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Abstract

In this paper we generalize to bivariate Fibonacci and Lucas polynomials, properties

obtained for Chebyshev polynomials. We prove that the coordinates of the bivariate

polynomials over appropriate bases are families of integers satisfying remarkable recur-

rence relations.

1 Introduction

In [4], the authors established that Chebyshev polynomials of the first and second kind
admit remarkable integer coordinates in a specific basis. It turns out that this property can
be extended to Jacobsthal polynomials [6, 7], Vieta polynomials [18, 10, 14, 15], Morgan-
Voyce polynomials [13, 2, 9, 11, 1, 17, 5] and quasi-Morgan-Voyce polynomials [8], and more
generally to bivariate polynomials associated with recurrence sequences of order two.

1This research is partially supported by the LAID3 Laboratory.
2This research is partially supported by the LATN Laboratory.
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The bivariate polynomials of Fibonacci and Lucas, denoted respectively by (Un) =
(Un(x, y)) and (Vn) = (Vn(x, y)), are polynomials belonging to Z[x, y] and defined by

{

U0 = 0, U1 = 1,
Un = xUn−1 + yUn−2 (n ≥ 2) ,

and

{

V0 = 2, V1 = x,
Vn = xVn−1 + yVn−2 (n ≥ 2) .

It is established, see for example [12, 16, 3], that

Un+1 =

[n/2]
∑

k=0

(

n − k

k

)

xn−2kyk, (1)

Vn =

[n/2]
∑

k=0

n

n − k

(

n − k

k

)

xn−2kyk (n ≥ 1) . (2)

Let En be the Q-vector space spanned by the free family Cn = (xn−2kyk)k, (0 ≤ k ≤ ⌊n/2⌋).
Thus the relations (1) and (2) appear as the decompositions of Un+1 and Vn over the canonical
basis Cn of En.

The goal of this paper is to prove that the families Un :=
(

xkUn+1−k

)

k
and Vn :=

(

xkVn−k

)

k
for n − 2 ⌊n/2⌋ ≤ k ≤ n − ⌊n/2⌋ constitute two other bases of En (Theorem 2.1)

with respect to which, the polynomials 2Un+1 and 2Vn admit remarkable integer coordinates.

2 Main results

Theorem 2.1. For any n ≥ 1, Un and Vn are bases of En

As Un+1 and Vn belong to En, the polynomials U2n+1 and V2n are elements of E2n with
basis U2n or V2n. Similarly, U2n and V2n−1 belong to E2n−1 with basis U2n−1 or V2n−1.

Therefore, there are a priori 8 possible decompositions:

over U2n 1 → trivial, over U2n 3 → simple,

U2n+1
ր
ց

V2n
ր
ց

over V2n 2 → Th. A, over V2n 4 → trivial,

over U2n−1 5 → Th. B, over U2n−1 7 → Th. C,

U2n
ր
ց

V2n−1
ր
ց

over V2n−1 6 → Th. E, over V2n−1 8 → Th. D,

where the cases 1 and 4 are obvious since U2n+1 ∈ U2n and V2n ∈ V2n.
The decomposition of V2n in U2n is simple: we have V2n = 2U2n+1 − xU2n.

The remaining cases are established by the five following results.
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Theorem 2.2. (A). Decomposition of 2U2n+1 over the basis V2n.
For every integer n ≥ 0, one has

2U2n+1 =
n

∑

k=0

an,kx
kV2n−k,

where

an,k =
n

∑

j=0

(−1)j+k(2 − δn,j)

(

j

k

)

.

Moreover, (an,k)n,k≥0 is a family of integers satisfying the following recurrence relation:







an,k = −an−1,k + an−1,k−1 (n ≥ 1, k ≥ 1);
an,0 = 1 (n ≥ 0) ;
a0,k = δk,0 (k ≥ 0) .

(δi,j being the Kronecker symbol).

