{(k)}+\cdots+F_{n-k}^{(k)}, & \text { if } n>1\end{cases}
$$

These numbers are also called generalized Fibonacci numbers of order k, Fibonacci k step numbers, Fibonacci k-sequences, or k-bonacci numbers. Note that for $k=2$, we have $F_{n}^{(2)}=F_{n}$, our familiar Fibonacci numbers. For $k=3$ we have the so-called Tribonaccis (sequence number A000073 in Sloane's Encyclopedia of Integer Sequences), followed by the Tetranaccis (A000078) for $k=4$, and so on. According to Kessler and Schiff [6], these numbers also appear in probability theory and in certain sorting algorithms. We present here a chart of these numbers for the first few values of k :

k	name	first few non-zero terms
2	Fibonacci	$1,1,2,3,5,8,13,21,34, \ldots$
3	Tribonacci	$1,1,2,4,7,13,24,44,81, \ldots$
4	Tetranacci	$1,1,2,4,8,15,29,56,108, \ldots$
5	Pentanacci	$1,1,2,4,8,16,31,61,120, \ldots$

We remind the reader of the famous Binet formula (also known as the de Moivre formula) that can be used to calculate F_{n}, the Fibonacci numbers:

$$
\begin{aligned}
F_{n} & =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] \\
& =\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
\end{aligned}
$$

for $\alpha>\beta$ the two roots of $x^{2}-x-1=0$. For our purposes, it is convenient (and not particularly difficult) to rewrite this formula as follows:

$$
\begin{equation*}
F_{n}=\frac{\alpha-1}{2+3(\alpha-2)} \alpha^{n-1}+\frac{\beta-1}{2+3(\beta-2)} \beta^{n-1} \tag{1}
\end{equation*}
$$

We leave the details to the reader.
Our first (and very minor) result is the following representation of $F_{n}^{(k)}$:
Theorem 1. For $F_{n}^{(k)}$ the $n^{\text {th }} k$-generalized Fibonacci number, then

$$
\begin{equation*}
F_{n}^{(k)}=\sum_{i=1}^{k} \frac{\alpha_{i}-1}{2+(k+1)\left(\alpha_{i}-2\right)} \alpha_{i}^{n-1} \tag{2}
\end{equation*}
$$

for $\alpha_{1}, \ldots, \alpha_{k}$ the roots of $x^{k}-x^{k-1}-\cdots-1=0$.
This is a new presentation, but hardly a new result. There are many other ways of representing these k-generalized Fibonacci numbers, as seen in the articles $[2,3,4,5,7,8,9]$. Our Eq. (2) of Theorem 1 is perhaps slightly easier to understand, and it also allows us to do
some analysis (as seen below). We point out that for $k=2$, Eq. (2) reduces to the variant of the Binet formula (for the standard Fibonacci numbers) from Eq. (1).

As shown in three distinct proofs $[9,10,13]$, the equation $x^{k}-x^{k-1}-\cdots-1=0$ from Theorem 1 has just one root α such that $|\alpha|>1$, and the other roots are strictly inside the unit circle. We can conclude that the contribution of the other roots in Eq. 2 will quickly become trivial, and thus:

$$
\begin{equation*}
F_{n}^{(k)} \approx \frac{\alpha-1}{2+(k+1)(\alpha-2)} \alpha^{n-1} \quad \text { for } n \text { sufficiently large. } \tag{3}
\end{equation*}
$$

It's well known that for the Fibonacci sequence $F_{n}^{(2)}=F_{n}$, the "sufficiently large" n in Eq. (3) is $n=0$, as shown here:

n	0	1	2	3	4	5	6
F_{n}	0	1	1	2	3	5	8
$\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}$	0.447	0.724	1.171	1.894	3.065	4.960	8.025
error	.447	.277	.171	.106	.065	.040	.025

