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1. INTRODUCTION

For convenience, we quote some notations and symbols in [7]: Let the sequence {w,} be
defined by the recurrence relation

Work SOWp gt + @ W, +aW, (1.D

and the initial conditions
Wo=Cp, W} =G5 s Wit = Gy (1.2)

where a,, ..., a, and ¢,, ..., ¢,_; are complex constants. Then we call {w,} a k™-order Fibonacci-
Lucas sequence or, simply, an F-L sequence, call every w, an F-L number, and call

f@=xt-axt1—.ma,_x-a, (1.3)

the characteristic polynomial of {w,}. A number & satisfying f{a)=0 is called a characteristic
root of {w,}. If a, #0, we may consider {w,} as {w,}*>. We denote Z(a,)=Z for a, #0 or
Z* u{0} for a, =0. The set of F-L sequences satisfying (1.1) is denoted by {¥(a,, ..., ;) and
also by Q(f(x)). Let 4P} (0<i<k~1) be a sequence in Q(f(x)) with the initial conditions
4 =8, for 0<n<k-1, where & is the Kronecker function. Then we call {#{} the i basic
sequence in Q(f(x)), and also call {u*"D} the principal sequence in Q(f(x)) for its impor-
tance. In [3], M. E. Waddill considered the congruence properties modulo m of the k™-order
F-L sequence {M,}€Q(l,...,1) with initial conditions My =M,==M, ;=0 and M,_,=
M,_, =1 Inthis paper we apply matrix techniques to research the congruence properties modulo
m of the general k™ -order F-L sequence {w,} €{l{(a, ..., a,) = Q(f(x)), where a,,...,a, € Z. In
Section 2 we give required preliminaries. By using matrix techniques, in Section 3 we discuss the
congruence properties of F-L sequences and get a series of general results. In Section 4 we apply
our general results to the special case of second-order F-L sequences. As examples, two more
interesting theorems are given.

2. PRELIMINARIKES

Let {w,} €Qa,,...,a,) = Q(f(x)). Denote col W, = (W,ypg, Wpsig»--» W,) . Then, from
(1.1}, we have

colw,,; = A colw,, 2.1)

where
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q &G o G,y G
A= 1 (2.2)
1

is called the associated matrix of {w,}, also of f(x). And we also denote Q(a,, ..., @,).by (4).
Note that in 4 the entry in the /® row and j® columnis 0ifi>Tand 7= j+1.

Theorem 2.1: Let {w,} € Q(A). Then, for n € Z(a,),
colw, = A" col w,. 2.3)
For simplicity, in this paper we prove all theorems only for Z(a,)=Z.

Proof: 1f n>0, then (2.3) can be proved by induction and by using (2.1). If n >0, again by
induction and by using (2.1), we can easily verify colw,,,,, = 4™ col w, for m>0. Taking m=-n
we get col wy = A7 colw,,, whence (2.3) also holds for n <0. O

Theorem 2.2: Let (4} (i=0,1,...,k~1) be the i basic sequence in Q(a,, ..., a,)= C(A).
Then, for n € Z(a,),
A" = (col 4D, col w2, ..., col u®). 2.9)
Proof: From (2.3), the right-hand side of (2.4) is equal to (let 7 be the identity matrix)
(A" col utD, 47 col uF2, .., A" col u®)
= A"(cot uftV, col ufF2, ..., col u{®)y = 4"F = 4". O

Remark 2.3: Equation (2.4) was shown in [9] and [1]. Its equivalent form was shown as (4) in
[4], where U, is equal to «{!7¥ in (2.4). It may be seen that, owing to the introduction of the
basic sequences, it is more convenient to use (2.4) than to use (4) in [4].

Substituting (2.4) into (2.3) and comparing the £® row on both sides, we get the following
corollary which was stated in {7].

Corollary 2.4: Let {u®} G=0,1,..., k1) be the i® basic sequence in (g, ..., a,) = CY4) and
let {w,} € Q(A4). Then {w,} can be represented uniquely as
k-t
w, = o W, (2.5)
=0
The following theorem gives a technique for generating F-L sequences by using the matrix
other than the associated matrix. The method of proofis quoted from [9].

Theorem 2.5: Let X, = (%, %, ..., %,)" be a vector over C and let B be a square matrix of

order kover C. I
¥ -B|= f(x)=x*-ax* Tt~ ~a,_x-a,
and
X, = B"X,,

then, for n € Z(a,),
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(1) {x,;},€Qa,...a)=Q(f(x) (j=1,...,k) or, simply,

{Xn}n € Q(al’ cees ak) = Q(.f(x)) -
(Naturally, we can generalize the concept of an F-L sequence to that of an F-L vector sequence.)