The recurrence relation permits us to obtain the following table:

n \ k 0 1 2 3 4 5 6 7 8
0 1
1 1 1
2 1 0 1
3 1 1 −1 1
4 1 0 2 −2 1
5 1 1 −2 4 −3 1
6 1 0 3 −6 7 −4 1
7 1 1 −3 9 −13 11 −5 1
8 1 0 4 −12 22 −24 16 −6 1

from which it follows that

2U1 = V0,

2U3 = V2 + xV1,

2U5 = V4 + 0V3 + x2V2,

2U7 = V6 + xV5 − x2V4 + x3V3.

Theorem 2.3. (B). Decomposition of U2n over the basis U2n−1.
For every integer n ≥ 1, one has

U2n =
n

∑

k=1

bn,kx
kU2n−k

where

bn,k = (−1)k+1

(

n

k

)

.
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Moreover, (bn,k)n,k≥0 is a family of integers satisfying the following recurrence relation:







bn,k = bn−1,k − bn−1,k−1 (n ≥ 1, k ≥ 1);
bn,0 = −1 (n ≥ 0) ;
b0,k = −δk,0 (k ≥ 0).

The latter recurrence relation permits us to obtain the following table:

n \ k 0 1 2 3 4 5 6 7 8
0 −1
1 −1 1
2 −1 2 −1
3 −1 3 −3 1
4 −1 4 −6 4 −1
5 −1 5 −10 10 −5 1
6 −1 6 −15 20 −15 6 −1
7 −1 7 −21 35 −35 21 −7 1
8 −1 8 −28 56 −70 56 −28 8 −1

from which it follows that

U2 = xU1

U4 = 2xU3 − x2U2

U6 = 3xU5 − 3x2U4 + x3U3

U8 = 4xU7 − 6x2U6 + 4x3U5 − x4U4

Theorem 2.4. (C). Decomposition of V2n−1 over the basis U2n−1.
For every integer n ≥ 1, one has

V2n−1 =
n

∑

k=1

cn,kx
kU2n−k

where

cn,k = 2 (−1)k+1

(

n

k

)

− δk,1.

Moreover, (cn,k)n≥1,k≥0 is a family of integers satisfying the following recurrence relation:







cn,k = cn−1,k − cn−1,k−1 − δk,2 (n ≥ 2, k ≥ 1);
cn,0 = −2 (n ≥ 1) ;
c1,k = −2δk,0 + δk,1 (k ≥ 0).
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The latter recurrence relation permits us to obtain the following table:

n \ k 0 1 2 3 4 5 6 7 8
1 −2 1
2 −2 3 −2
3 −2 5 −6 2
4 −2 7 −12 8 −2
5 −2 9 −20 20 −10 2
6 −2 11 −30 40 −30 12 −2
7 −2 13 −42 70 −70 42 −14 2
8 −2 15 −56 112 −140 112 −56 16 −2

from which we get














V1 = xU1

V3 = 3xU3 − 2x2U2

V5 = 5xU5 − 6x2U4 + 2x3U3

V7 = 7xU7 − 12x2U6 + 8x3U5 − 2x4U4

Theorem 2.5. (D). Decomposition of 2V2n−1 over the basis V2n−1.
For every integer n ≥ 1, one has

2V2n−1 =
n

∑

k=1

dn,kx
kV2n−1−k

where

dn,k = (−1)k+1 2n − k

n

(

n

k

)

.

Moreover, (dn,k)n≥1, k≥0 is a family of integers satisfying the following recurrence relation:







dn,k = dn−1,k − dn−1,k−1 (n ≥ 2, k ≥ 1);
dn,0 = −2 (n ≥ 1) ;
d1,k = −2δk,0 + δk,1 (k ≥ 0).

