The Fibonacci Quarterly 1978 (vol.16,2): 138-146

GENERALIZED EULERIAN NUMBERS AND POLYNOMIALS

L. CARLITZ Duke University, Durham, North Carolina 27706 and V. E. HOGGATT, JR. San Jose State University, San Jose, California 95192

1. INTRODUCTION

Put

(1.1)
$$\sum_{k=0}^{\infty} k^n x^k = \frac{A_n(x)}{(1-x)^{n+1}} \qquad (n \ge 0).$$

It is well known (see for example [1], [2, Ch. 2] that, for $n \ge 1$, $A_n(x)$ is a polynomial of degree n:

(1.2)
$$A_n(x) = \sum_{k=1}^n A_{n,k} x^k;$$

the coefficients $A_{n,k}$ are called Eulerian numbers. They are positive integers that satisfy the recurrence

$$A_{n+1,k} = (n-k+2)A_{n,k-1} + kA_{n,k}$$

and the symmetry relation

(1.4)
$$A_{n,k} = A_{n,n-k+1} \qquad (1 \le k \le n).$$

There is also the explicit formula

(1.5)
$$A_{n,k} = \sum_{j=0}^{k} (-1)^{j} {n+1 \choose j} (k-j)^{n} \qquad (1 \le n \le k).$$

Consider next

(1.6)
$$\sum_{k=0}^{\infty} \left(\frac{k(k+1)}{2} \right)^n x^k = \frac{G_n(x)}{(1-x)^{2n+1}} \qquad (n \ge 0).$$

We shall show that, for $n \ge 1$, $G_n(x)$ is a polynomial of degree 2n - 1:

(1.7)
$$G_n(x) = \sum_{k=0}^{2n-1} G_{n,k} x^k.$$

The $G_{n,k}$ are positive integers that satisfy the recurrence

(1.8)
$$G_{n+1,k} = \frac{1}{2}k(k+1)G_{n,k} - k(2n-k+2)G_{n,k-1} + \frac{1}{2}(2n-k+2)(2n-k+3)G_{n,k-2}$$
 $(1 \le k \le 2n+1)$ and the symmetry relation

(1.9)
$$G_{n,k} = G_{n,2n-k}$$
 $(1 \le k \le 2n-1).$

There is also the explicit formula

(1.10)
$$G_{n,k} = \sum_{j=0}^{k} (-1)^{j} {2n+1 \choose j} \left(\frac{(k-j)(k-j+1)}{2} \right)^{n} \qquad (1 \le k \le 2n-1).$$

The definitions (1.1) and (1.6) suggest the following generalization. Let $p \ge 1$ and put

(1.11)
$$\sum_{k=0}^{\infty} T_{k,p}^{n} x^{k} = \frac{G_{n}^{(p)}(x)}{(1-x)^{pn+1}} \qquad (n \geqslant 0),$$

where

(1.12)
$$T_{k,p}=\binom{k+p-1}{p}\;.$$
 We shall show that $G_n^{(p)}(x)$ is a polynomial of degree $pn-p+1$.

(1.13)
$$G_n^{(p)}(x) = \sum_{k=1}^{pn-p+1} G_{n,k}^{(p)} x^k \qquad (n \ge 1),$$

where the $G_{n,k}^{(p)}$ are positive integers that satisfy the recurrence

(1.14)
$$G_{n+1,m}^{(p)} = \sum_{\substack{k=1\\k \geqslant m-p}}^{m} {k+p-1 \choose m-1} {pn-k+1 \choose m-k} G_{n,k}^{(p)} \qquad (1 \leq m \leq pn+1),$$

and the symmetry relation

and the symmetry relation (1.15)
$$G_{n,k}^{(p)} = G_{n,pn-p-k+2}^{(p)} \qquad \qquad (1 \leqslant k \leqslant pn-p-k+1) \,.$$
 There is also the explicit formula

(1.16)
$$G_{n,k}^{(p)} = \sum_{j=0}^{k} (-1)^{j} {pn+1 \choose j} T_{k-j,p}^{n} \qquad (1 \le k \le pn-p+1)$$

with $T_{k,p}$ defined by (1.12). Clearly

$$G_n^{(1)}(x) = A_n(x), \qquad G_n^{(2)}(x) = G_n(x).$$

The Eulerian numbers have the following combinatorial interpretation. Put $Z_n = \{1, 2, \dots, n\}$, and let $\pi = (a_1, a_2, \dots, a_n)$ \cdots , a_n) denote a permutation of Z_n . A rise of π is a pair of consecutive elements a_i , a_{i+1} such that $a_i < a_{i+1}$; in addition a conventional rise to the left of a_t is included. Then [6, Ch. 8] $A_{n,k}$ is equal to the number of permutations of Z_n with exactly k rises.