It is perhaps surprising to discover that a similar statement holds for all the k-generalized Fibonacci numbers. Let's first define $\operatorname{rnd}(x)$ to be the the value of x rounded to the nearest integer: $\operatorname{rnd}(x)=\left\lfloor x+\frac{1}{2}\right\rfloor$. Then, our main result is the following:
Theorem 2. For $F_{n}^{(k)}$ the $n^{\text {th }} k$-generalized Fibonacci number, then

$$
F_{n}^{(k)}=\operatorname{rnd}\left(\frac{\alpha-1}{2+(k+1)(\alpha-2)} \alpha^{n-1}\right)
$$

for all $n \geq 2-k$ and for α the unique positive root of $x^{k}-x^{k-1}-\cdots-1=0$.

We point out that this theorem is not as trivial as one might think. Note the error term for the generalized Fibonacci numbers of order $k=6$, as seen in the following chart; it is not monotone decreasing in absolute value.

n	0	1	2	3	4	5	6	7
$F_{n}^{(6)}$	0	1	1	2	4	8	16	32
$\frac{\alpha-1}{2+7(\alpha-2)} \alpha^{5}$	0.263	0.522	1.035	2.053	4.072	8.078	16.023	31.782
\mid error \mid	.263	.478	.035	.053	.072	.078	.023	.218

We also point out that not every recurrence sequence admits such a simple formula as seen in Theorem 2. Consider, for example, the scaled Fibonacci sequence 10, 10, 20, 30, 50, 80, ..., which has Binet formula:

$$
\frac{10}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{10}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

This can be written as rnd $\left(\frac{10}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}\right)$, but only for $n \geq 5$. As another example, the sequence $1,2,8,24,80, \ldots$ (defined by $G_{n}=2 G_{n-1}+4 G_{n-2}$) can be written as

$$
G_{n}=\frac{(1+\sqrt{5})^{n}}{2 \sqrt{5}}-\frac{(1-\sqrt{5})^{n}}{2 \sqrt{5}}
$$

but because both $1+\sqrt{5}$ and $1-\sqrt{5}$ have absolute value greater than 1 , then it would be impossible to express G_{n} in terms of just one of these two numbers.

2 Previous Results

We point out that for $k=3$ (the Tribonacci numbers), our Theorem 2 was found earlier by Spickerman [11]. His formula (modified slightly to match our notation) reads as follows, where α is the real root, and σ and $\bar{\sigma}$ are the two complex roots, of $x^{3}-x^{2}-x-1=0$:

$$
\begin{equation*}
F_{n}^{(3)}=\operatorname{rnd}\left(\frac{\alpha^{2}}{(\alpha-\sigma)(\alpha-\bar{\sigma})} \alpha^{n-1}\right) \tag{4}
\end{equation*}
$$

It is not hard to show that for $k=3$, our coefficient $\frac{\alpha-1}{2+(k+1)(\alpha-2)}$ from Theorem 2 is equal to Spickerman's coefficient $\frac{\alpha^{2}}{(\alpha-\sigma)(\alpha-\bar{\sigma})}$. We leave the details to the reader.

In a subsequent article [12], Spickerman and Joyner developed a more complex version of our Theorem 1 to represent the generalized Fibonacci numbers. Using our notation, and with $\left\{\alpha_{i}\right\}$ the set of roots of $x^{k}-x^{k-1}-\cdots-1=0$, their formula reads

$$
\begin{equation*}
F_{n}^{(k)}=\sum_{i=1}^{k} \frac{\alpha_{i}^{k+1}-\alpha_{i}^{k}}{2 \alpha_{i}^{k}-(k+1)} \alpha_{i}^{n-1} \tag{5}
\end{equation*}
$$

It is surprising that even after calculating out the appropriate constants in their Eq. (5) for $2 \leq k \leq 10$, neither Spickerman nor Joyner noted that they could have simply taken the first term in Eq. (5) for all $n \geq 0$, as Spickerman did in Eq. (4) for $k=3$.

