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1. INTRODUCTION

Put
(1.1 > K'x* = _Anld)_ in =0/
P (1-x)"*
It is well known (see for example [1], 2, Ch. 2] that, forn = 7, A,,(x) is a polynomial of degree n:
n

(1.2) Alx) = Y Angpx®;

k=1
the coefficients A,, , are called Eulerian numbers. They are positive integers that satisfy the recurrence
(1.3) Apite = (N—k+2)A, b1 +kAp 1
and the symmetry relation
(1.4) Ank = Annktt (1 <k<n
There is also the explicit formula

k
(1.5) A = 3 (—711("]’.”)//«-/)” (1<n <k,
j:(]r
Consider next
hnd k4]
(1.6 ¥ (MUY k. Gl ),
50 (1 _X}2n+1

We shall show that, forn > 7, G,,(x/ is a polynomial of degree 2n — 1.

2n-1
(1.7) Galx) = 3 Gupx®.

k=0

The G, 1, are positive integers that satisfy the recurrence
(1.8) Gp+1,p = %k(k+1)Gy 1 — k(20 — k +2)Gp g + 520 — k+2)(2n —k+3)Gppp (1<k<2n+1)
and the symmetry reiation

(1.9 Gt = Gu2n-t (1<k<2n-1).
There is also the explicit formula
k
. i n

(1.10) Gup = 3 (~1)f (2”].*1)(”‘ MLt IV (1 <k <2n-1).

=0

The definitions (1.1) and (1.6} suggest the following generalization. Let p > 7 and put
> v G
(1.11) 2. Tp Xt e —E (n>0),
E=0 P (7 __X}pﬂ+1

where
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(1.12) Thp = (*7271)
We shall show that G‘,gp)(x} is a polynomial of degree pn —p + 1.
pn-p+1
(1.13) 6P)x) = kz c;g’,jxk (n>1),
=1
where the Gf,pzz are positive integers that satisfy the recurrence
m

(r) _ k+p—1 —k+1

(1.14) Gn‘ilm_ ; ( mpvl )(pnm—k )67(11,7]3 (1 <m <pn+7),
k>m-p

and the symmetry relation
(1.15) 6 = G(P;n_p_w (1<k<pn—p—k+1).
There is also the explicit formula "

(1.16) G(P) = E (—7)J(P"]+1)lejp (1<k<pn—p+1)
j=0
with T}, ,, defined by (1.12).
Clearty
6(Vix) = Anlxl,  61PMx) = Gulx).

The Eulerian numbers have the followmg combinatorial interpretation. PutZ,, = {7, 2, -, n}.and letm=(ay, az,
-+, &,/ denote a permutation of Z,,. A rise of is a pair of consecutive elements a;, a;.+1 such thata; < a;+7; in addi-
tion a conventional rise to the left of , is included. Then [6, Ch. 8] A,  is equal to the number of permutations of
Z, with exactly k rises.

To get a combinatorial interpretation of Gr(lp) we recall the statement of the Simon Newcomb problem. Consider
sequences o = I(a1, az, -, aN),of length ¥ with a; € Z,,. For 7 </ <n, let/ occur in o exactly e; times; the ordered
setles, ez, -, 8,) is called the specification of o. A rise is a pair of consecutive elements a;, a;+¢ such that a; < a;+¢;
a fall is a pair a;, ;47 such that a; > a;+1 ; a feve/ is a pair a;, a;+¢ such that a; = ;7. A conventional rise to the left
of a; is counted, also a conventional fall to the right of ajy. Let ¢ have r rises, s falls and ¢ levels, so thatr +s + ¢ =
N + 1. The Simon Newcomb problem [5, IV, Ch. 4], [6, Ch. 8] asks for the number of sequences from Z,, of length
W, specification [ey, e, -, e,/ and having exactly r rises. Let Afeq, ez, -, &,/ denote this number. Dillon and
Roselle [4] have proved that Afey, -, e, |r/ is an extended Eulerian number {2] defined in the following way. Put

o0 N
T=A > mTSMh - )N > A*m N
$ls)— N - ~
m= r=1
where {(s) is the Riemann zeta-function and
= p?PZZ " N =ejtepttey;
then
Ales, ez, -, e,lr) = A¥m,r),
Moreover
gjtr—j—1\
(1.17) Aleg, ez, -, eulr) = Z (—1) (N+1) ﬂ ( ! e /

i=1
A refined version of the Simon Newcomb problem asks for the number of sequences from z,, of length &, specifi-

cation feq, g2, -, €,/ and with rrisesand s falls. Let Afe4, --, v) denote this enumerant It is proved in [3] that

