The Fibonacci Quarterly 2002 (40,5): 453-459

APPLICATION OF MARKOQOV CHAINS PROPERTIES TO
0-GENERALIZED FIBONACCI SEQUENCES

F. Chaoui, M. Mouline, and M. Rachidi

Département de Mathématiques et Informatique, Faculté des Sciences
Université Mohammed V, B.P. 1014, Rabat, Morocco

(Submitted September 2000-Final Revision February 2002)

1. INTRODUCTION

The idea of oco-generalized Fibonacci sequences began with Euler, who discussed Daniel
Bernoulli's method of using linear recurrences to approximate roots of (mainly polynomial) equa-
tions (see [4], article 355). Recently, such sequences have been introduced and studied in [10],
[11], and [14]. They are defined as follows: Let {a;}}%, be a sequence of real numbers and con-
sider the sequence {V/,},.7 defined by the following linear recurrence relation of order oo,

4o
F/,,H:ZamV_m ifn>0, H
m=0
where {V_}%, are specified by the initial conditions. We shall refer to them in the sequel as
sequences (1). They are an extension of r-generalized Fibonacci sequences (see, e.g., [3], [8], and
[9]) and their general term V, (n>1) does not always exist. Hence, they were studied under
some conditions on the sequences of coefficients {a,} %, and the initial conditions {/_;}7%, (see
[10], [11], and [14]).

The aim of this paper is to study the combinatoric expression of sequences (1) and extend the
results of [13]. When the coefficients are nonnegative with sum 1, this expression is derived from
properties of Markov chains. By induction we see also that this expression is still valid for arbi-
trary coefficients (Section 2). For the case of arbitrary nonnegative coefficients, we give the
asymptotic behavior of V,, (Section 3).

2. MARKOV CHAINS AND COMBINATORIC EXPRESSION OF V),

2.1 Fundamental Hypotheses

It was shown in [10], [11], and [14] that the general term ¥, of a sequence (1) does not exist
in general. Therefore, we need some necessary hypotheses on {g,},,, and {V_,},., which insure
the existence of ¥, for every n 2 1. In this paper we are interested in the following hypotheses:
e (H.1) For every m, we have a,, > 0 and there exists k£ > m such that g, > 0,
e (H.2) There exists C> 0 such that g, < C for any m;
e (H3) The series 2,20 |V_,,| is convergent.

These hypotheses are compatible with the Markov chains formulation of sequences (1).

2.2 Sequences (1) and Markov Chains

Let {a,} 2o be a sequence of real numbers which satisfies (H.1). Suppose that the following

condition is satisfied:
400

Ya,=1 @

m=0
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Condition (2) shows that (H.2) is trivially verified. Consider the following matrix:

-1 0 1 2
-1 0 1 0 O 0
0 0 0 1 0 0 3)
P=1 a a a 0
2 a a a a 0
3 a a a, a a O
If we set P=(P(n, m)),,,mez, we have P(n,m)=6,,, for nme{-,~1,0}, Pn,m)=a,_,_, for

n>0 and n—-m—-120, and P(n,m)=0 elsewhere. Condition (2) shows that P is a stochastic
matrix. Therefore, P is a transition matrix of a Markov chain () whose state space is Z = {---,
-1,0,1,.--}. The states ---,— 2, — 1,0 are absorbing states and 1,2, --- are transient states.

Consider the following infinite vector X =(---,V_,---,¥,--+,V,,--)'. Then a sequence (1)
can be written in the following matrix form:

X=PX. @

The preceding infinite matrix product (4) is simply ¥V, =2, P(n,m)V’,,. In the same way, matrix
P2=(PP(n,m)), yez is given by PP(n,m)= Zomiigjen-1 P, JYP(j, m) for every m>0, n>0.
By induction, we also define the matrix P* = (P®(n, m)) Equation (4) shows that
X = P*X forevery k>1. Thus,

nmeZ:

2 *s k
X=QkX,wherer=P+P; P ()

Properties of Césaro mean convergence, applied to the matrix sequence {P*},; (see, e.g., [6] and
[7D), allows us to state the following proposition.

