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1. INTRODUCTION 

The Idea of co-generalized Fibonacci sequences began with Euler, who discussed Daniel 

Bernoulli's method of using linear recurrences to approximate roots of (mainly polynomial) equa-

tions (see [4], article 355). Recently, such sequences have been introduced and studied in [10], 

[11], and [14]. They are defined as follows: Let {a;-}p0 be a sequence of real numbers and con-

sider the sequence {Vn}neI defined by the following linear recurrence relation of order oo, 

+00 

•̂H = I « X - m if»*0, (1) 

where {V_j}^0 are specified by the initial conditions. We shall refer to them in the sequel as 

sequences (1). They are an extension of /^generalized Fibonacci sequences (see, e.g., [3], [8], and 

[9]) and their general term Vn (n > 1) does not always exist. Hence, they were studied under 

some conditions on the sequences of coefficients {dj}^0 and the initial conditions {VmJ}*™0 (see 

[10], [11], and [14]). 

The aim of this paper is to study the combinatoric expression of sequences (1) and extend the 

results of [13]. When the coefficients are nonnegatlve with sum 1, this expression is derived from 

properties of Markov chains. By Induction we see also that this expression is still valid for arbi-

trary coefficients (Section 2). For the case of arbitrary nonnegatlve coefficients, we give the 

asymptotic behavior of V„ (Section 3). 

2. MARKOV CHAINS AND COMBINATORIC EXPRESSION OF Vn 

2,1 Fundamental Hypotheses 

It was shown In [10], [11], and [14] that the general term Vn of a sequence (1) does not exist 

In general. Therefore, we need some necessary hypotheses on {an}n^0 and {V_n}n^.Q which Insure 

the existence of V„ for every n > 1. In this paper we are Interested In the following hypotheses: 

• (H. 1) For every m, we have am > 0 and there exists k > m such th<at ak > 0; 

• (H.2) There exists C > 0 such that am < C for any m\ 

• (H.3) The series E ^ 0 W-m I *
s
 convergent. 

These hypotheses are compatible with the Markov chains formulation of sequences (1). 

22 Sequences (1) and Markov Chains 

Let {aj}j>0 be a sequence of real numbers which satisfies (H.1). Suppose that the following 

condition is satisfied: 

w=0 
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Condition (2) shows that (H.2) is trivially verified. Consider the following matrix: 

... - 1 0 1 2 ••• 
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(3) 

If we set P = (P(n, w))^meZ? we have P(n, m) = Sn^m for n,m e {• • •, - 1,0}, P(n, m) = an_m_x for 

n>0 and n~m-l>0, and P(n,m) = 0 elsewhere. Condition (2) shows that P is a stochastic 

matrix. Therefore, P is a transition matrix of a Markov chain (3) whose state space is Z= {•••, 

-1,0,1, • • •}. • The states • • •, - 2, -1,0 are absorbing states and 1,2, • • • are transient states. 

Consider the following infinite vector X = (• • •, F_m, • • •, V0, • • •, 1 ,̂ • * *)*. Then a sequence (1) 

can be written in the following matrix form: 

X = PX. (4) 

The preceding infinite matrix product (4) is simply Vn = Hm<n P(n, m)Vm. In the same way, matrix 

P
2
 = (i*

2)
(«, *n))n,mez

 i s
 g

iv@n b
Y ^

(2)
(«, "0 = Sw+i<;<n-i ^(«, y)^0\ "0 for every w > 0, n > 0. 

By induction, we also define the matrix P
k
 = {P

{
-

k
\n,m))^meT. Equation (4) shows that 

AT = P*JST for every Jfc£l. Thus, 

if = & X , where ft (5) 

Properties of Cesaro mean convergence, applied to the matrix sequence {P
k
)k>i (see, e.g., [6] and 

[7]), allows us to state the following proposition. 

Proposition 2.2: Let P be a stochastic matrix defined by (3). Then, the sequence {Qk)k>i given 

by (5) converges (when k -> +oo) to the following matrix, 

- 1 0 1 ... 

(6) 
-1 

0 

Q= i 
2 
3 

( '. 

0 1 0 
0 0 1 

- p(\,-m) ... />(1,0) 

- p(2,-m) - . p(2,0) 
- p(3,-m) ... p(3,0) 

0 • 
0 • 
0 • 

0 • 
0 • 

• 0 
• 0 

where p(k9 ~ m) for k > 1 and m > 0 is the probability of absorption of the system by the state 

-m when it starts from k. 