The latter recurrence relation permits us to obtain the following table:

n \ k 0 1 2 3 4 5 6 7 8
1 −2 1
2 −2 3 −1
3 −2 5 −4 1
4 −2 7 −9 5 −1
5 −2 9 −16 14 −6 1
6 −2 11 −25 30 −20 7 −1
7 −2 13 −36 55 −50 27 −8 1
8 −2 15 −49 91 −105 77 −35 9 −1
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from which we obtain














2V1 = xV0

2V3 = 3xV2 − x2V1

2V5 = 5xV4 − 4x2V3 + x3V2

2V7 = 7xV6 − 9x2V5 + 5x3V4 − x4V3

Theorem 2.6. (E). Decomposition of 2U2n over the basis V2n−1.
For every integer n ≥ 1, one has

2U2n =
n

∑

k=1

en,kx
kV2n−1−k

where

en,k = (−1)k+1 2n − k

2n

(

n

k

)

+δk,0 +
1

2

n−1
∑

j=0

(−1)j+k−1(2 − δn−1,j)

(

j

k − 1

)

.

Moreover, (en,k)n,k≥0 is a family of integers satisfying the following recurrence relation:







en,k = en−2,k − 2en−2,k−1 + en−2,k−2 (n ≥ 3, k ≥ 2);
en,0 = 0 and en,1 = n (n ≥ 1) ;
e1,k = δk,1 and e2,k = 2δk,1 (k ≥ 0).

The latter recurrence relation permits us to obtain the following table:

n \ k 0 1 2 3 4 5 6 7 8
1 0 1
2 0 2 0
3 0 3 −2 1
4 0 4 −4 2 0
5 0 5 −8 8 −4 1
6 0 6 −12 14 −8 2 0
7 0 7 −18 29 −28 17 −6 1
8 0 8 −24 44 −48 32 −12 2 0

from which, we have














2U2 = xV0

2U4 = 2xV2 + 0x2V0

2U6 = 3xV4 − 2x2V3 + x3V2

2U8 = 4xV6 − 4x2V5 + 2x3V4 + 0x4V3

3 Proof of Theorems

Theorem 1 follows from the following lemma.

Lemma 3.1. For any integer n ≥ 0, by setting m = ⌊n/2⌋ , we have

detCn
(Un) = (−1)m(m+1)/2 and detCn

(Vn) = 2(−1)m(m+1)/2.
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Proof. Let us prove only the first equality as the proof of the other one is similar.
Let r = n−2m, W

(m)
k = xkU2m+1−k (0 ≤ k ≤ m) and ∆m = detC2m

(W
(m)
0 ,W

(m)
1 , . . . ,W

(m)
m ),

we have
detCn

(Un) = detC2m+r

(

xr+kU2m+1−k

)

0≤k≤m
= ∆m.

The result follows by noticing that ∆0 = 1 and ∆m = (−1)m∆m−1 for m ≥ 1. Indeed, for
m ≥ 1, we have

W
(m)
k+1 − W

(m)
k = xk(xU2m−k − U2m−k+1) = −yW

(m−1)
k (0 ≤ k ≤ m − 1) .

Thus,

∆m = detC2m
(W

(m)
0 ,W

(m)
1 − W

(m)
0 , ...,W

(m)
m−1 − W

(m)
m−2,W

(m)
m − W

(m)
m−1)

= detC2m
(W

(m)
0 ,−yW

(m−1)
0 ,−yW

(m−1)
1 , . . . ,−yW

(m−1)
m−1 ).

The “component” of W
(m)
0 = U2m+1 over x2m is equal to 1.

The “component” of −yW
(m−1)
k over x2n, is equal to 0, for 1 ≤ k ≤ m , so we have

∆m = detC2m−2
(−W

(m−1)
0 ,−W

(m−1)
1 , . . . ,−W

(m−1)
m−1 ) = (−1)m∆m−1.

