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Abstract

In this paper, we establish several formulae for sums and alternating sums of products of
generalized Fibonacci and Lucas numbers. In particular, we recover and extend all results of Z.
Cerin [2, 2005] and Z. Cerin and G. M. Gianella [3, 2006], more easily.
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1 Introduction and main result

Let p and ¢ two integers such that pg # 0 and A := p? — 4¢q # 0. We define sequences of generalized
Fibonacci and Lucas numbers (U,,) = (U,(Ip’q)) and (V;,) = (V,Sp’q)), for all n, by induction

Uy=0,U1=1, Up,=pUpn-1—qUp 2
Ww=2 Vi=p, Vo=pVo1 —qVo2

Sequences of Fibonacci (F,,), Lucas (Ly,), Pell (P,), Pell-Lucas (@), Jacobsthal (J,,), Jacobsthal-
Lucas (jy,) listed respectively A000045, A00032, A000129, A002203, A001045, A014551 in SLOANE [9] are

(Fp, L) = (U VD) (P, Qn) = (U2 7D, VDY (0, 40) = 082, V52 for n > 0.
For r and s two integers and for all sequences (Xy,),,cz and (Yon),, <z, let

S( )(X Y ZXT+2ZYS+2’L and A(T s) X Y Z r+2z s+217
=0 =0

for convenience, we also set S (X) := S (X, X) and A (X) := AT (X, X).

Sums involving Fibonacci, Lucas, Pell and Pell-Lucas numbers and generalizations have been stud-
ied by several authors, for example, for trigonometric sums see Melham [6, 1999] and Belbachir &
Bencherif [1, 2007], for reciprocal and powers sums see Melham [7, 1999] and [8, 2000], and for the
sum of squares see Long [5, 1986], Cerin [2, 2005] and Cerin & Gianella [3, 2006].

In [2, 2005], Cerin studied AlY (L) for s =7 and s = r + 1 when r is odd, and in [3, 2006], Cerin
and Gianella considered S\* (@) and AY (Q) for s =r and s =7 + 1 when r is even.
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Recently, Cerin [4, 2007] studied the sums of squares and products of Jacobsthal numbers by es-
tablishing identities for S§¥ (J), and A" (J), for s = r and s = r + 1 when r is even. This case

corresponds to (p,q) = (1,—2).

Our purpose is to give simplified expressions for the sums S&rs) ), S&rs) ), ALY (U) and
Alr®) (V). In all what follows, we suppose ¢ = £1 (which gives Vo # 0, Uy # 0 and Uy # 0).
For n € Z, let us define the sequences (ay,), (bn), (cn), (dn) and (ey) by the relations

~ Usy dpgp1—1 ~ Usnya ~ Vingo
a’n - 7 m — T 9 Cn - I d
Us p2A U,

These sequences, depending on p and g satisfy the recurrence relations

For (p,q) = (1,—1), we have, for n > 0, (U,,V,,) = (F,, L,,) and one gets (a,) = (0,1,3,8,21,...),
(bn) = (1,8,56,385,2640,...), (cx) = (1,7,48,329,2255,...) and (d,,) = (1,6,41,281,1926,...) listed

a1=-1, a=0, ap="Vaan-1—an_2,

b_1=0, bo=1, by,=Vibp1—-byp 2+1,

c_1 =0, co=1 ¢ =Vicn_1 —cn_2,

d_, =1, do=1, dyp=Vydy_1—dn_2,

e_1 =0, e0=0, e, =Vien_1—en2+p’(p*—4).

in SLOANE respectively as A001906, A092521, A004187, A049685.

For (p,q) = (2,—1), we have, for n > 0, (Up,V,,) = (Pn,@,,) and one gets (a,) = (0,1,6,35,...),
(bn) = (1,35,1190,40426, . ..), (cn) = (1,34, 1155,39236, ...) and (d,)) = (1,33, 1121, 38081, .. .) listed

in SLOANE respectively as A001109, A029546, A029547, A077420.