2

B =y DB 4y DBE2 4 uOB+ O] (2.6)
Specifically,
A = DA 4y ED AR g D4+ O 2.7

where (4} is the i (i=0,..., k—1) basic sequence in Q(a,,...,a,) and 4 is the associated
matrix of f(x).
Proof: By the Cayley-Hamilton Theorem, we have B* =a,B*' +.-- +a,_,B +a,I, whence

B™* =qB™* 1+ ... +a,_ B +a,B". (2.8)
Multiplying by X, we obtain X, ., =a, X, ++ +a,_, X, +a,X,. This means that (1) holds.
Denote B” = (b,),; ;< Then (2.8) implies (™" = a"** D +... +-a,_ "D +a, b Therefore,
&7}, € Q(f(x)). By (2.5), it follows that

k-1

b = Lo,
r=0

which is equivalent to (2.6). O

The following theorem is called the Theorem of Constructing Identities (TCT) in matrix
form. TCI in polynomial form was proved in [6].

Theorem 2.6 (TCI of mairix formj: Let Q(ay,...,a,)=(4). If

s 4
>dAn = Zej.A”f (2.9)
i=0 j=t
holds, where n,, p, € Z(a,) and dj,e; €C,i=0,...,s and j=0,...,7, then
s ¢ ’
2.4 colw, =3 e colw, (2.10)
i=0 © =0 g
holds for any {w,} € Q(4). Specifically,
$ i
Zd,.wn'_ = Zejij (2.11)
i=0 Jj=0

holds for any {w,} € Q(A4). Conversely, if (2.11) holds for any {w,} € Q2(4), then (2.9) holds.

Proof: Multiplying (2.9) by col w, and using (2.3), we get (2.10), then (2.11). Conversely,
if (2.11) holds for any {w,} € Q(4), then it holds for every basic sequence {#"} € Q(4) (=0,
..., k—1). By using (2.5) and (2.7), we can prove that (2.9) holds. O

The following lemma was proved in [6]. It can also be proved by using the TCI of matrix
form.
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Lemma 2.7: Let {u’} (1=0,..., k—1) be the i* basic sequence in Q=0(a,, ..., @) = (4} and
let {w,} be any sequence in Q. Then, for m, n € Z(a,),

k-1
wm+n = Zur(rlz)wnﬂ- (2 12)
=0

Remark 2.8: For convenience, we rewrite (2.12) as

Wosn = 4, cOlW,,, (2.13)
where 4, = @&, D 4®).

3. CONGRUENCE PROPERTIES OF F-L SEQUENCES

In the subsequent discussions we deal with the integer sequences in Q(a,, ..., a,) = Q(4) =
Q(f (x)), where a,,a,, ...,a, € Z. The Cayley-Hamilton Theorem gives

A =g 4 o, vy A+all. (3.1

Let M be the ring of integer matrices of order k. Let me Z*, m> 1, and let () be the prin-
cipal ideal generated by m over M. For M, N €M, define M = N (mod m) if M~ N e(m). Let
{w,} € (A4). Ifthere exists ¢ € Z* such that

A =1 (mod m), (3.2)

then we call the least positive integer ¢ satisfying (3.2) the order of A moduloe m and denote
t =ord, (A4). If there exist integers 7 > 0 and n, = 0 such that

W,y =W, (mod m) iff n2mny, (3.3)

then we call {w,} periodic modulo m and call the least positive integer ¢ satisfying (3.3) the
period of {w,} modulo m, and denote ¢ = P(m,w,). I n,=0, we call {w,} purely periodic.
The following lemma is obvious.

Lemman 3.5:
(1) If an integer ¢ > O satisfies (3.2), then ord, (A)]7.
{2) If an integer ¢ > O satisfies (3.3), then P(m,w,)|¢.

Lenmma 3.2: Let Qa,, ..., a,) = (4). Then ord,(4) exists iff (m, a,) =1.

