The Fibonacci Quarterly 2002 (vol.40,5): 399-404
EULERIAN POLYNOMIALS AND RELATED EXPLICIT FORMULAS
Ching-Hua Chang

Department of Mathematics, Hualien Teachers College, Hualien, Taiwan
e-mail: chchang@sparc2. nhltc.edu.tw

Chung-Wei Ha

Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan
e-mail: cwha@math.nthu.edu.tw
(Submitted August 2000-Final Revision February 2001

i. INTRODUCTION
For a € C\ {1} we write, as in [2],
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&
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_a—ZHn(a)n!,

n=0
from which it follows that A, () (n=0,1,...) are uniquely determined by

n=1

H@=1 H@=753 (1)@ oz M
k=0

The Eulerian polynomials R (@) (n=0,1,...) are defined by R () =(a—1)"H, () as Euler first
discussed them in [4]. For n>1, as is easily seen from (1), R () is a polynomial in & of degree
n—1 with integer coefficients and was expressed by Euler in [4] as

R(a)=Y dja*, @)
k=1

where the integers 4] (1<k <n) are known as Eulerian numbers (see also [3, p. 51]). Later,
Frobenius [5] gave another expression for R (a) as

R(a)=Y kISH -1y, 3)
k=1

where S} (1<k <n) denote the Stirling numbers of the second kind (see also [3, p. 244]).

The object of this paper is to obtain one more expression for R (a) in terms of an array of
integers C} closely related to the central factorial numbers (see [6, §6.5]). By means of the new
expression for R (o), we derive explicit formulas for Bernoulli and Euler numbers and others, and
unify some known results, in terms of these C}.

2. A NEW EXPRESSION FOR R, (a)

We define an array of integers C} in the following way: for integers 7, £ > 1,
15, e 26 ) 2
) Eg‘i(_l)k f(k_j)]z ifn=2r-1,

kC2! if n=2r.

Clearly, CZ"' = C¥ =1. We make the convention that CZ"' = C¥ =0.
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These integers C} are closely related to the central factorial numbers of the second kind
T(n, k) defined as in [6, p. 212]. Indeed, for r,k 21, C¥ 1= (2k - 1)1 T(2r, 2k). Thus, it follows
from the properties of T(2r, 2k) (see also [1, pp. 428-29]) that

2r-Dt ifk=r
C]?r_l - ( ) ? ? ( 5)
0 ifk>r+1
Moreover, the second formula in the definition (4) together with
CFH =202k -1)CF, +kC?" (6)

gives the recurrence for C;. We may also derive (5) and (6) directly from the definition.

The new expression of R (a) given below contains the powers of & as in (2) and also that of
a—1 as in (3). Moreover, the number of the terms in the summation is about half of that in (2)
and (3).

Theorem I: For an integer 7 > 1:

Rypif@) = 3. CF i — 2, @
k=1
Ry (@)= 1+ @)Y CFa*Ha -1, ®)
k=1

Proof: Clearly, from (l}, R(a)=1and R,(a)=1+a. For the general case, the proofis by
induction on r > 1 using the recurrence

| Ro(@) = 1+ DaR (@) + (1- ) <= (aR, (@) ©
for n>1 (see [2], [5]). If (7) is true, then by (9),
Ry (@) = @Ry, (@) + (1= @) (R, (@)
= i KCF 1+ a)a* o - D%,
which by (4) equals the right-handks—iiie of (8). If(8) is true, then by (9) again,
Rypu(@) = (27 +DaRy (@) +(1- @) (R, (@)

> C¥F {202k +)+k(a-1} o (a-17
k=1

CF(a-D" +Cr202r+Da’+ 3 {22k - ) CH +kC ya* N a -7 2447
k=2

i

which by (5) and (6) equals the right-hand side of (7) with r replaced by » +1. This completes the
proof of the theorem.