We give now, for e = (1 + (—=1)") /2, the main result of the paper

Theorem 1 For all integers r, s and n > 0, we have

S (1) i Uri2iUsioi = p "A7 Ungrgsiz — Upgs—a] — (n+ 1) A7 ¢V,
i=0
Srs) (V) Zn: Vig2iVag2i =0 {Usngrsstz — Urgs—2] + (0 + 1) ¢"Viy,
i=0
S (U, V) zn: Upi2iVer2i =0 A7 Vingrisra — Vegs—o] = (n+ 1) A™'q"U,
i=0
AT (U) z": (1) Urg2ilUsp2i = A Vo Vi + (=1)" Vingrpsga] — €A Vi,
i=0
A (V) z": (=) ViraiVirzi = Vy ' [Viwsmz + (= 1)" Vansrsssa] + 64" Ve,
i=0
A (U, V) zn: (1) Urg2iVasai = V3 ' [Ursoez + (= 1) Usnrgsta] — £¢"Usr.
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Corollary 2 For all integers v, s and n > 0, we have

AS ) U) = an1Vonirss —(n+1)q¢"Viy,
S(T ?) (V) = a/n+1‘/2n+r+s + (’]’L + 1) qTVg_T,
) (U, V) = ani1Usnirgs — (n+1)q"Us—p,
(U) _ dm‘/zlm—i-r—i-s - qTVs—r lf?’L =2m
B _pAch4m+r+s+2 lfn =2m =+ 1’
(r,s) _ A Vamtr+s + ¢ Vs—r  if n=2m
An (V) B { _pAch4m+r+s+2 lfn =2m =+ 1’
) _ dmUsmiris — @ Us—r  if n=2m
AT (UV) { —pCmVamtr+s+2 ifn=2m+1

Corollary 3 For all integers r, s, t and n > 0, we have
SE (V) =g S (U) = A7 (S5 (V) = S0 (V) = anaUs Vs

ST(lS7s+t) (V) + AqS_Tsf(znT-i_t) (U) = an+1Vs—rVontrtstt-

2 Proof of the main result

We shall use the following Lemmas

Lemma 4 For all integers n, m and h, we have

1. U_, =—q "U,, 2. Vo, =q "V,

3. AUnUm = Vn4+m — qunfm, 4 Van = Vnt+m + qunfm;

5. Uan = Un+m + qunfm; 6. VnUm = Un4+m — qunfmy

7. UnUerh - UnJrhUm = quhUnfm; 8. VanJrh - VnJrhV = _quUhUnfmy
9. Van+h — AUn_;,_hUm = quhVn_m, 10. Uan+h — Un_;,_th = _quhVn—m-

Lemma 5 For all integers r and n > 0, we have
1. AU Y o Urgai = Vangry2 — Voo = AUspy Uz,
2. U2 E?:O ‘/r+4i - U4n+r+2 - U’I"72 - ‘/2n+rU2n+2;

n i o n _ ) UanrVongo if n is even
9o Ve 2icg (F1) Urai = (1) Vs + Up 2 = { —VontrUapya  ifnis odd

no 1) (1" | VanyrVango if n is even
s Zi:O( D Ve = (1) Vantrez + Vs = { —AUspirUsnya  ifnis odd

Proofs. For Lemma 4, we use Binet’s forms of U,, and V,, : U,, = O‘Z:gn and V,, = o + " where

a and f3 are the roots of 22 — pr — ¢ = 0. Lemma 5 follows from relations 3. 4. 5. 6. of Lemma 4.
We obtain Theorem 1 and Corollary 2 from relations 3. 4. 5. 6. of Lemma 4 and Lemma 5, and

Corollary 3 from relations (1), (2) and 3. 4. of Lemma 4.

