The Fibonacci Quarterly 1992 (30,1): 77-79

RECURRENT FORMULAS OF THE GENERALIZED FIBONACCI AND TRIBONACCI SEQUENCES

K. Atanassov

Institute for Microsystems, Lenin Boul. 7 km. , Sofia-1184, Bulgaria

J. Hlebarska

Kliment Ohridski University, Boul. A. Ivanov 5, Sofia-1126, Bulgaria

S. Mihov

Kliment Ohridski University, Boui. A. Ivanov 5, Sofia-1126, Bulgaria (Submitted March 1990)

In [1], it was shown that there are 36 different schemes of generalization for the Fibonacci sequence in the case of three sequences. Ten of these are trivial and the other 26 are grouped into seven classes. The elements of each class are equivalent with exactness up to a substitution of their members. Thus, for every class, we shall give the recurrent formulas of the members of one of its schemes, using the notation in [1].

Everywhere, let

$$
a_{0}=C_{1}, b_{0}=C_{2}, c_{0}=C_{3}, a_{1}=C_{4}, b_{2}=C_{5}, c_{2}=C_{6},
$$

and assume that $n \geq 0$ is a natural number where $C_{1}, C_{2}, \ldots, C_{6}$ are given constants and x is one of the symbols α, b, and c. Class I contains the schemes S_{6} and S_{9}, where

$$
S_{6}:\left\{\begin{array}{l}
a_{n+1}=a_{n+2}+b_{n} \\
b_{n+2}=b_{n+1}+c_{n} \\
c_{n+2}=c_{n+1}+a_{n}
\end{array}\right.
$$

The recurrent formula for this scheme is

$$
x_{n+6}=3 x_{n+5}-3 x_{n+4}+x_{n+3}+x_{n}
$$

that is,

$$
\begin{aligned}
& a_{n+6}=3 a_{n+5}-3 a_{n+4}+a_{n+3}+a_{n} \\
& b_{n+6}=3 b_{n+5}-3 b_{n+4}+b_{n+3}+b_{n}, \\
& c_{n+6}=3 c_{n+5}-3 c_{n+4}+c_{n+3}+c_{n} .
\end{aligned}
$$

Class II contains the schemes S_{15} and S_{25}, where

$$
S_{15}:\left\{\begin{array}{l}
a_{n+2}=b_{n+1}+a_{n} \\
b_{n+2}=c_{n+1}+b_{n} \\
c_{n+2}=a_{n+1}+c_{n}
\end{array}\right.
$$

The recurrent formula for this scheme is

$$
x_{n+5}=3 x_{n+4}+x_{n+3}-3 x_{n+2}+x_{n}
$$

Class III contains the schemes S_{20} and S_{33}, where

$$
S_{20}:\left\{\begin{array}{l}
a_{n+2}=b_{n+1}+b_{n} \\
b_{n+2}=c_{n+1}+c_{n} \\
c_{n+2}=a_{n+1}+a_{n}
\end{array}\right.
$$

The recurrent formula for this scheme is

$$
x_{n+6}=x_{n+3}+3 x_{n+2}+3 x_{n+1}+x_{n}
$$

Class IV contains the schemes S_{23} and S_{33}, where

$$
S_{23}:\left\{\begin{array}{l}
a_{n+2}=b_{n+1}+c_{n} \tag{3}\\
b_{n+2}=c_{n+1}+a_{n} \\
c_{n+2}=a_{n+1}+b_{n}
\end{array}\right.
$$

The recurrent formula for this scheme is

$$
x_{n+6}=4 x_{n+3}+x_{n}
$$

Class V contains the schemes $S_{7}, S_{12}, S_{14}, S_{22}, S_{28}$, and S_{31}, where

$$
S_{7}:\left\{\begin{array}{l}
a_{n+2}=a_{n+1}+b_{n} \\
b_{n+2}=c_{n+1}+a_{n} \\
c_{n+2}=b_{n+1}+c_{n}
\end{array}\right.
$$

The recurrent formula for this scheme is

$$
x_{n+6}=x_{n+5}+2 x_{n+4}-2 x_{n+3}+x_{n+2}-x_{n}
$$

Class VI contains the schemes $S_{8}, S_{11}, S_{18}, S_{21}, S_{32}$, and S_{35}, where

$$
S_{8}:\left\{\begin{array}{l}
a_{n+2}=a_{n+1}+b_{n} \\
b_{n+2}=c_{n+1}+c_{n} \\
c_{n+2}=b_{n+1}+a_{n}
\end{array}\right.
$$

The recurrent formula for this scheme is

$$
x_{n+6}=x_{n+5}+x_{n+4}=x_{n+2}+x_{n+1}+x_{n}
$$

Class VII contains the schemes $S_{16}, S_{19}, S_{24}, S_{26}, S_{29}$, and S_{34}, where

$$
s_{16}:\left\{\begin{array}{l}
a_{n+2}=b_{n+1}+a_{n} \\
b_{n+2}=c_{n+1}+c_{n} \\
a_{n+2}=a_{n+1}+b_{n}
\end{array}\right.
$$

The recurrent formula for this scheme is

$$
x_{n+6}=x_{n+4}+2 x_{n+3}+2 x_{n+2}-x_{n+1}-x_{n}
$$

Using the data given above and some ideas from [3], we can construct eight different schemes of generalized Tribonacci sequences in the case of two sequences. We introduce their recurrent formulas below.