Some classical formulas involving the Eulerian numbers have their counterparts in the integers
C;. Analogous to an identity of Worpitzky (see [3, p. 243]), we have the following theorem.
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Theoren: 2: For an integer » > 1:
-1 X+ k-1
ZC ( b1 ) (10)

Proof: Let A be the difference operator defined by Af(x) = f(x+1)— f(x). Following an
idea of Frobenius in [5], we have by a property of §7 (see [3, p. 207]) and (3)

n_n~nx_"~nn—'x_ X
x —é]!Sj(j)—éj!SjA /(n)~R,,(I+A)(n).
Thus, by (7),
2l _ N r2r- k-1 p2r-2k -l x+k-1
X _glck I+ A 1A (2r 1) Z (Zk 1)

In connection with the Bernoulli polynomials B,(x) and the Bernoulli numbers B, = B (0)
analogous to

HB-By =4 (7,

J=1

we have the following theorem.

Theorem 3: For an integer 7 > 1:

3 BBy =3 G (T, (1)

1 1 lx+k-1
mBzrﬂ(tzx—l); e (%Y (12)

Proof: Since both sides of (11) are polynomials in x, it suffices to assume that x equals an
integer m > 1. Then it follows from (10) using formulas in [3, pp. 10 and 155] that

et et S (k-1 - k-1
L m-5)=3 =3 ‘Z(Zkf_l) > (")
j=1 k=1 Jj=1

Similarly,

m=1 :
a2 we jlk+j—1
By ()= Zf -S40

S R

— arl{m+k—1 m+k
_Eck [( 2o +1 )+(2k+1)]

"Z 2,2m l(m—i-k l)
2k +10 2k )

k=1

As a simple and interesting consequence of Theorem 3, we derive some explicit formulas for
Bernoulll numbers which may be compared with those in Theorems 5 and 6 below.
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Theorem 4: For an integer r 2 1:

5, =y G, a3)
C k&
P TN e a9

Proof: We obtain (13) by differentiating both sides of (12) and then evaluating at x=0.
Moreover, we have, by (6),
r+i
_E =Dk .
B2 ,;( 1)) h D) S {22k - )CF L +ECE}

%y R ) )
= LN oy K D@k D —kQk+3)CY,

from which (14) follows.
From the proof of Theorem 3 we have, in particular,

i o Z i (m+k)
e (15)
> = (2m+1)2 2k+lC2’(m;]—ck)

Jj=1

We refer to [7] in which (13) and (15) have been given.

3. BERNOULLI AND EULER NUMBERS

We recall that
t2r——

0 t2r 0
= -1y _— =
sec? ’go( 1) EZr (2")' » tan Z 2r-1 (2r I)' >

where F,, are known as the Euler numbers and 7,,_; as the tangent numbers. The Bernoulli num-

bers can be obtained by
2r

By = (—1)'_1m1§r-1-

Since
2 eit 2

i 1+(l+z)§_‘,H oL,

+1 e ot

secf+tanf =

where i =+/—1, it follows that, for » > 1,
By, = (1+1)H,, (i), (16)
L =Y (A-0H,,0). a7
Moreover, it is easy to verify that
b= (—l)rzzr_ler—l(‘l) = (“1)r—lR2r~1(“1)- (18)
See also [2, p. 257] and [3, p. 259].
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Theorem 5: For an integer r 2 1
-
]}Zf_ l)r—k 2k — C]%r—l’
,
]%r—l — z (_ l)r—k22r—2k C]?r-l;
k=1

and

— i(_l)r—k k+1 C2r

k-1 4
k=1 2

.

— r=lka2r-2k+1,2r

B = Z(_l 2 Ck .
k=1

Proof: We have, by (7) and (17),

i*
2r—1 - ( 1)"2chr_1 2% >
G-
from which (19) follows. Moreover, we have, by (6),
r+l
B = 2 ()™ 202k - DCE +ACE)
k=1

=3 k) -20CF,

from which (21) follows. We obtain (20) and (22) similarly using (18) instead.

Theorem 6: For an integer r > 1:

Z D CF,

- 2k -1

r

G B2 +3k+1 4y,
=,§(—l)" ITC?

Proof: We have, by (8) and (16),

Z C 1)2k 4

from which (23) follows. Moreover, we have, by (6),

r+l
Epig=2 (- 1)" — {22k - DC +ECY}
k=1

Z D lzk ={(k+ Dk +D-E*}CY,

from which (24) follows.

(19)

20)

€2y

(22)

(23)

@4

The formulas (21) and (23) can be found in [3, p. 259] where no proofs are given. We refer

to [1, pp. 479-80] for other explicit formulas for 7,,_; and E,,.
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