The Spickerman-Joyner Eq. (5) was extended by Wolfram [13] to the case with arbitrary starting conditions (rather than the initial sequence $0,0, \ldots, 0,1$). In the next section we will show that our Eq. (2) in Theorem 1 is equivalent to the Spickerman-Joyner formula given above (and thus is a special case of Wolfram's formula).

Finally, we note that the polynomials $x^{k}-x^{k-1}-\cdots-1$ in Theorem 1 have been studied rather extensively. They are irreducible polynomials with just one zero outside the unit circle. That single zero is located between $2\left(1-2^{-k}\right)$ and 2 (as seen in Wolfram's article [13]; Miles [9] gave earlier and less precise results). It is also known [13, Lemma 3.11] that the polynomials have Galois group S_{k} for $k \leq 11$; in particular, their zeros can not be expressed in radicals for $5 \leq k \leq 11$. Wolfram conjectured that the Galois group is always S_{k}. Cipu and Luca [1] were able to show that the Galois group is not contained in the alternating group A_{k}, and for $k \geq 3$ it is not 2-nilpotent. They point out that this means the zeros of the polynomials $x^{k}-x^{k-1}-\cdots-1$ for $k \geq 3$ can not be constructed by ruler and compass, but the question of whether they are expressible using radicals remains open for $k \geq 12$.

3 Preliminary Lemmas

First, a few statements about the the number α.
Lemma 3. Let $\alpha>1$ be the real positive root of $x^{k}-x^{k-1}-\cdots-x-1=0$. Then,

$$
\begin{equation*}
2-\frac{1}{k}<\alpha<2 \tag{6}
\end{equation*}
$$

In addition,

$$
\begin{equation*}
2-\frac{1}{3 k}<\alpha<2 \quad \text { for } k \geq 4 \tag{7}
\end{equation*}
$$

Proof. We begin by computing the following chart for $k \leq 5$:

k	$2-\frac{1}{k}$	$2-\frac{1}{3 k}$	α
2	1.5	$1.833 \ldots$	$1.618 \ldots$
3	$1.666 \ldots$	$1.889 \ldots$	$1.839 \ldots$
4	1.75	$1.916 \ldots$	$1.928 \ldots$
5	1.8	$1.933 \ldots$	$1.966 \ldots$

It's clear that $2-\frac{1}{k}<\alpha<2$ for $2 \leq k \leq 5$ and that $2-\frac{1}{3 k}<\alpha<2$ for $4 \leq k \leq 5$. We now focus on $k \geq 6$. At this point, we could finish the proof by appealing to $2\left(1-2^{-k}\right)<\alpha<2$ as seen in the article [13, Lemma 3.6], but here we present a simpler proof.

Let $f(x)=(x-1)\left(x^{k}-x^{k-1}-\cdots-x-1\right)=x^{k+1}-2 x^{k}+1$. We know from our earlier discussion that $f(x)$ has one real zero $\alpha>1$. Writing $f(x)$ as $x^{k}(x-2)+1$, we have

$$
\begin{equation*}
f\left(2-\frac{1}{3 k}\right)=\left(2-\frac{1}{3 k}\right)^{k}\left(\frac{-1}{3 k}\right)+1 \tag{8}
\end{equation*}
$$

For $k \geq 6$, it's easy to show

$$
3 k<\left(\frac{5}{3}\right)^{k}=\left(2-\frac{1}{3}\right)^{k}<\left(2-\frac{1}{3 k}\right)^{k}
$$

Substituting this inequality into the right-hand side of (8), we can re-write (8) as

$$
f\left(2-\frac{1}{3 k}\right)<(3 k) \cdot\left(\frac{-1}{3 k}\right)+1=0 .
$$

Finally, we note that

$$
f(2)=2^{k+1}-2 \cdot 2^{k}+1=1>0
$$

so we can conclude that our root α is within the desired bounds of $2-1 / 3 k$ and 2 for $k \geq 6$.