Let Am, Bm, Cm, Dm and Em be the operators on (Q [x, y])N defined by

Am = − (x − E)m + 2
m

∑

k=0

Ek (x − E)m−k (m ≥ 0) ,

Bm = − (E − x)m (m ≥ 0) ,

Cm = 2Em + 2Bm − xEm−1 (m ≥ 1) ,

Dm = (E − x)m−1 (x − 2E) (m ≥ 1) ,

Em =
1

2
(xAm−1 + Dm) + Em (m ≥ 1) ,

where E is the forward shift operator given by

E ((Wn)n) = (Wn+1)n

Then, we have

Am =
m

∑

k=0

am,kx
kEm−k with am,k =

m
∑

j=0

(−1)j+k(2 − δm,j)

(

j

k

)

Bm =
m

∑

k=0

bm,kx
kEm−k with bm,k = (−1)k+1

(

m

k

)

Cm =
m

∑

k=1

cm,kx
kEm−k with cm,k = 2 (−1)k+1

(

m

k

)

− δk,1

Dm =
m

∑

k=0

dm,kx
kEm−k with dm,k = (−1)k+1 2m − k

m

(

m

k

)

Em =
m

∑

k=1

em,kx
kEm−k with em,k =

1

2
(dm,k+am−1,k−1) + δk,0.
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With these notations, relations stated by Theorems A, B, C, D and E may be expressed
by means of the following relations

a. ∀n ∈ N AnVn = 2U2n+1

b. ∀n ∈ N∗ BnUn = 0

c. ∀n ∈ N∗ CnUn = V2n−1

d. ∀n ∈ N∗ DnVn−1 = 0

e. ∀n ∈ N∗ EnVn−1 = 2Un

which are to be proven. For this, the following lemma will be useful for us.

Lemma 3.2. For every integers n and m, we have

1. Vn = 2Un+1 − xUn (n ≥ 0) and Vn = Un+1 + yUn−1 (n ≥ 1) ,

2. (E − x)n Um = ynUm−n and (E − x)n Vm = ynVm−n (m ≥ n ≥ 0) ,

3.
∑n

k=1 (−y)n−k V2k = U2n+1 − (−y)n (n ≥ 0) .

Proof.

1. See relation (2.9) and (2.8) in [16].

2. We proceed by induction on n.

3. For every integer n ∈ N, put Tn := U2n+1−
∑n

k=1 (−y)n−k V2k. The relation to be proven
is equivalent to Tn = (−y)n (n ≥ 0) . Then, we remark that from the first relation of
this lemma, we have for every integer n ≥ 1

Tn + yTn−1 = U2n+1 + yU2n−1 − V2n = 0,

(Tn)n≥0 is then a geometric sequence with multiplier (−y) and of first term T0 = 1. It
follows that for every integer n ∈ N, Tn = (−y)n .

Proof of relations a., b., c., d. and e. Using the above Lemma, we have
a. AnVn = (−y)n V0 + 2

∑n
k=1 (−y)n−k V2k = 2U2n+1.

b. BnUn = − (E − x)n Un = −ynU0 = 0.
c. CnUn = (2En + 2Bn − xEn−1) Un = 2U2n − xU2n−1 = V2n−1.
d. DnVn−1 = (E − x)n−1 (xVn−1 − 2Vn) = yn−1 (xV0 − 2V1) = 0.
e. EnVn−1 =

(

1
2
xAn−1 + 1

2
Dn + En

)

Vn−1 = 1
2
xAn−1Vn−1 + 1

2
DnVn−1 + V2n−1. Using

An−1Vn−1 = 2U2n−1 and DnVn−1 = 0, it follows that EnVn−1 = xU2n−1 + V2n−1 = 2U2n

Remark 3.1. Theorems A, B, C, D and E generalize results obtained for the Chebyshev
polynomials [4], Indeed,

1

2
Vn(2x,−1) = Tn(x) is the Chebyshev polynomials of the first kind,

Un+1(2x,−1) = Un(x) is the Chebyshev polynomials of the second kind,

with
{

Tn(x) = 2xTn−1 − Tn−2,
T0 = 1, T1 = x,

and

{

Un(x) = 2xUn−1 − Un−2,
U0(x) = 1, U1 = 2x.
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