= i _
(1180 Y % Ales, e, S 1+ ly = 1)z;) = 25 (1 +(x I}z}
eg,en=0 rts<N+1

y ﬁ(7+(x— Vz;) - x H1(7+(y— 7)zil
i=1 i=

However explicit formulas were not obtained for Afe;, ~, e,.ir.s/.
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Returning to Gy(lp) , we shall show that

(p) =
(1.19) 67, = Alp, -, plk)
Thus (1.17) gives "
k
(r) _ ifpn 1 +—j—1\"
(1.20) G¥) = Zo (-1 (e (TR IT)
i= )
in agreement with (1.16).
2. THECASEp =2
it follows from {1.6) that
2n+1 o o 2n+1
_ i (2m 1Y, klk + 1IN & _ k ni2n+ iy (k= jk=j+ 1\
G (x) er(j)xf}:(“—f)X_Zx_zj(v(].)(—*L—/——z ).
=0 k=0 k=0 =0
Hence, by (1.7), i<k
2n+1
_ pif2n+ 1N [k =ik =i+ TN\"
(2.1) Gup = g 1>, )(——L——L—Z )
i<k
Since the (2n + 1) difference of a polynomial of degree <2n must vanish identically, we have
(2.2) Gu =0 [k >20+1),
Let k <Zn. Then
T iy k=il =+ 1)\ Bt iz (k= k= + )Y
- - " - - - = " - -
(23 0= Y, (-ni(21)( =k ) = Gup r T i () (el 2 1))
=0 j=k+1
T i et [ (kti— 20— 1kt — 20)\"
= "+ /= — /-
‘Gn,k‘za (_”]<2n——j+1)( 7 )
j=
gy i (20 + 1\ ((2n—k—j)(2n — k—j+1)\"
- n—k— —k—- -
= Gup — ]E} (—7)]< n]. )( / 7 L ) = Gn,k"Gn,Zk—k .
Therefore
(2.4) Guk = Gu2nk (1T<k<2n-1).
Note also that, by (2.3},
(2.5) Guon = 0.

Since by (2.4)
Gn,Zn—1 = Gn,l =1,
it is clear that G, (x/ is of degree 2n — 1.
In the next place, by (1.7),
2 Gu+1lx) _ P d—Z{ xGp(x) } i XZG;:(X) +2xG;,(x)

(1 _X)2n+3 dXZ (1 _X)Z.’n+1

2n,
i20ome) X G (x) +xG, (x)
(1 _X)2n+1 (1 _X)Zn+2

wlon s 1)ion+2) 2 Gl
Hence (1-x)?""
(2.6) 26,11 (x) = (1-x)2(x2Gj{x) + 2xG},(x)) + 330 + 1)1 - x)(x2 G}y (x) +xG. (x)) + (20 + 1)(2n +2)x 26,1 (x) .
Comparing coefficients of xk, we get, after simplification,
(2.7) Gyag,p = Vokth +1)Gy 1 - k(20 - k +2)Gyy g + 620 -k +2)2n -k +3)Gp 2 (1 < k < 2n—1).
For computation of the G, (x/ it may be preferable to use (2.6) in the form

(2.8) 26G,4+41x) = (1~ x}zx(xGn (X)) +2(2n + 1M1 — xIx(xG,(x)) + (2n + 1)(2n +2)XZG,, x) .
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The following values were computed using (2.8):
Golx) = 1, Gylx}) =
(2.9) Galx) = x +4x? +x3
G3(x) = x +20x° +48x° +20x +x5
Galx) = x +72x% + 603x7 + 1168x* +603x° + 72x6 +x7
Note that, by (2.1),
G2 =3"—(2n+1), Gp3=6"—(2n+1)-3"+nf2n+1)

Gyq = 10" = (20 + 1)-6" +n(2n +1)-3" - ;7;7 nl4n? — 1)

and so on.
By means of (2,7) we can evaluate G,, (7). Note first that (2.7) helds for 1 < k < 2n + 1. Thus, summing over &, we
get 2n-1 2n 2+
Gne1(1) = 3 Vktk +1)Gy 1 — 3 k20 —k+2)Gy g+ 3, %21 —k+3)2n —k +3)Gyp_2
k=1 k=2 k=3
2n~1 2n-1
= 3 {Bktk+3)—(k+1)(2n—k+ 1)+ 520 = k)20 ~k +1)}Gp e = 3 (n+1)2n+1)Gpp,
k=l k=1
so that
(2.10) Gp+1(1) = (n+1)(2n +1)G,(1).
It follows that
(2.11) G (1) = 272n)! n =0).
In particular