To get a combinatorial interpretation of $G^{(p)}_{n,k}$ we recall the statement of the Simon Newcomb problem. Consider sequences $\sigma = |(a_1, a_2, \cdots, a_N)|$ of length N with $a_i \in Z_n$. For $1 \le i \le n$, let i occur in σ exactly e_i times; the ordered set (e_1, e_2, \dots, e_n) is called the specification of σ . A rise is a pair of consecutive elements a_i, a_{i+1} such that $a_i < a_{i+1}$; a fall is a pair a_i , a_{i+1} such that $a_i > a_{i+1}$; a level is a pair a_i , a_{i+1} such that $a_i = a_{i+1}$. A conventional rise to the left of a_1 is counted, also a conventional fall to the right of a_N . Let σ have r rises, s falls and t levels, so that r+s+t=N+1. The Simon Newcomb problem [5, IV, Ch. 4], [6, Ch. 8] asks for the number of sequences from Z_n of length N, specification $[e_1, e_2, \cdots, e_n]$ and having exactly r rises. Let $A(e_1, e_2, \cdots, e_n]$ denote this number. Dillon and Roselle [4] have proved that $A(e_1, \dots, e_n | r)$ is an extended Eulerian number [2] defined in the following way. Put

$$\frac{1-\lambda}{\zeta(s)-\lambda} = \sum_{m=1}^{\infty} m^{-s} (\lambda-1)^{-N} \sum_{r=1}^{N} A^*(m,r) \lambda^{N-r},$$

where $\zeta(s)$ is the Riemann zeta-function and

$$m = p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}, \qquad N = e_1 + e_2 + \cdots + e_n;$$

then

$$A(e_1, e_2, \cdots, e_n | r) = A*(m,r),$$

Moreover

(1.17)
$$A(e_1, e_2, \dots, e_n | r) = \sum_{j=0}^r (-1)^j {N+1 \choose j} \prod_{i=1}^n {e_i + r - j - 1 \choose e_i}$$

A refined version of the Simon Newcomb problem asks for the number of sequences from z_n of length N, specification $[e_1, e_2, \dots, e_r]$ and with r rises and s falls. Let $A(e_1, \dots, e_n | r, s)$ denote this enumerant. It is proved in [3] that

$$(1.18) \sum_{e_1,\dots,e_n=0}^{\infty} \sum_{r+s \leqslant N+1} A(e_1,\dots,e_n \mid r,s) z_1^{e_1} \dots z_n^{e_n} x^r y^s = xy \underbrace{\prod_{i=1}^{n} (1+(y-1)z_i) - \prod_{i=1}^{n} (1+(x-1)z_i)}_{y \ \prod_{i=1}^{n} (1+(x-1)z_i) - x \ \prod_{i=1}^{n} (1+(y-1)z_i)}_{i=1}.$$

However explicit formulas were not obtained for $A(e_i, -, e_n(r,s))$

Returning to $G_{n,k}^{(p)}$, we shall show that

$$G_{n,k}^{(p)} = A(\underbrace{p, \cdots, p}_{n}|k).$$

Thus (1.17) gives

$$G_{n,k}^{(p)} = \sum_{j=0}^{k} (-1)^{j} \binom{pn+1}{j} \binom{p+k-j-1}{p}^{n}$$

in agreement with (1.16).