Proposition 2.2: Let P be a stochastic matrix defined by (3). Then, the sequence {(J, },.; given
by (5) converges (when £ — +o0) to the following matrix,

-1 0 1
-1 0 1 0 0 0
0 0 0 1 0 - 0 (6)
O=1 pQl~m - p(,0) 0 - ’
2 pR2-my - p2,0) O -
:.; p(37~m) ':' p(3,0) O :

where p(k,—m) for k>1 and m>0 is the probability of absorption of the system by the state
—m when it starts from £.

Relation (5) and Proposition 2.2 show that X = QX , where  is the matrix given by (6).
Therefore, using the matrix product (4), we prove the following extension of Theorem 2.2 of

[13].

454 [NoV.
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Theorem 2.3: Let {V,}, .7 be a sequence (1) such that (H.1), (H.3), and (2) are verified. Then,
for every 21, we have
0
Vy= 3. o, —~mV., 0
m=0
Expression (7) gives V, (n=1) as a linear combination of the initial conditions and the
absorption probabilities p(k, —m) (k2 1,m=>0).

2.3 Cemputation of the p(n, m)

The computation of p(r, m) and p(n, —m) is the same as in [13].

Case of n>m>0. In this case, p(n, m) is the probability of reaching the transient state m
starting from the initial one 7. The system, starting from »n, will go to m after one transition with
the probability P(n,m)=a,_,,_,. We say that the system had made a jump of » — m units. To go
from n to m (n>m), the system must make &; jumps of j+1 units with probability a; (j20).
Since the total displacement is 7 —m, we have ky +2k,+---+(n—m)k,_,,_, =n—m, and the total
number of units of this displacement is &, + k& +---+4£,_,,. The number of ways to choose
ko kyy . kg 1S

sy By

g+ ko + k)

kgl k!
and the probability of each choice is af*af' ... /-1 Therefore, we have
N s
pom= Y I ghal | gheey ®

ok !

Zaze N 0k =n-m
From (8), we prove easily that

pn,my=p(n—-m,0) and p(0,0)=1. 9
We note that for n>m >0 we have

—m2
p(na m) =}H§1—’1m’:’—41’ )(aO’ T an—m+l)’

where {H9 ,.(ay,...,a,)},5o is the sequence of multivariate Fibonacci polynomials of Philippou
of order s (see [11).

Case of n>0 and —m <90, In this case, n is a transient state and — is an absorbing one.
To go from n to —m, the last transient state visited by the system is 5, where 0 <s <n. And to go
from s to —m, the system must make only one jump with probability a,,,,_;. Since p(n,s) is the
probability of going from » to s, we show that the probability of absorption of the system by the
state —m when it starts from n> 0 is p(n, —m) =a,,,, , + 24y (1, S)a,,, ;. Therefore, using (9),
we establish the following expression:

P, —m) = 3 pn=5, 0ty (10)

s=1

2.4 Combinatoric Expression of ¥V, (n>1)
The substitution of (10) in (7) allows us to obtain
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) {ﬁ‘,p(n—s, 0>as+m_1}V_m a
m=0

= s=1

for every n>1. The two hypotheses (H.2)-(H.3) show that we can make the permutation of the
two sums in (11). Therefore, we prove the following result.

Theorem 2.4: Let {V,},.7 be a sequence (1) such that (H.1), (H.3), and (2) are verified. Then
we have

V=Y Ap(n-5,0) 12)
s=1

for every n 2 1, where the p(n—s, 0) are defined by (8)-(9) and 4, =220 a1V
In particular, we have the following corollary.

Corollary 2.5: Let {V,},.7 be a sequence (1) such that (H.1) and (2) are satisfied. Suppose that
Vo=1and V_, =0 for m>1. Then, for every n>1, we have

Va=p(@,0)=app(n—1,0)+ap(n—2,00+:- +a, ,p(0,0), (13)
where the p(n - s, 0) are defined by (8)-(9).

Expression (13) can also be obtained using the Markov chains techniques on the displacement
of the system from the state # to the state 0, as was done in Subsection 2.3,

3. COMBINATORIC EXPRESSION OF V, IN THE GENERAL CASE

Let {V/,},cz be a sequence (1) whose coefficients {a,} 5, are arbitrary real numbers. Suppose
that {|a;|} .0 and {V_;} ;50 satisfy (H.1), (H.2), and (H.3). For every n21, we set
(Z;:(l) kl)' ko ki L2
Tl U e 1000 e (14)

n

pn, 0= Z
ZAh(j+k;=n
with p(0,0)=1 and p(—%,0) =0 for every £ 21. Thus, by induction on n, we prove that (13) is
also verified by expression (14) of p(n, 0). Consider the sequence {7, }, ., defined as follows:
W,=V, forn<-1and
a0 4
W; = Z {Zp(n_ §, O)aﬁ»m-l}V-m
m=0 { s=1

for n21. For n=1, a direct computation shows that we have W, =372 4,V =V,. Since (14)
satisfies (13), we derive by a simple induction that W, =V, for every n>1. Therefore, we have
the following general result.