Proof: Assume that ord,(4) exists. Then (3.2) holds. Taking determinants on both of its
sides and noting (2.2), we get (~D* Vgl =1 (mod m). This implies (m,a,)=1. Conversely,
assume (m,q,) =1. Then there exists an integer b being the inverse of g, (mod m). Whence,
from (3.1), we have AB(A* - A4*?—...~a,_Jy=1 (mod m). This means that there exists a
matrix B which is the inverse of 4 (mod m). Since among 7, 4, ..., 4°,... (mod m) there are at
most m** different residues, there exist » > 52 0 such that 4" = 4° (mod m). Multiplying by B,
we obtain 47 = I (mod m), so ord,(4) exists. O

Theorem 3.3: Let 2=CQa,...,q,)=0(A4) and let {u,} be the principal sequence in €. If
(m,a,) =1, then {u,} is purely periodic and P(m, u,) = ord,(4).

Proof: From Lemma 3.2, ¢ = ord,(4) exists since (m,a,) =1. Then (3.2) implies that, for
any n 20, A™" = A" (mod m) holds. From TCI, for any n20, u,,,. =u, (mod m) holds. Thus,

2003] 51



APPLICATIONS OF MATRIX THEORY TO CONGRUENCE PROPERTIES OF k™ -ORDER F-L SEQUENCES

{u,} is purely periodic and, by Lemma 3.1, = P(m,u,)|t'. Conversely, since any {w,} € Q) can
be represented linearly by {#,} over the ring of integers (see [7], Lemma 2.5), the congruence
W, =w, (mod m) holds for any {w,} € 2. Whence the converse of TCI implies that 4™ = 4"
(mod m) holds. Multiplying by 4™ (from the proof of Lemma 3.2, 47! exists), we get (3.2).
Thus, Lemma 3.1 implies #'|¢. Summarizing the above, we obtain r =¢'. [

Corollary 3.4: Let Q=Q(a,,...,a,)=(4) and let {u,} be the principal sequence in Q. If
(m,a,) =1, then any {w,} € Q is purely periodic and P(m, w,)|P(m,u,) = ord,(4).

For what sequences {w,} in £2(4) besides the principal sequence will the equality P(m,w,) =
ord,,(4) hold? To give an answer on the sufficient condition for the question, we introduce the
Hankel matrix and Hankel determinant of {w,}, which are defined by, respectively, H(w,) =
(col w, i, colw, o, ...,col w,) and det H(w,).

Theorem 3.5: Let Q=Qa,,...,a,)=8(A4). Let {u,} be the principal sequence in O and let
{w,} be any sequence in Q. Assume (m, a,)=(m,det H(w,))=1. Then P(m,w,) = P(m,u,)=
ord, (4).

Proof: From (m,a,) =1, Theorem 3.3, and Corollary 3.4, we conclude that {w,} is purely

periodic and P(m,w,)|P(m,u,)=ord,(A4). Thus, we need only prove that P(m,u,)|P(m,w,).
Equation (2.13) gives w,,; = 4, col w,. Whence

Wpskots o> Woaas W) = A (col wy_y, ..., col wy, col wy). 34
The equality (3.4) can be considered a system of linear equations in unknowns u® (i=0,...,
k—1). The coefficient determinant of the system is det(col w,_,, ..., col wy, col wy) =det H(w,).
Since (/m, det H(w,)) = 1, we can solve u, =ul! D =bw ., . ++--+b,_w, +b,w, (mod m). Hence,
P@m,u,)|P(m,w,). O

For more detailed consideration on the periodicity, we introduce the following concepts: Let
{w,} € Q(A). Ifthere exists s € Z* such that

A’ =cl (mod m), 3.5)
where ¢ € Z and (m, c) = 1, then we call the least positive integer s satisfying (3.5) the constrained

order of 4 modulo m, call ¢ a multiplier of 4 modulo m, and denote s=ord] (4). Corre-
spondingly, if there exist integers s> 0 and n, > 0 such that

W, =cw, (mod m) iff n2n,, (3.6)

where ¢ is an integer independent of » and (m, ¢) = 1, then we call the least positive integer s sat-
isfying (3.6) the constrained peried of {w,} modulo m, call c a multiplier of {w,} modulo m,
and denote s = P'(m,w,). I ny=0, we call {w,} purely constrained periodic. We point out
that the definition of "constrained period" has generalized and improved the definition in [2].
Similarly to Lemma 3.1, the following lemma is obvious.