Relation (5) and Proposition 2.2 show that X = QX, where Q is the matrix given by (6). 

Therefore, using the matrix product (4), we prove the following extension of Theorem 2.2 of 

[13]. 
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Theorem 23: Let {VJn€l be a sequence (1) such that (H.1), (H.3), and (2) are verified. Then, 

for every n > 1, we have 
+00 

^ = I P ( » , - W F - „ . (7) 

Expression (7) gives F̂  (JI > 1) as a linear combination of the initial conditions and the 

absorption probabilities p(k, ~m) (k>\m>0). 

23 Computation of the p(n, m) 

The computation of p(n, m) and p(n, -m) is the same as in [13]. 

Case of if > m > 0. In this case, p(n, m) is the probability of reaching the transient state m 

starting from the initial one n. The system, starting from «, will go to m after one transition with 

the probability P(n, m) = an_m„l. We say that the system had made a jump of n - m units. To go 

from n to m (n>m), the system must make kj jumps of j +1 units with probability Qj (/ > 0). 

Since the total displacement is n -m, we have Ar0 + 2^ + "-+(n-rri)kn_m_l =n-m, and the total 

number of units of this displacement is k0+kl + -~+ kn_m_l. The number of ways to choose 

k0,kx,..., kn_m_l is 

(*0 + *l + " + * i , - m - l ) ' 

and the probability of each choice is a^af
1
 ... cfys£\. Therefore, we have 

(yn-m-l K \j 

P(»>">)= I k\k? k ^ o V ' - e - i . (8) 
s;=r

,
o

,
+i)̂ =«-'w °'

 l'''' n~m~l -
From (8), we prove easily that 

p(n,m)=p(n-m90) and p(0,0) = l. (9) 

We note that for n > m > 0 we have 

where {/^I^iC^o* •••>
a
s)}n>o '

m
 ̂

e
 sequence of multivariate Fibonacci polynomials of Philippou 

of orders (see [1]). 

Case of n > 0 and -m < 0. In this case, n is a transient state and —m is an absorbing one. 

To go from n to -m, the last transient state visited by the system is s, where 0 < s < n. And to go 

from s to —m, the system must make only one jump with probability aJ+m_i. Since p(n,s) is the 

probability of going from n to s, we show that the probability of absorption of the system by the 

state -m when it starts from n > 0 is p(n, -m) = arH.m,l + TTs=i p(n, s)as+m_t. Therefore, using (9), 

we establish the following expression: 

n 

p{n,-m) = ̂ p(n-s, ®)as+m_v (10) 
s=l 

2.4 Combinatoric Expression of Vn (#i > 1) 

The substitution of (10) in (7) allows us to obtain 
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K = l\ip("-^)as+\v_m (li) 
m=Q { 5=1 J 

for every n > 1. The two hypotheses (H.2)-(H.3) show that we can make the permutation of the 

two sums in (11). Therefore, we prove the following result. 

Theorem 2.4: Let {Vn}neZ be a sequence (1) such that (H.1), (H.3), and (2) are verified. Then 

we have 

V„ = f,AsP(ri-s,0) (12) 

for every n > 1, where the p(n - s, 0) are defined by (8)-(9) and As = S^=0
 a
s+m-^-m • 

In particular, we have the following corollary. 

Corollary 2.5: Let {VJneI be a sequence (1) such that (H.1) and (2) are satisfied. Suppose that 

VQ = 1 and V__m = 0 for m > 1. Then, for every n > 1, we have 

Fw = p(/i, 0) = a0p(n-1, 0) + a,p(/i-2,0)+ - + 0 ^ ( 0 , 0 ) , (13) 

where the /p(/i - s, 0) are defined by (8)-(9). 

Expression (13) can also be obtained using the Markov chains techniques on the displacement 

of the system from the state n to the state 0, as was done in Subsection 2.3. 

3. COMB1NATORIC EXPRESSION OF Vn IN THE GENERAL CASE 

Let {VJneI be a sequence (1) whose coefficients {̂ -}7->o are arbitrary real numbers. Suppose 

that {\aj | }jx> and {H,-}^ satisfy (H. 1), (H.2), and (H.3). For every n > 1, we set 

with p(09 0) = 1 and /?(-#, 0) = 0 for every i > 1. Thus, by induction on n9 we prove that (13) is 

also verified by expression (14) of p(n9 G). Consider the sequence {Wn } n e Z defined as follows: 

Wn^Vn for n< - l and 
•Ko ( n 1 

for /? > 1. For w = 1, a direct computation shows that we have Wl = E ^ 0
 a
m̂ -OT

 =
 ^ • Since (14) 

satisfies (13), we derive by a simple induction that Wn=Vn for every n > 1. Therefore, we have 

the following general result. 