Theorem 3.1: Let {V,}, .7 be a sequence (1) whose coefficients {a;} 5, are arbitrary real num-
bers such that {|a;|} o and {V_;} 5, satisfy (H.1), (H.2), and (H.3). Then, for every n2>1, we
have

V=2 4p(n=s,0),

=1
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where the p(n— s, 0) are given by (14) and

+o0

As = Eaﬁ-m—ly/—m .

m=0
The combinatoric expression of r-generalized Fibonacci sequences has been established by

various techniques and methods (see, e.g., [1], [5], [8], [13], and [15]). Theorem 3.1is a gen-
eralization of such a combinatoric expression to co-generalized Fibonacci sequences.

4. ASYMPTOTIC BEHAVIOR OF p(n, 0)

In this section we study the asymptotic behavior of p(r, 0) when the coefficients a; (j20)
are nonnegative real numbers.

Let {V/,},<z be a sequence (1) whose coefficients {a,} », are arbitrary nonnegative real num-
bers. Suppose that (H.1), (H.2), and (H.3) are verified. If ¥, =1and V_,, =0 for every m>1, we
derive from (7) that V,, = p(n, 0) for every n > 1, where p(n, 0) is given by (14). For 2[5 a, =1,
it was established in [14] that the following condition {C):ged{j+1,a; >0} =1, implies that
lim, ., V,=0 if 2 . o(m+Da,=+o and @im, ,  V, =2 ., 1@WV_, if 2 .o(m+1a, <+o,
where [1(m) = 272, a, / Z1o0(k + Day, (see [14], Theorem 2.2). Therefore, we have the following
proposition.

Proposition 4.1: Let {a;} 5, be a sequence of nonnegative real numbers that satisfies (H.1) and
(2). Then, if (C) is verified, we have

im p(n,0)=0 for Z(m +Da,, = +w

n—>+e0

mz0
and

1
= for » (m+Da, <+oo.
Zmzo(‘” 7+ l)am % "

Suppose now that 3;5,a, # 1 arbitrary. Hence, we have the following two cases.

Case 1: I, ,a, >1. Let R be the radius of convergence of f(¥) = £}, a,x**!. Hypothesis
(H.2) implies that R>1. The function f'is nondecreasing on [0, R and

{= _Eiﬂg_f(x)zf(})z Zam>i.

mz0

lim p(n, 0) =

Therefore, there exists a unique g >1 such that f(¢g™)=1. Setb, =g ™', and W,=¢™"V,. It
is easy tc see that -
Wiy =2 bW (15)
m=0
Hence, {W,},.z is also a sequence (1) with 2,056, = 1. Since ¢>1, we have [W,| < V_,|, which
proves that the initial conditions {W_,} ., satisfy (H.3). Suppose that {a,} 5, satisfies (C). Since
ged{j +1La, >0} =ged{j+ 1,5, > 0}, we show that {a,} , also satisfies (C). If we apply Propo-
sition 4.1, we prove the following proposition.
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Proposition 4.2: Let {a,} 5, be a sequence of nonnegative real numbers that satisfies (H.1),
(H.2), and (C). Suppose that 372 a,, >1. Then there exists a unique g > 1 such that

and

lim &n;pl =0 for ) (m+Da,q ™" =+o

nyto g 0

-1
fim 229 _ {z (m+1) %} for Y (m+Da,g ™" <+,

n
note g mz0 m20

where p(n, 0) is given by (14).

Case 2: 2 ..a, <1. Inthis case, it was established in [14] that the series %, .,V converges

absolutely. Thus, the series X, p(n, 0) is convergent, which implies that lim,_, po(7, 0) = 0.

For 3, 5o(m+1)a,g ™! < +wo, the real number ¢ > 1 can be approximated as follows:

g=lim #/p(,0).
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