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Abstract

In this paper, we consider the Horadam sequence and some summation
formulas involving the terms of the Horadam sequence. We derive
combinatorial identities by using the trace, the determinant, and the
nth power of a special matrix.
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1. Preliminaries

Generalized Fibonacci sequence W,, = Wy (a,b; p, q) is defined as follows;
(11) Wn = an_1 — an_Q 5 Wo = a, W1 =b.

Where a, b, p, and g are arbitrary complex numbers, with ¢ # 0. Since, these numbers
have been studied firstly by Horadam(see, e.g., [1]) they are called as Horadam numbers.
Some special cases of this sequence such as

(1.2)  Un=Wa(0,1;p,q) , V= Wa(2,p;p,9)

were investigated by Lucas[6]. Further and in detailed knowledge can be found in[1, 2,
3,4, 5, 6]. If a, B assumed distinct, are the roots of

(1.3) M —pA+qg=0
then the sequence W,, has the Binet representation

__ Aa™ - Bp"
(14) Wn = W7
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where A = b — aff and B = b — aa. For negative indices, this formula is given as
pW—n+1 - W—n+2
q

So, for all integer numbers n, we can write

(1.5) W, = an71 — an72 5 Wo = a, Wi =hb.

W_n =

In [16], the authors used the matrix in relation to the recurrence relation (1);

p —q
(1.6) M = ( 10 ) .
Indeed, if p =1 and ¢ = —1, then the matrix M reduces to Fibonacci Q— matrix. The
matrix M is a special case of the general k X k, Q— matrix[11]. Now, we use the matrix
M and its powers to prove and drive the some combinatorial identities involving the
terms from the sequence {Wy}. Such identities are quite extensive on literature, but for
this purpose we use only the trace and determinant of the matrix M™. In [9], J. Mc.

Laughlin gave a new formula for the nth power of a 2 X 2 matrix. The author proved

a

that if B = ( . b ) is an arbitrary 2 X 2 matrix, then forn > 1, B" is

d
| (71 - z) (D)’

where T and D are the trace and determinant of matrix B, respectively. In [10], K. S.
Williams gave a formula for the nth power of any 2 x 2 matrix C' with eigenvalues o and
B as follows;

[N~

J

(17) B" — ( Yn — dyn—l b’yn—l ) Y =

CYn—1 Yn — AYn—1 N
=0

o™ (C=pN—=p"(C=al). £

(18) "= { a" ! (nC i7(571 —-1) a[7); a=0

In [8], H. Belbachir extended this result to any matrix A of order m, m > 2. Also, he
derived some identities concerning the Stirling numbers.

2. Some Combinatorial Identities involving the terms of Ho-
radam Sequence
In this section, firstly we give a general formula for the generalized Lucas numbers.

Then, we investigate the special cases of this sequence. And then, we give some formulae
for generalized Fibonacci numbers.

2.1. Theorem. Forn > 1, we have the following identity;
TP T N k
- n—2 _ n—2 2 _
2n D ( i >n_kp (=0)" = 5= g_o ( ok )p (p* —4q) "

k=0

Where p and q are the trace and determinant of the matrixz M, respectively.
Proof. Using the matrix M",

M" = ( Yn —qYn-—1 )
Yn—1 Yn — PYn—1 ’

we can write

(2.2)  tr(M") =X + A3 =2yn — pyn—1
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2 — Py :2% ( n;k‘ )T”_Q’“(_D)k_p L:ﬁj ( n_li—k >T”_1_2k(—D)k

k=0

= 3 (" o (252

k=0

Thus, we have the right side of the equation (10).The left side of the equation (10) is
follows;

A?+/\3—21n(n (:)pn_’“( p2—4q)k+ 3 (Z)p"‘k(— p2—4q)k>
k

n n 1 n n—2k( 2 k
TN = 2 <2k>p (p” —4q)

[=}

Thus, the proof is completed. O

In the following theorem, we give the nth term of the generalized Lucas sequence by
using this method.

2.2. Theorem. For n > 0 we have the following identities;
1]
n—k\ pn
2.3) Q) Vo= R (=g
ey =3 ()0

k=0
and
3
.. 1 nN\ k
(2.4) ) Vo, = gni <2k)p 2k (p2 - 4q)
k=0

where p and q are the trace and determinant of the matrix M, respectively.

Note that if we take p =1 and ¢ = —1 in the Theorem 2.1 and Theorem 2.2, then we
obtain that

n—k\ p 1 %) n\
Ln = (k: )n—k:2"*1 (2k)5'
k=0 k=0

The each sides of the last equation can be found in [13]. In addition to this, in the
Theorem 2.1 and Theorem 2.2 if we take p = 2, g = —1 and p = 1, ¢ = —2 then we
obtain the identities for the Pell-Lucas and Jacobsthal-Lucas sequences, respectively, as
follows;

and
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Similarly, for the certain values of p and q we can get the bivariate Lucas, Pell-Lucas and
Jacobsthal-Lucas polynomials . The equation is given in the following theorem can be
seen many studies, but we give this identity by using a different method.

2.3. Theorem. For n > 0 we have the following identity;
Ln;l

25) U= > (ﬁ_l_i>p"’l’2i(—q)i,

" (3
=0

where U, = W, (0,1;p, q).

By using the Theorem 2.3 we can write the following identities;

L=t 1y
Fn: Z ( )7 pzlvq:_la
1=0 ¢
n—1
=) n—1—1 Lo
P, = (Z )271——1’ :27Q*_17

and
[z ] ;
n—1—17\ .
n=3 ()2 pmra=-2

i
i=0
Now, we give a formula for the generalized Fibonacci numbers by using the studies of
Shannon and Laughlin.

2.4. Theorem. For k > 1, we have

(2.6)  Up = U, Lkiij (kl_ - Z) VT (=g,

i=0
where U, = Wy, (0,1;p,q) and V, = Wy (2,p;p,q).

Finally, we give the most general formula for generalized Fibonacci numbers in the
following theorem.

2.5. Theorem. Forn,k > 1 and r # 0, we have
LE) ks —_—
(27) Unk+7‘ = Z ( . ) Vnk*2l(7qn)26’

¢ 7
=0

Un—r he—2i
wherecﬁ:q’“%% + U,.

Proof. The proof can be seen by the powers of the matrix M as follows; Note that
n Un+1 _qUn
M" =
( U, _qUnfl >
and

Mnk+7' _ Unk+r+1 _qUnk+r
U'nk+1' _qUnk+r71 ’

Then, we write

(28) Unk+r = Yk—-1 (UnUr+1 - UrUn+1) + Uryk
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L5

k—1 ) )
where yr = ) ( ; ) T*2(—D)", T = Upt1 — qUn—1 = Vi, D = ¢™ and since

=0

UnU'r+1 - UrUn+1 = qTUnf'r;

we obtain

Uniesr = ¢ Un—r Ljf; <kl_ - Z) T’C‘“”(—D)"wrgi ('z_ Z) T (-D)!,
L5]

k—i —21 n\ rUn*Tk_2i

1=0

Thus, the proof is completed. 0
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