Gi(1) =1, Gof1) =6 G3(1) =90, Gyu(1) = 2520,
in agreement with (2.9),
3. THE GENERAL CASE
It follows from

(r) ol
(3.1) —ﬁ“—()% = > szxk (p =1 nz=0,
71— x)P" k=0

that (1—x)

pntl . pn+1

6P = 3 (=1 (P ) 5_: Z (~1A(Em T

=0
Since ) J<k
(3.2) Tep= (87271

isa polynomial of degree p in k and the (pn + 7/th difference of a polynomial of degree <pn vanishes identically, we
have

pn+l 4
: )Ty, =0
(3.3) f; (~1(En T
Thus, forpn-p+ 17 <k <pn, "
k ] +1 et +1
a " 7 j(pn 7
(3.4) ; (T LGRS
j=0 j=k+1

Since, forpn —p+ 1 <k<pn k<p<p+1, wehave—p <k —j <0, sothat Tk_j,p=0(k+7<j<pn + 7). That
is, every term in the right member of (3.4) is equal to zero. Hence (3.3) gives

E
(3.5 T (eI =0 dn=p T < k < pol
=0 '
It follows that G(p)(x} is of degree <pn —p + 1: ,
pr-p+
(3.6) 6P = Y 6Bl s ),

k=0
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where
- m + 1
(3.7) 6/ - JE& (i (I <k <pn-p+i).
By (3.3) and (3.7},
) pntl . n-k ;
= + 1
(3.8) 6) - - z (- )T = - Z (T
j=k+1 =0
For m > 0, we have
z(=mi=m +1)-(-m+p—1) _ -
Tom,p . pf et (- ”p( ) = 1P Topr1p -

Substituting in (3.8), we get

(p) = (~qpn j zm+1 pr
6E) = (1) 2()) (DI T )l Tiny
= i
This evidently proves the symmetry relation

(r) = ) -
(3.9) G =6 s (T <k<pn-p+1).
Forp = 1, (3.9) reduces to (1.4); for p =2, it reduces to {1.9).

In the next place, it follows from (3.1) and (3.2) that

]pn+1 1
Z (=1) ( i )T(pn k-p+2)-jp"

6 6(P)(x) P ;
ol _____n_l_()%_.g x 92 1 __n_X_} “xy ()£ dPT - 160)(x)). 2L (11— 5P
(1 — x)P(n*1) dxP (1 — x)prtl =0 dxp-1 dx?
p ) ]
= x Plon + 1):(1 - x) P91 Z— 1 p~1p(p)
where :_‘L% (]> ! dx? (X " ).
{pn +1); = (pn+ 1)pn +2) ~(pn +j) .
We have therefore
P
(3.10) pIG(E) (x) = x E( D)o # 11 527 L2 (-1 Py

dxP
Substituting from (3.6) in (3.10), we gu=t

pn+l P
oy 6F) X —xz( Pfon + 1);(1 - x)P4. d”f 2 G(p)xk+P1 =x ()ton+1); Z"” ()X
m=1 dx?J =0 s=0
pn-p+1 k ;
(3.11) . 2 G+ i)y = D™ T (=P (V)P T Ylon + 1)tk + ) 6P
ktjts=m
pn+1 m .
= XY G% ) (_7)3(;;_’>(P ;])(pnv‘ itk +jlp .
m=1 k=1 ’ jts=m-k
kzmp
The sum on the extreme right is equal to J
-k
s pllpn + 1)ilk #jlp "N ke pllpn + 1)tk +p — 1)!
@12 X g T L e it — i =T
jts=m-k
= (o qymk pltk+p = 1)! Z ¢ (-m +k)ifpn + 1);

(k= 1)im — k)k +p —m}! //(k}

By Vandermonde’s theorem, the sum on the right is equal to
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(k=pn =Vt _ (_gpmk _fpn = k+ )ik = 1)1
(k) -t (pn —m+1)m—1)1"

Hence, by (3.11) and (3.12),

{3.13) Gflfzm = 2 (k;{_II)(P”—k’;i)G(% (1T <m<pn+l).

k=1 1
k=m-p
Summing over m, we get
(v) pn-p+1 (v) k+p L s '
P P tp - pn—k+1
Gn+1(” Z G Ek(k+p m)< m—k ) :
=

By Vandermaonde's theorem, the inner sum is equal to

(")
so that
{3.14) G(P) (1) = (P” +P>5(P)(1)
Since G(p)(x) = x, it follows at once from (3 14) that
(3.15) 6P1) = (p1) o)t .