2. THE CASE p = 2

It follows from (1.6) that

$$G_n(x) = \sum_{j=0}^{2n+1} (-1)^j \binom{2n+1}{j} x^j \sum_{k=0}^{\infty} \left(\frac{k(k+1)}{2} \right)^n x^k = \sum_{k=0}^{\infty} x^k \sum_{\substack{j=0 \ i \le k}}^{2n+1} (-1)^j \binom{2n+1}{j} \left(\frac{(k-j)(k-j+1)}{2} \right)^n.$$

(2.1)
$$G_{n,k} = \sum_{\substack{j=0\\j \le k}}^{2n+1} (-1)^j {2n+1 \choose j} \left(\frac{(k-j)(k-j+1)}{2} \right)^n$$

Since the $(2n + 1)^{th}$ difference of a polynomial of degree $\leq 2n$ must vanish identically, we have

$$G_{n,k}=0 \qquad (k \geqslant 2n+1).$$

Let $k \leq 2n$. Then

$$(2.3) \quad \theta = \sum_{j=0}^{2n+1} (-1)^{j} {2n+1 \choose j} \left(\frac{(k-j)(k-j+1)}{2} \right)^{n} = G_{n,k} + \sum_{j=k+1}^{2n+1} (-1)^{j} {2n+1 \choose j} \left(\frac{(k-j)(k-j+1)}{2} \right)^{n}$$

$$= G_{n,k} - \sum_{j=0}^{2n-k} (-1)^{j} {2n+1 \choose 2n-j+1} \left(\frac{(k+j-2n-1)(k+j-2n)}{2} \right)^{n}$$

$$= G_{nk} - \sum_{i=0}^{2n-k} (-1)^{j} {2n+1 \choose j} \left(\frac{(2n-k-j)(2n-k-j+1)}{2} \right)^{n} = G_{n,k} - G_{n,2k-k}.$$

Therefore

(2.4)

$$G_{n,k} = G_{n,2n-k}$$
 $(1 \le k \le 2n-1)$.

Note also that, by (2.3),

(2.5)

$$G_{n,2n}=0.$$

Since by (2.4)

$$G_{n,2n-1} = G_{n,1} = 1$$
,

it is clear that $G_n(x)$ is of degree 2n-1.

In the next place, by (1.7),

$$2\frac{G_{n+1}(x)}{(1-x)^{2n+3}} = x \frac{d^2}{dx^2} \left\{ \frac{xG_n(x)}{(1-x)^{2n+1}} \right\} = \frac{x^2G_n''(x) + 2xG_n'(x)}{(1-x)^{2n+1}} + 2(2n+1) \frac{x^2G_n'(x) + xG_n(x)}{(1-x)^{2n+2}} + (2n+1)(2n+2) \frac{x^2G_n'(x)}{(1-x)^{2n+3}}$$

Hence

$$(2.6) \quad 2G_{n+1}(x) = (1-x)^2(x^2G_n'(x) + 2xG_n'(x)) + 3(3n+1)(1-x)(x^2G_n'(x) + xG_n(x)) + (2n+1)(2n+2)x^2G_n(x)$$

Comparing coefficients of x^k , we get, after simplification, (2.7) $G_{n+1,k} = \frac{1}{2}k(k+1)G_{n,k} - k(2n-k+2)G_{n,k-1} + \frac{1}{2}(2n-k+2)(2n-k+3)G_{n,k-2}$ (1 $\leq k \leq 2n-1$).

$$(2.8) \quad 2G_{n+1}(x) = (1-x)^2 x (xG_n(x))'' + 2(2n+1)(1-x)x (xG_n(x))' + (2n+1)(2n+2)x^2 G_n(x).$$

For computation of the $G_n(x)$ it may be preferable to use (2.6) in the form

The following values were computed using (2.8):

(2.9)
$$\begin{cases} G_0(x) = 1, & G_1(x) = x \\ G_2(x) = x + 4x^2 + x^3 \\ G_3(x) = x + 20x^2 + 48x^3 + 20x^4 + x^5 \\ G_4(x) = x + 72x^2 + 603x^3 + 1168x^4 + 603x^5 + 72x^6 + x^7 \end{cases}$$

Note that, by (2.1),

$$G_{n,2} = 3^n - (2n+1),$$
 $G_{n,3} = 6^n - (2n+1) \cdot 3^n + n(2n+1)$
 $G_{n,4} = 10^n - (2n+1) \cdot 6^n + n(2n+1) \cdot 3^n - \frac{1}{3} n(4n^2 - 1)$

and so on.