Theorem 3.1: Let {VJneZ be a sequence (1) whose coefficients {dj)^ are arbitrary real num-

bers such that {\aj\}j:t® and {VmJ}j>Q satisfy (H.1), (H.2), and (HJ). Then, for every w>l, we 

have 

V„ = f,AsP(n-S,0), 
$=1 
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where the p(n - s, 0) are given by (14) and 

+00 

m=0 

The comblnatoric expression of r-generallzed Fibonacci sequences has been established by 

various techniques and methods (see, e.g., [1], [5], [8], [13], and [15]). Theorem 3.1 is a gen-

eralization of such a combinatoric expression to ^-generalized Fibonacci sequences. 

4. ASYMPTOTIC BEHAVIOR OF p(n, 0) 

In this section we study the asymptotic behavior of p(n, 0) when the coefficients aj (J > 0) 

are nonnegative real numbers. 

Let {Vn}neZ be a sequence (1) whose coefficients {ctj}^ are arbitrary nonnegative real num-

bers. Suppose that (H. 1), (H.2), and (H.3) are verified. If VQ = 1 and V_m = 0 for every m > 1, we 

derive from (7) that V„ =p(n9 0) for every n > 1, where p(n, 0) Is given by (14). For E^~0%
 =
 *> 

It was established In [14] that the following condition (G):gcd{j-hl;aj >0} = 1, Implies that 

limlf^+00f; = 0 If Zm>Q(m + l)am = -hcD and limn^+wVn = Zm^Tl(m)V_m If Hm^(m + l)am <+QO? 

where Tl(m) = H\Zm % / 2^>o(^ +1)% (see [14], Theorem 2.2). Therefore, we have the following 

proposition. 

Proposition 4.1: Let {cij}^ b© a sequence of nonnegative real numbers that satisfies (H.1) and 

(2). Then, If ( Q Is verified, we have 

Mm p(n,0) = 0 for ^(#1 + l)aw = +00 
w£0 

and 

Mm p f o , 0 ) ^ — * f o r X ( ^ + l K < +
Q

° . 

Suppose now that Z ^ % * 1 arbitrary. Hence, we have the following two cases. 

Case 1: Tm>0 <*m > 1 • Let R be the radius of convergence of f(x) = ££?0
 a
***

+1
 • Hypothesis 

(H.2) Implies that J? > 1. The function/is nondecreaslng on [0, R[ and 

/= Mm/(x)>/( l )=X^
> L 

X~*R niZQ 

Therefore, there exists a unique q > 1 such that f(q
-1

) = 1. Set bm = q~~
m
~

l
am and Wn = q"

n
Vn. It 

is easy to see that 
+00 

Hence, P^L 6 z is also a sequence (1) with X^obm = l. Since f > 1, we have \W_„ \ < \V_n |, which 

proves that the initial conditions {TK.n}n^ satisfy (H.3). Suppose that {^j^o satisfies (Q. Since 

gcdfj + l ; ^ >0} = gcd{/ + l;ft/ >0}, we show that {Oj}^ also satisfies (Q . If we apply Propo-

sition 4.1, we prove the following proposition. 
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Proposition 4.2: Let {ctj}^ be a sequence of nonnegative real numbers that satisfies (H.1), 

(H.2), and (C). Suppose that Z^o
a
m > 1- Then there exists a unique q > 1 such that 

lim ^ ^ - = 0 for Y(m+l)a„#-
m

-
1
 = +oo 

"-**
0
 V tan 

'-*-*"
00

 ¥ [m>o ¥ J m>Q 

m>0 

and 

where p(w, 0) is given by (14). 

Case 2: Sw>0 #m < 1 • In this case, it was established in [14] that the series S„>0 Vn converges 

absolutely. Thus, the series Em>0p(^, 0) is convergent, which implies that \imn_^^X)p{n, 0) = 0. 

For T>m>0(m + V)amq~
m
~

l
 < +QO, the real number q>\ can be approximated as follows: 

q= lim dp(n,0). 
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