We now have a lemma about the coefficients of α^{n-1} in Theorems 1 and 2.

Lemma 4. Let $k \geq 2$ be an integer, and let $m^{(k)}(x)=\frac{x-1}{2+(k+1)(x-2)}$. Then,

1. $m^{(k)}(2-1 / k)=1$.
2. $m^{(k)}(2)=\frac{1}{2}$.
3. $m^{(k)}(x)$ is continuous and decreasing on the interval $[2-1 / k, \infty)$.
4. $m^{(k)}(x)>\frac{1}{x}$ on the interval $(2-1 / k, 2)$.

Proof. Parts 1 and 2 are immediate. As for 3, note that we can rewrite $m^{(k)}(x)$ as

$$
m^{(k)}(x)=\frac{1}{k+1}\left(1+\frac{1-\frac{2}{k+1}}{x-\left(2-\frac{2}{k+1}\right)}\right)
$$

which is simply a scaled translation of the map $y=1 / x$. In particular, since this $m^{(k)}(x)$ has a vertical asymptote at $x=2-\frac{2}{k+1}$, then by parts 1 and 2 we can conclude that $m^{(k)}(x)$ is indeed continuous and decreasing on the desired interval.

To show part 4, we first note that in solving $\frac{1}{x}=m^{(k)}(x)$, we obtain a quadratic equation with the two intersection points $x=2$ and $x=k$. It's easy to show that $\frac{1}{x}<m^{(k)}(x)$ at $x=2-1 / k$, and since both functions $\frac{1}{x}$ and $m^{(k)}(x)$ are continuous on the interval $[2-1 / k, \infty)$ and intersect only at $x=2$ and $x=k \geq 2$, we can conclude that $\frac{1}{x}<m^{(k)}(x)$ on the desired interval.

Lemma 5. For a fixed value of $k \geq 2$ and for $n \geq 2-k$, define E_{n} to be the error in our Binet approximation of Theorem 2, as follows:

$$
\begin{aligned}
E_{n} & =F_{n}^{(k)}-\frac{\alpha-1}{2+(k+1)(\alpha-2)} \cdot \alpha^{n-1} \\
& =F_{n}^{(k)}-m^{(k)}(\alpha) \cdot \alpha^{n-1},
\end{aligned}
$$

for α the positive real root of $x^{k}-x^{k-1}-\cdots-x-1=0$ and $m^{(k)}$ as defined in Lemma 4 . Then, E_{n} satisfies the same recurrence relation as $F_{n}^{(k)}$:

$$
E_{n}=E_{n-1}+E_{n-2}+\cdots+E_{n-k} \quad(\text { for } n \geq 2)
$$

Proof. By definition, we know that $F_{n}^{(k)}$ satisfies the recurrence relation:

$$
\begin{equation*}
F_{n}^{(k)}=F_{n-1}^{(k)}+\cdots+F_{n-k}^{(k)} \tag{9}
\end{equation*}
$$

As for the term $m^{(k)}(\alpha) \cdot \alpha^{n-1}$, note that α is a root of $x^{k}-x^{k-1}-\cdots-1=0$, which means that $\alpha^{k}=\alpha^{k-1}+\cdots+1$, which implies

$$
\begin{equation*}
m^{(k)}(\alpha) \cdot \alpha^{n-1}=m^{(k)}(\alpha) \alpha^{n-2}+\cdots+m^{(k)}(\alpha) \alpha^{n-(k+1)} \tag{10}
\end{equation*}
$$

We combine Equations (9) and (10) to obtain the desired result.