Lemma 3.6:

{I) If aninteger s> O satisfies (3.5), then ord, (4)|s.
{2) If an integer s> O satisfies (3.6), then P'(m, w,)|s.
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Clearly, if ord,,(A4) exists, then ord,(4) must exist [especially in the case c=1 (mod m)].
Hence, from 3.2, we obtain

Lemma 3.7: Let Qay, ..., a,) = Q(A). Then ord,,(A) exists iff (m, a,) =1.
By induction on j, we can easily prove

Lemma 3.8: Let s and ¢ be the constrained period and a multiplier of {w,} modulo m, respec-
tively, that is to say that (3.6) holds. Then, for j 20 and n > n,, we have

W, = C'w, (mod mi). 3.7

n+, js_
Theorem 3.9: Let Q=Qa,,...,a,)=S4), let {u,} be the principal sequence in Q, and let
{w,} be any sequence in £3. If (m, a,) =1, then
(1) {u,} and {w,} are purely constrained periodic and P’(m, w,)|P'(m, u,) = ord’,( A).
(2) uyy_,, where s= P'(m,u,) = ord,,(4), is a multiplier of {#,} (mod m).

Proof:

(1) The proofis similar to the proofs of Theorem 3.3 and Corollary 3 .4.
(2) Take n=k—1 in the congruence u,, = cu, (mod m) and note that ,_; =1. O

Theorem 3.109: Let {u,} be the principal sequence in Q(g,,...,a;) and let (m,a,)=1. Denote
P'(mu)=s, u,, ,=c,and ord (c)=r. Then

(1) P(mu)=rs.

{2} The structure of {u, (modm)} in a period is as follows:

0,..,01L u, Uy vevn Mgy
0,..,0¢ cu, ocu,, ..cu, (modm)

0,..,0 " My, My, ., 7
Progf:
(1) Let P(m,u,)=¢. From u,,, =u, (mod m) and Lemma 3.6, we have s|{/. Then ¢/ =zs.
On the other hand, Theorem 3.9 implies that ¢ is a multiplier of {u,} (mod m). Equation (3.7)
implies that
=¢/u, (mod m). (3.8)

uﬂ+ Jjs

Taking j =ord,(c) =7, we have u,,,, =u, (mod m). Whence Lemma 3.1 gives #|rs, that is,
ns|rs. Now we need only prove that 7 =r. If this were not the case, then 7; <7. Let 4 be the
associated matrix of {u,}. Theorem 3.9 implies that 4° =c (mod m). Theorem 3.3 implies that
A" = I (mod m), that is, 47 = (A°)' ="/ = (mod m). This contradicts ord,(c)=r.

(2) In(3.8),let j=0,1,...,7—1andlet n=0,1,...,5—1; then we have the required result. O
Corollary 3.11: Let {u,} be the principal sequence in Q(a,,...,a,) and let (m,a,)=1. Then
P'(m, u,) is the least integer s such that s>k -1 and

Uy = Uy =Sy o =0 (mod m). (3.9

As an example, we let {#,} be the principal sequence in Q(1, 1,1). By calculating, we obtain
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{u, (mod7)}={0,0,1,1,2,4,0,6,3,2,4,2,1,0,3,4,0,0,4,...}.
Therefore, s = P'(7,u,) =16, c=u,,, =4 (mod 7). Since 4> =2 and 4* =1 (mod 7), we obtain
r =ord,(c) =3, and so ¢ = P(7, u,) = rs = 48. Furthermore, from Theorem 3.10, we can get

=0 (mod 7) iff n=0,1,6,13 (mod 16),
u,=1(mod 7) iff n=2,3,12,20,25,27,37,42,47 (mod 48),

Another application example can be found in [8]. The above numerical results can be used to
verify the following theorem.

Theorem 3.12: Let Q=Q(qy, ..., a,)= Q(4) = Q(f(x)), let {u,} be the principal sequence in Q,
and let {w,} be any sequence in £2. Assume that (m,a,)=1. Denote P(m,u,)=s, u,,_,=c,
and ord, (c)=r.

(1) If (m,c—1)=1, then, for all integers n>0,

r=1
an+js50 (mod ). (3.10)
j=0

(2) If (m, £ (1)) =1, then, for a, = —1 and, for all integers n >0,
s=1 k=1

wa,,ﬂ- =f() (- l)j;o(a0 +ay+e+a)w,, , , (modm). (3.11)
Specifically,
s-1
3 sy = FO (1) (modm) (i 20). (3.12)
=0
Proof:

{1} From (1} of Theorem 3.9 and (3.7), we have
r—1 =1
(c- I)anﬂs =(c-DY.¢/w,=( - w, =0 (modm).
Jj=0 =0
Then (3.10) follows from the above congruence and (m,c—-1)=1.
{2) From f(A4)=0, we have
SOOI = f(A)-f()1
=(A=-D((4" 4+ A+ D -afA+ v A+ D)= —ay ).
Whence, from (m, f(1)) =1, we get
k=1
(A-D'= Y'Y (gg+ay+ - +a) 4
j=0
On the other hand, from Theorem 3.9 and (3.5), we have
(A-D( AT+ A2+ A+ D= A~ T = (c-DI (modm).
Whence
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AT+ A AT s (c-TA-D
k=1
=(c-Df WY @+ +-- +a) AT (modm),
j=0
multiplying it by 4", by TCI we get (3.11). O
Note: Since (m, a,) = 1, the inverse of 4 (mod m) exists, which is
AV =g (A a4 - - a,_ Iy (modm).