By (3.10) we have

p .
pI6Fx) = x Zo( 2)io + 1)1 = /P B
b=

so that
P L .
(3.16) 6P = x > (2)(2 7)1 =P
=
The sum on the right is equal to
p P ) p p . L
(NPT T -1 = T (R ()P )
oI =0 k=0 =0 7

The inner sum, by Vandermonde's thearem or by finite differences, is equal to (z ). Therefore
p 2
= k
(3.17) 6P = x kz:_o (2) xk.

An explicit formula for Ggp)(x) can he ohtained but is a good deal more complicated than (3.17}). We have, by
(3.10) and (3.17),

P i P 2 p p-J )
pIGP ) = x 3 (E)(1= 0P d’”,{ 3 (%) xk+p}= XY 21 (0) S 1 (P
s=0

=0 dxP =0

) 2p 2(k+p)!
(k+p)! R+ _ 20 +1,
X () G S ) e
. . k=0 m=0 k+]+$_
The inner sum is equal to
p! {k+p)! _ 2(py (k+p)! tiey(2p + 1);
v v gt (¢ y g e i= 2 (B)0) 5 ,Z’” G ey
k+j+5=m k+t=m
_ trp\oyp\(ktp) k=-2p)¢ _ (oNY o\ (ktp)l (20 —K)!
= X (i)(’?) kI (k+1); Ki) @) ml  (2p—m)! ~

k+t=m k+t=m
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Therefore
G =y B m VY b \(ktpll(Z0— k)
(3.18) Plix) = x ZOX kz(;)(k) (m~k)p/m/(zp_m)/ :
o -

4, COMBINATORIAL INTERPRETATION

As in the Introduction, putZ, = {7, 2, -, n} and consider sequences 0= {ay, a2, -, an/, where the a; eZ,and
the element / occurs ej times in o, 7 </ <n. Arise in 0 is a pair a;, a;+1 such thata; <a;+7, also a conventional rise
to the left of a7 is counted. The ordered set of nonnegative integers /o4, 62, -, &,/ iscalled thesignature of o.
CleariyN = e; +e5 + -+, .

Let

Aley, ez, -, e, |1
dencte the number of sequences ¢ of specification /ey, e3, -, &, |r/ and having r rises. In particular, fore; =3 =
=g, = p, we put

(4.1) Aln,p,r) = Alp,p, -, p|r).
The following lemma will be used. \—;’,—/

Lemma. Forn > 1, we have

T
= pn—j+1\[p+j—1 :
(4.2) Aln+1,p,1) ‘[; < .y >< 1 >A(n,p,/) (1 <r<pn+1).
=
j2r-p
It is easy to see that the number of rises in sequences enumerated by Afn + 71, p, r} is indeed not greater than
pn + 1.
To prove (4.2), let ¢ denote a typical sequence from z,, of specification /p, p, -+, p/ with/ rises. The additional p

elementsn + 7 are partitioned into k£ nonvacuous subsets of cardinality 7y, f2, -, f1, 2 0 so that
(4.3) fr+fp+tfp =p, f; > 0.

Now when f elements » + 7 are inserted in a rise of ¢ it is evident that the total number of rises is unchanged, that is,
j-+/{. On the other hand, if they are inserted in a nonrise {that is, a fall or level} then the number of rises is increased
by one: j—j + 1. Assume that the additional p elements have been inserted in a rises and & nonrises. Thus we have
j+h=r a+h=k, sothat

a= k+j—r, b =r—j.

The number of solutions 74, 2, -, f of {4.3), for fixed &, is equal to (1]: - ;) The a rises of o are chosen in

(2>:(k+§—r>:(rik>

ways; the & nonrises are chosen in :
P”—f+1) =<P”—j+1

b r—j
ways.