4 Proof of Theorem 1

As mentioned above, Spickerman and Joyner [12] proved the following formula for the k generalized Fibonacci numbers:

$$
\begin{equation*}
F_{n}^{(k)}=\sum_{i=1}^{k} \frac{\alpha_{i}^{k+1}-\alpha_{i}^{k}}{2 \alpha_{i}^{k}-(k+1)} \alpha_{i}^{n-1} \tag{11}
\end{equation*}
$$

Recall that the set $\left\{\alpha_{i}\right\}$ is the set of roots of $x^{k}-x^{k-1}-\cdots-1=0$. We now show that this formula is equivalent to our Eq. (2) in Theorem 1:

$$
\begin{equation*}
F_{n}^{(k)}=\sum_{i=1}^{k} \frac{\alpha_{i}-1}{2+(k+1)\left(\alpha_{i}-2\right)} \alpha_{i}^{n-1} \tag{12}
\end{equation*}
$$

Since $\alpha_{i}^{k}-\alpha_{i}^{k-1}-\cdots-1=0$, we can multiply by $\alpha_{i}-1$ to get $\alpha_{i}^{k+1}-2 \alpha_{i}^{k}=-1$, which implies $\left(\alpha_{i}-2\right)=-1 \cdot \alpha_{i}^{-k}$. We use this last equation to transform (12) as follows:

$$
\frac{\alpha_{i}-1}{2+(k+1)\left(\alpha_{i}-2\right)}=\frac{\alpha_{i}-1}{2+(k+1)\left(-\alpha_{i}^{-k}\right)}=\frac{\alpha_{i}^{k+1}-\alpha_{i}^{k}}{2 \alpha_{i}^{k}-(k+1)}
$$

This establishes the equivalence of the two formulas (11) and (12), as desired.

5 Proof of Theorem 2

Let E_{n} be as defined in Lemma 5. We wish to show that $\left|E_{n}\right|<\frac{1}{2}$ for all $n \geq 2-k$. We proceed by first showing that $\left|E_{n}\right|<\frac{1}{2}$ for $n=0$, then for $n=-1,-2,-3, \ldots, 2-k$, then for $n=1$, and finally that this implies $\left|E_{n}\right|<\frac{1}{2}$ for all $n \geq 2-k$.

To begin, we note that since our initial conditions give us that $F_{n}^{(k)}=0$ for $n=$ $0,-1,-2, \ldots, 2-k$, then we need only show $\left|m^{(k)}(\alpha) \cdot \alpha^{n-1}\right|<1 / 2$ for those values of n. Starting with $n=0$, it's easy to check by hand that $m^{(k)}(\alpha) \cdot \alpha^{-1}<1 / 2$ for $k=2$ and 3 , and as for $k \geq 4$, we have the following inequality from Lemma 3 :

$$
2-\frac{1}{3 k}<\alpha
$$

which implies

$$
\alpha^{-1}<\frac{3 k}{6 k-1}
$$

Also, by Lemma 4,

$$
m^{(k)}(\alpha)<m^{(k)}(2-1 / 3 k)=\frac{3 k-1}{5 k-1},
$$

so thus:

$$
m^{(k)}(\alpha) \cdot \alpha^{-1}<\frac{3 k-1}{5 k-1} \cdot \frac{3 k}{6 k-1}<\frac{(3 k) \cdot 1}{(5 k-1) \cdot 2}<\frac{1}{2}
$$

as desired. Thus, $0<\left|m^{(k)}(\alpha) \cdot \alpha^{-1}\right|<1 / 2$ for all k, as desired.
Since $\alpha^{-1}<1$, we can conclude that for $n=-1,-2, \ldots, 2-k$, then $\left|E_{n}\right|=m^{(k)}(\alpha) \cdot$ $\alpha^{n-1}<1 / 2$.