By means of (2.7) we can evaluate $G_n(1)$. Note first that (2.7) holds for $1 \le k \le 2n + 1$. Thus, summing over k, we

$$G_{n+1}(1) = \sum_{k=1}^{2n-1} \frac{1}{2k} k(k+1) G_{n,k} - \sum_{k=2}^{2n} \frac{1}{2k} k(2n-k+2) G_{n,k-1} + \sum_{k=3}^{2n+1} \frac{1}{2k} (2n-k+3) (2n-k+3) G_{n,k-2}$$

$$= \sum_{k=1}^{2n-1} \left\{ \frac{1}{2k} k(k+3) - (k+1) (2n-k+1) + \frac{1}{2k} (2n-k) (2n-k+1) \right\} G_{n,k} = \sum_{k=1}^{2n-1} \frac{1}{2k} (n+1) (2n+1) G_{n,k}$$

so that

(2.10)

$$G_{n+1}(1) = (n+1)(2n+1)G_n(1)$$
.

It follows that (2.11)

$$G_n(1) = 2^{-n}(2n)! \qquad (n \ge 0)$$

In particular

$$G_1(1) = 1$$
, $G_2(1) = 6$, $G_3(1) = 90$, $G_4(1) = 2520$,

in agreement with (2.9).

3. THE GENERAL CASE

It follows from

(3.1)
$$\frac{G_n^{(p)}(x)}{(1-x)^{pn+1}} = \sum_{k=0}^{\infty} T_{k,p}^n x^k \qquad (p \ge 1, n \ge 0),$$

that

$$G_n^{(p)}(x) = \sum_{j=0}^{pn+1} (-1)^j \binom{pn+1}{j} x^j \sum_{k=0}^{\infty} x^k \sum_{\substack{j=0\\j \leqslant k}}^{pn+1} (-1)^j \binom{pn+1}{j} T_{k-j,p}^n.$$

Since

(3.2)
$$T_{k,p} = \binom{k+p-1}{p}$$

is a polynomial of degree p in k and the (pn + 1)th difference of a polynomial of degree $\leq pn$ vanishes identically, we

(3.3)
$$\sum_{j=0}^{pn+1} (-1)^{j} \binom{pn+1}{j} T_{k-j,p}^{n} = 0.$$

Thus, for
$$pn - p + 1 < k \le pn$$
,
$$\sum_{j=0}^{k} (-1)^{j} {pn+1 \choose j} T_{k-j,p}^{n} = -\sum_{j=k+1}^{pn+1} (-1)^{j} {pn+1 \choose j} T_{k-j,p}^{n}.$$
Since for $pn = n + 1 \le k \le pn$, $k \le n \le n + 1$, we have $n \le k - 1 \le n$ so that $T_{k-j} = 0$.

Since, for $pn-p+1 < k \le pn$, k , we have <math>-p < k-j < 0, so that $T_{k-j,p} = 0$ $(k+1 \le j \le pn+1)$. That is, every term in the right member of (3.4) is equal to zero. Hence (3.3) gives

(3.5)
$$\sum_{j=0}^{k} (-1)^{j} {pn+1 \choose j} T_{k-j,p}^{n} = 0 \qquad (pn-p+1 < k \le pn).$$

It follows that $G_n^{(p)}(x)$ is of degree $\leq pn - p + 1$

(3.6)
$$G_n^{(p)}(x) = \sum_{k=0}^{pn-p+1} G_{n,k}^{(p)} x^k \qquad (n \ge 1),$$

where

(3.7)
$$G_{n,k}^{(p)} = \sum_{j=0}^{k} (-1)^{j} {pn+1 \choose j} T_{k-j,p}^{n} \qquad (1 \le k \le pn-p+1).$$

(3.8)
$$G_{n,k}^{(p)} = -\sum_{j=k+1}^{pn+1} (-1)^j \binom{pn+1}{j} T_{k-j,p}^n = (-1)^{pn} \sum_{j=0}^{pn-k} (-1)^j \binom{pn+1}{j} T_{k+j-pn-1,p}^n$$