Similarly, the sequence {w, (modm)} € (2(A4) can be extended to » <0 by using the recurrence.
Under this definition, the last theorem and the subsequent theorems, which hold for » >0, will
hold forneZ.

Corollary 3.13: Under the conditions of Theorem 3.12, let # =rs. If (@) (m,c-1)=1, or if (B}
m|(c—1) and (m, F(1)) =1, then

Ew,m waj =0 (modm). (3.13)
i=t j=
Proof: We have LW, , = L0 210 Wapiy e S0 (3.13) Is proved by using (3.10) for (a) or

by using (3.11) for (b). O

Remark 3.14:

(1) If we change P'(m,u,)=s and u,_, =c so that P'(m,w,) =5 and c is a multiplier of {w,}
modulo m, respectively, then (3.10) and (3.13) still hold because (3.7) still holds. But at this time
we cannot conclude that (3.11) holds.

{2) If neither conditions (a) nor (b) are fulfilled, (3.13) may not hold. For example: It is clear
that {n} is the principal sequence in (2, - D =Q(/(x}). Thus, f(1)=0.

{r (mod10)} =0,1,2,3,4,5,6,7,8,9,0,1,...}

implies s =10 and c=1 (mod 10). Hence, neither condition (a) nor condition (b) is fulfilled. We
have O0-+1+2+ .- +9=520 (mod 10}, L.e., (3.13) does not hold.

Theovem 3.15: Let {u,} be the principal sequence in (g, ..., a, ) = Q(4) and (m, a,) =1. Bet
P'(m,u,)=s. Then, for j> 0, we have

B
w4, =0l ul, (modnt). (3.14)
@ |
M r—sﬂi%u@f" v (modm?) (0d <k-2). (3.15)
Proaf: Let (4} (=0, ..,k ~1) be the /™ basic sequence in {3(A). Clearly, - #Y = Y =

au,. Denote u,,, ,=c¢, %@ wh@ﬂé prove the theorem by induction. For j=1, (3.14) and (3.15)
are trivial. Assume that both (3.14) and (3.15) hold for j. We want to prove that they also hold
for j+1.

(1) From (2.12), we have u,y, = Zig 4y, ,,,. Theorem 3.9 and (3.7) imply that

D =c/uy =0 and u,_y,, =cu_, =0 (mod m) for 1<i <k -1. Then, by the induction hypothesis,
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U a1 = uj(s)us—l Ol U =0 (ali_l L Uy = aku.s{jll (modm?).
(2) Again from (2.12), we have .y, = =Tk ;4144;- From (3.9) and the recurrence
(1.1), we obtain c=u,,, ,=a,u,_; (mod m). Whence, from (3.7), we obtain u, ., = uy, =
(@, 1Y uy,, (mod m) and 4 = cuf® =0 (mod m) for 1<i<k-1. It follows that

k-1
j ' 2
U jstysea = =u{u; hsed T > uau, ) uy,; (modm?).
i=1

Since u; = 0 for 0<d < k-2, the last expression can be rewritten as
k-1

SN )
U jstysea = u®u Uyosq + (AU, l)JZu:(Jl)udﬂ (mod m®).
Thus, by (2.12), we get
Wansea = U U g + (@Y 1y, (modm?).
Since #” = a,u,_,, the conclusion follows by the induction hypothesis. O

We point out that Theorem 3.12 and Corollary 3.13 have generalized Theorem 12 in [3],
while Theorem 3.15 has generalized Theorem 7 in [3].

4. THECASEOF k=2

For k=2, the principal sequence u,=u" in Q(a,b) satisfies u,=0, =1, and u,,, =
u,,, +bu, for n>0. The 0% basic sequence u(o) satisfies #{” = 1, #{” = 0. and the same recur-
rence. We assume b #0, since b =0 is less interesting. Clearly, u,(,o) =bu, ;. The associated

matrix is
_fa b
A_(l 0).