It follows that

p ) )
A 1.0 = Tamp i 3 (E21( 20727
The inner sum is equal to / k=1

) p-1 . . .
G N G [ T e e R [
by Vandermonde’s theorem. Therefore
r . n
Aln+1,p,1) = E (er NPT ) Al i)
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This completes the proof of {4.2). The proof may be compared with the proof of the more general recurrence (2.9)
for Afeq, -, 8,|r, s) in [31,
it remains to compare (4.2) with (3.13). We rewrite (3.13) in slightly different notation to facilitate the comparison:

r

wa o, - £ (37 ) 125 )eg)

Since (
Anlf’l) = G{f{ =7 (h=1223-),

it follows from (4.2) and (4.4) that

{4.5) Gy(lpr) = Afn,p,r).
To sum up, we state the following
Theorem. The coefficient Gﬁpﬁ defined by

T e
P = “ p
G!, {x) > Gn,kX
k=1
is equal to Afn, p, kJ, the number of sequences 0= (a7, az, -, apn) from Z,,, of specification /p, p, -, p/ and hav-
ing exactly £ rises.
As an immediate corollary we have

pn-p+l
(4.8) G‘Y(ZP)(I) = k; 61{5’,3 = (p!) ™ pn)!.

Clearly Ggp)(ll is equal to the total number of sequences of length pn and specification /p, p, -, p/, which, by a
familiar combinaterial result, is equal to (p//-"{pn)! The previous proof (4.6) given in § 3 is of an entirely different
nature.

5. RELATION OF G5(x) TO A, (x)

The polynomial Glgf’) can be expressed in terms of the A, (x/. For simplicity we take p =2 and, asin § 2, write
Gy, (x) in place of G(2)(x).
By (1.6) and (1.1) we have

Gu(x) . - n k _ kX (n ne _ D n+ k _ 2o Ansilx)
Zn____"____—Z(k(k+7)lx— X Nk ‘E'ZkX'Z"—‘_’—“- ,
(I—X)2n+1 £=0 L0 =0 (]) ]=0 (J )k=0 ]:0 (])(I_X}Tl'fj'l'l
so that
(5.1) 2"Gulx) = Jgg (5)1 =2t

The right-hand side of {5.1) is equal to 7
- n i) sfn—j\,s | k z m ) m-k (n\fn—j
Z <]> E (=1) < s ]>X Z A”"'j)kx = Z X Z 2 (=1 (J’>(H—k)Anﬁ1k :
=0 s=0 k=1 m=1 =0 k=1
k<m
Since the left-hand side of (5.1) is equal to

2n-1
2" 57 Gymx™,
m=1
it follows that
m n-m+k )
(5.2) 26um = 2 (0" T (2 ) Anrie (1 <m < 20-1)
k=1 =0



146 GENERALIZED EULERIAN NUMERALS AND POLYNOMIALS APR.1978

and p L
(5.3 0= 082 (7)o Zi) Amie
k=n j=0

In view of the combinaterial interpretation of A, 3 and G, ,,,, (6.2) implies a combinatorial result; however the
result in question is too complicated to be of much interest.
For p = 3, consider

6700 _ & gz ok = ez +2il%)
6" —B—"= = 37 K"(kP - 1) Z (=1 (7 )Z K2y Z (=% ) L2

(1-x"" e =0 =0 = -
Thus we have
(5.4) 6"x6Ptx) = 20 (=" ()1 =" B p gl

J=
The right-hand side of (5.4) is equal to
2n-2j 2 n+2j ©
T T e () gt 3 I O A
k=1 j=
It fullows that
(3) "+2 k(2n— 2k
" - wm- n —
(5.5) LA ”Zj (—1)"7( 1;1 (=1)7F (0 7 28) Ansajk
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[Continued from page 129.]
Recalling [2, p. 137] that

n
G+1) 3 k= Bir1(n+1) = Bjsq,

k=1
where B;(x) are Bernoulli polynomials with B;(0) = ;,» the Bernoulli numbers, we obtain from (2.3) withx =7, 8 =
1, and £, = k the inequality
(2.4) Bopln+1)~Bap < (Byln+1)—B,)% (0 =12-).
Foro=2k+1,k=1,2,-,Bsp+; =0, and so (2.4) gives the inequality
{2.5) Bapsaln+1) - Bypez < B 2k+1 (n+1) fnk =12}

3. AN INEQUALITY FOR INTEGER SEQUENCES
Noting that U/, = & satisfies the difference equation

) Uz = 2Up+1 — Uy,
[Continued on page 151.]