3 Applications: extension of Cerin & Gianella results

The following Theorem is a generalization of Cerin’s Theorems 1.1, 1.2 and 1.3 cited in [2]

O
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Theorem 6 For all integers m > 0 and k, we have

—p*q+ Vs, = AUsn1Usip1 and — qVy + Vi = AUs_3Uzi1, 9)
AP0 = { SR, e, o

2 ) —
ot AP0 = { SR s noomt, O
ragm ) = (Sl i @

Where (6,), (0,) and (&,) are defined as follows: (8am,02m+1) = (—qVEni1, —PaAUsma) ;
(6‘27717 92m+1) = (_2(] (1 + dm) ) _p2chm) 5 (§2m7 €2m+1) = (_pq (1 + dm) ) _pAcm) :

The relations 8,, = dm_s — p>qAVsy, and 0, = Op_o — quAd(m,l)/g for m odd, and 0,, =

—Om—o — 2qV7721 /2 for m even, are easily established. Then, one verifies that we obtain Theorems of
2] when (p,q) = (1,—-1).
Proof. For (9), we use relation 9. of Lemma 4 with (n,m,h) = (2k,2k —1,1) and (n,m,h) =
(2k — 1,2k — 3,2) respectively. For relations (10), (11) and (12), we use relation (5) for (r,s) =
(2k,2k) resp. (r,s) = (2k— 1,2k —1) and (r,s) = (2k — 1,2k) and noticing that, using relations 3.
Usk+am+2 = Uzkt2m+3Vak+2m—1 — qUa,

4. 5. 6. of Lemma 4, we have
Viktam = AUspyom+1Vakt2m—1 + ¢V and Vi o +2¢ = V2, .4,

resp.
Uskvram = Uskr2m+1Vor+am—1 — qUs, Uskram+1 = Uskrom Vakromyr + 1,
Viktam—2 = AU o1 + 24, ’ Vaktam—1 = AUsgt2m—1U2k42m + Dg.

Theorem 7 For all integers n > 0 and r,s,t and k, the following equalities hold

S (V) = A+ an 1 Vee Vangrgates  with Ay = —q"*AST™ D (U), (13)
AP W) = e et .
ACKF1L261) () = { :;Ifgzkjjz‘%zzv;‘ikwmw ZZZ z 32 1 (15)
AR (1) { ‘f";fﬁf(?f:i’:i"i?v;fgn P +q) Z:Z - SZH (16)

Proof. For (13) use (8). For (14), (15) and (16), we use (5) when r = s = 2k resp. r = s = 2k+1 and
(r,s) = (2k,2k 4+ 1) using, for t = O resp. t = 2 and t = 1, relations Vigram+t = Vort2m+t Vokt+2m — Vi
and Uskyam+t+2 = Usigomyo—r(r—2)Vortomtr(r—1) — Ug—r)2r41), derived from relations 4. and 5.
of Lemma 4. For (15), we also use Vady, — 2¢ = Va2 — 2¢ = AU3,, ., derived from 3. of Lemma 4.

O

Notice that from the first relation of Theorem 1, A, = —p~1¢*™" (Usns2r 1412 — Uzpit—2)+(n + 1) ¢°Vi,
we have also e, = pV{1 (Vamao — Vo) = p3A Z;n:o cj—1 using first relation of Lemma 5.

For (p,q) = (2,—1), we obtain Theorems 1, 2, 3, 4, 5, 6 and 7 of Cerin and Gianella cited in [3]:
relation (13), with (s,t) = (2k,0) and r € {0,2,1,—1} give respectively Theorem 1 and relations
(2.3), (2.4) and (2.5), with (s,t) = (2k+1,0) and r € {2,3} give Theorems 2 and 3, and with
(s,t) = (2k,1) and r = 0 give Theorem 4. Relations (14), (15) and (16) give Theorems 5, 6 and 7.

Relations 8. 9. of Lemma 4 allow us to obtain immediately the following Theorem
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Theorem 8 For all integers n, m, r, s, we have

VaVin = Vn+TVm—r + anUrUm—n—r = AUn-ﬁ-sUm—s + qm_SVSVn—m-i-s'

For (p,q) = (2,—-1), n =2k, m=2k+ 1, r =3 and s = 2, and by setting P* = 2P, for all n, one
gets Qo Q2rr1 = Qopt3Qak—2 — 80 = 8PogoPop—1 — 12 = 2 (PQ*kJrQPQ*kfl — 6) which is Theorem 8

of [3], where Cerin and Gianella called (P}), the Pell sequence instead of (P,)

n:
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