Turning our attention now to E_{1}, we note that $F_{1}^{(k)}=1$ (again by definition of our initial conditions) and that

$$
\frac{1}{2}=m(2)<m(\alpha)<m(2-1 / k)=1
$$

which immediately gives us $\left|E_{1}\right|<1 / 2$.
As for E_{n} with $n \geq 2$, we know from Lemma 5 that

$$
E_{n}=E_{n-1}+E_{n-2}+\cdots+E_{n-k} \quad(\text { for } n \geq 2)
$$

Suppose for some $n \geq 2$ that $\left|E_{n}\right| \geq 1 / 2$. Let n_{0} be the smallest positive such n. Now, subtracting the following two equations:

$$
\begin{aligned}
E_{n_{0}+1} & =E_{n_{0}}+E_{n_{0}-1}+\cdots+E_{n_{0}-(k-1)} \\
E_{n_{0}} & =E_{n_{0}-1}+E_{n_{0}-2}+\cdots+E_{n_{0}-k}
\end{aligned}
$$

gives us:

$$
E_{n_{0}+1}=2 E_{n_{0}}-E_{n_{0}-k}
$$

Since $\left|E_{n_{0}}\right| \geq\left|E_{n_{0}-k}\right|$ (the first, by assumption, being larger than, and the second smaller than, $1 / 2$), we can conclude that $\left|E_{n_{0}+1}\right|>\left|E_{n_{0}}\right|$. In fact, we can apply this argument repeatedly to show that $\left|E_{n_{0}+i}\right|>\cdots>\left|E_{n_{0}+1}\right|>\left|E_{n_{0}}\right|$. However, this contradicts the observation from Eq. (3) that the error must eventually go to 0 . We conclude that $\left|E_{n}\right|<1 / 2$ for all $n \geq 2$, and thus for all $n \geq 2-k$.

6 Acknowledgement

The first author would like to thank J. Siehler for inspiring this paper with his work on Tribonacci numbers.

References

[1] M. Cipu and F. Luca, On the Galois group of the generalized Fibonacci polynomial, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 9 (2001), 27-38.
[2] David E. Ferguson, An expression for generalized Fibonacci numbers, Fibonacci Quart. 4 (1966), 270-273.
[3] I. Flores, Direct calculation of k-generalized Fibonacci numbers, Fibonacci Quart. 5 (1967), 259-266.
[4] Hyman Gabai, Generalized Fibonacci k-sequences, Fibonacci Quart. 8 (1970), 31-38.
[5] Dan Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quart. 20 (1982), 73-76.
[6] David Kessler and Jeremy Schiff, A combinatoric proof and generalization of Ferguson's formula for k-generalized Fibonacci numbers, Fibonacci Quart. 42 (2004), 266-273.
[7] Gwang-Yeon Lee, Sang-Gu Lee, Jin-Soo Kim, and Hang-Kyun Shin, The Binet formula and representations of k-generalized Fibonacci numbers, Fibonacci Quart. 39 (2001), 158-164.
[8] Claude Levesque, On m th order linear recurrences, Fibonacci Quart. 23 (1985), 290293.
[9] E. P. Miles, Jr., Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly 67 (1960), 745-752.
[10] M. D. Miller, On generalized Fibonacci numbers, Amer. Math. Monthly 78 (1971), 1108-1109.
[11] W. R. Spickerman, Binet's formula for the Tribonacci sequence, Fibonacci Quart. 20 (1982), 118-120.
[12] W. R. Spickerman and R. N. Joyner, Binet's formula for the recursive sequence of order k, Fibonacci Quart. 22 (1984), 327-331.
[13] D. A. Wolfram, Solving generalized Fibonacci recurrences, Fibonacci Quart. 36 (1998), 129-145.

2000 Mathematics Subject Classification: Primary 11B39, Secondary 11C08, 33F05, 65D20. Keywords: k-generalized Fibonacci numbers, Binet form, Tribonacci number, Tetranacci number, Pentanacci number.
(Concerned with sequences $\underline{A 000073}$, $\underline{A 000078}$, and A001591.)

Received October 15 2008; revised versions received February 19 2014; February 232014. Published in Journal of Integer Sequences, February 262014.

Return to Journal of Integer Sequences home page.