QOur conclusions for general £ can be easily transferred to the case of £ =2, for example:
Theorem 2.2 gives that, forn e Z,
n_ {4, bu
el ) @

Theorem 2.5 give that, forne Z,
A" =u A+bu, I 4.2)
Corollary 3.11 given that, if (m, b) = 1, then P'(m, u,) is the least integer s such that s> 1 and
#, =0 (mod m).
We do not enumerate all of them. Instead, we focus our mind on obtaining more interesting

conclusions. Because of limited space, as examples we give only those for Theorems 3.12 and
3.15.

Theorem 4.1: Let {F,} be the Fibonacci sequence, i.e., the principal sequence in Q= Q(l, 1), and
let {w,} be any sequence in 2. Let p>3 be a prime. Then, for all integer n € Z:
@)

Wy Wy + Wypo, + W3, = 0 (mod F). 4.3)
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@ 1
.
2 Wniy = (Fp =Dy (m0d ) (4.4)
<

Proof: In Theorem 3.12, take m=F,. Then, from (4.2), 47 = F, | (mod m), where, as is
well known, (m, F,_;) =(F,, F,\)=1. Lemma 3.6 implies P'(m, F,) = s|p. Since s> l and p is
prime, we have s=p. And the multiplier ¢ = F, = F,, (mod m) (or, it can be obtained by
Theorem 3.9 directly). It is well known that

= FnF,—Fl =1y (4.5)
Whence ¢® = 2, = (-1)” =1 (mod m). Thus, r = ord,,(c)= 4. From Theorem 3.12:
(1) To prove (4.3), it is sufficient to prove d = (m,c~1)=(F,, F,,,~1)=1. Let p=2g+1

and let L, be the #™ Lucas number. Then F, = F, + F} and

Foy—1= ng+1Lq+1 ~-1= E;+1(Fq+1 + QFq) - (-1 (Fﬁa —FuF - Ef)
|3k +F} for 2|q,
2F + F,F —F}  otherwise.
For even g,

d = (B + B, 3E,Fy + F) = (Fy + B, FOFp + ).

Since (FA,+F7, Fpu)=(F?, F,,)) =1 and, by the same reasoning, (F2,, +F,, F,)=1, we have
d=(Fj+F}3F,+F).
For odd g, we also have
d = (Fly+ FL2F ) + BBy = 1) = (Fpy + FL By BFa + R))
= (F;in + E;z, 3+ E])

Thus,
d = (Fpuy(Foay = 3F,), 3F + F)) = (B = 3F,, 3F, + )

= (Fyya = 3F,, 10F) = (Fyyy = 3F,,10) = (-1, 10)

The fact that {Z, (mod5)}={2,1,3,4,2,1,...} implies that (L,;,5)=1. And the fact that {L,
(mod2)}={0,1,1,0,1,1,...} implies that 2|L__, iff 3[(g-1), ie, 3|(p—3)/2. Whence, 3|p.
This is also impossible. Hence, d =1.

(2) Here f(x)=x?>-x-1and f(1)=-1. Whence (m, (1)) =1 holds. Hence, (4.4) holds
by (3.11). O

The following theorem implies a possible generalization and an alternative proof of Theorem
3.15.
Theorem 4.2: Let {u,} be the principal sequence in 2=((a,b)=€2(4) and {w,} be any
sequence in 3. Assume (m,b) =1. Denote P’(m,u,)=5s. Then, for j>0 and d = 0, we have

@)

w

jl‘l = bf“lu_{_lw]l +(bu,_1)j—1(jus — QU _1)W0 (mod mz). (4.6)
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&

Wistd = (Gu,_Yw,+ jbu,_ Y 'uw,,, (modm?). 4.7

Proof: From (4.2), A°=uA+bu_,I. Since m|u,, we have A'*=(bu Y1+ j(bu, Y 'u A
(mod m?). Whence

A = (bu,_ Y A% + j(bu,_ Y 'u A% (mod m?). (4.8)
s—-1 s-1 s

If d >0, then (4.7) follows from TCI. For d =~1, from 4% ~ad—-bI =0, we get A(A—al)=b
(modm?). Whence (m,b)=1 gives A" =b""(4~al) (modm?). And (4.8) becomes 4/* =
bl A+ (bu,_ Y ' (ju,—au,_)I (mod m*). Thus, (4.6) follows from TCI. O

s~

It is easy to see that when {w,} = {u,} and d =0 the conclusions of the last theorem agree
with those of Theorem 3.15.
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