Everywhere let

$$
a_{0}=C_{1}, \quad b_{0}=C_{2}, a_{1}=C_{3}, b_{1}=C_{4}, a_{2}=C_{5}, b_{2}=C_{6}
$$

and assume that $n \geq 0$ is a natural number, where $C_{1}, C_{2}, \ldots, C_{6}$ are given constants and x is one of the symbols α or b.

The different schemes are as follows:

$$
\begin{aligned}
& T_{1}:\left\{\begin{array}{l}
a_{n+3}=a_{n+2}+a_{n+1}+a_{n} \\
b_{n+3}=b_{n+2}+b_{n+1}+b_{n}
\end{array},\right. \\
& T_{3}:\left\{\begin{array}{l}
a_{n+3}=a_{n+2}+b_{n+1}+a_{n} \\
b_{n+3}=b_{n+2}+a_{n+1}+b_{n}
\end{array},\left\{\begin{array}{l}
a_{n+3}=a_{n+2}+a_{n+1}+b_{n} \\
b_{n+3}=b_{n+2}+b_{n+1}+a_{n}
\end{array}\right.\right. \\
& T_{5}:\left\{\begin{array}{l}
a_{n+3}:\left\{\begin{array}{l}
a_{n+3}=a_{n+2}+b_{n+1}+b_{n} \\
b_{n+3}=b_{n+2}+a_{n+1}+a_{n} \\
b_{n+3}=a_{n+2}+b_{n+1}+b_{n}
\end{array},\right. \\
T_{7}:\left\{\begin{array}{l}
a_{n+3}=b_{n+2}+b_{n+1}+a_{n} \\
a_{n+3}=a_{n+2}+a_{n+1}+b_{n}
\end{array},\left\{\begin{array}{l}
a_{n+3}=b_{n+2}+a_{n+1}+b_{n} \\
b_{n+3}=a_{n+2}+b_{n+1}+a_{n}
\end{array},\right.\right.
\end{array} \quad T_{8}:\left\{\begin{array}{l}
a_{n+3}=b_{n+2}+b_{n+1}+b_{n} \\
b_{n+3}=a_{n+2}+a_{n+1}+a_{n}
\end{array}\right.\right.
\end{aligned}
$$

The first scheme is trivial. All of the others are nontrivial; they have the following recurrent formulas for $n \geq 0$:

- for $T_{2}: x_{n+6}=2 x_{n+5}+x_{n+4}-2 x_{n+3}-x_{n+2}+x_{n}$,
- for $T_{3}: x_{n+6}=2 x_{n+5}-x_{n+4}+2 x_{n+3}-x_{n+2}-x_{n}$;
- for $T_{4}: x_{n+6}=2 x_{n+5}-x_{n+4}+x_{n+2}+2 x_{n+1}+x_{n}$;
- for $T_{5}: x_{n+6}=3 x_{n+4}+2 x_{n+3}-x_{n+2}-2 x_{n+1}-x_{n}$;
- for $T_{6}: x_{n+6}=3 x_{n+4}+x_{n+2}+x_{n}$;
- for $T_{7}: x_{n+6}=x_{n+4}+4 x_{n+3}+x_{n+2}-x_{n}$;
- for $T_{8}: x_{n+6}=x_{n+4}+2 x_{n+3}+3 x_{n+2}+2 x_{n+1}+x_{n}$ 。

The proofs for these facts can be shown by induction, using methods similar to those in [2] or [3].

An open problem is the construction of an explicit formula for each of the schemes given above.

References

1. K. Atanassov, L. Atanassov, \& D. Sasselov. "A New Perspective to the Generalization of the Fibonacci Sequence." Fibonacci quarterly 23.1 (1985):2128.
2. K. Atanassov. "On a Generalization of the Fibonacci Sequence in the Case of Three Sequences." Fibonacci Quarterly 27.1 (1989):7-10.
3. J.-Z. Lee \& J.-S. Lee. "Some Properties of the Generalization of the Fibonacci Sequence." Fibonacei Quarterly 25.2 (1987):111-17.