For
$$m \ge 0$$
, we have
$$T_{-m,p} = \frac{(-m)(-m+1)\cdots(-m+p-1)}{p!} = (-1)^p {m \choose p} = (-1)^p T_{m-p+1,p} \ .$$

Substituting in (3.8), we get

$$G_{n,k}^{(p)} = (-1)^{pn} \sum_{j=0}^{pn-k} (-1)^{j} \binom{pn+1}{j} \cdot (-1)^{pn} T_{pn-k-j-p+2,p}^{n} = \sum_{j=0}^{pn-k} (-1)^{j} \binom{pn+1}{j} T_{(pn-k-p+2)-j,p}^{n}$$

This evidently proves the symmetry relation

(3.9)
$$G_{n,k}^{(p)} = G_{n,pn-k-p+2}^{(p)} \qquad (1 \le k \le pn-p+1).$$
 For $p=1$, (3.9) reduces to (1.4); for $p=2$, it reduces to (1.9).

In the next place, it follows from (3.1) and (3.2) that

$$p! \frac{G_{n+1}^{(p)}(x)}{(1-x)^{p(n+1)+1}} = x \frac{d^p}{dx^p} x^{p-1} \left\{ \frac{G_n^{(p)}(x)}{(1-x)^{pn+1}} \right\} = x \sum_{j=0}^p {p \choose j} \frac{d^{p-j}}{dx^{p-1}} (x^{p-1}G_n^{(p)}(x)) \cdot \frac{d^j}{dx^p} ((1-x)^{-pn-1})$$

$$= x \sum_{j=0}^p {p \choose j} (pn+1)_j (1-x)^{-pn-j-1} \frac{d^{p-j}}{dx^{p-j}} (x^{p-1}G_n^{(p)}(x)),$$

where

$$(pn+1)_i = (pn+1)(pn+2) \cdots (pn+i)$$
.

We have therefore

(3.10)
$$p!G_{n+1}^{(p)}(x) = x \sum_{i=0}^{p} {p \choose i} (pn+1)_{j} (1-x)^{p-j} \frac{d^{p-j}}{dx^{p-j}} (x^{p-1}G_{n}^{(p)}(x)).$$

$$\rho! \sum_{m=1}^{pn+1} G_{n+1,m}^{(p)} x^m = x \sum_{j=0}^{p} {p \choose j} (pn+1)_j (1-x)^{p-j} \cdot \frac{d^{p-j}}{dx^{p-j}} \sum_{k=0}^{pn-p+1} G_{n,k}^{(p)} x^{k+p-1} = x \sum_{j=0}^{p} {p \choose j} (pn+1)_j \sum_{s=0}^{p-j} (-1)^s {p-j \choose s} x^s$$

$$(3.11) \qquad \cdot \sum_{k=1}^{pn-p+1} G_{n,k}^{(p)} (k+j)_{p-j} x^{k+j-1} = \sum_{k=1}^{pn-p+1} x^m \sum_{k+j+s=m} (-1)^s {p \choose j} {p-j \choose s} (pn+1)_j (k+j)_{p-j} G_{n,k}^{(p)}$$

$$= \sum_{m=1}^{pn+1} x^m \sum_{k=1}^{m} G_{n,k}^{(p)} \sum_{j+s=m-k} (-1)^s {p \choose j} {p-j \choose s} (pn+1)_j (k+j)_{p-j}.$$

3.12)
$$\sum_{j+s=m-k} (-1)^s \frac{p!(pn+1)_j(k+j)_{p-j}}{j!s!(p-j-s)!} = \sum_{j=0}^{m-k} (-1)^{m-k-j} \frac{p!(pn+1)_j(k+p-1)!}{j!(m-k-j)!(k+p-m)!(k+j-1)!}$$
$$= (-1)^{m-k} \frac{p!(k+p-1)!}{(k-1)!(m-k)!(k+p-m)!} \sum_{j=0}^{m-k} \frac{(-m+k)_j(pn+1)_j}{j!(k)_j}.$$

By Vandermonde's theorem, the sum on the right is equal to

$$\frac{(k-pn-1)_{m-k}}{(k)_{m-k}} = (-1)^{m-k} \ \frac{(pn-k+1)!(k-1)!}{(pn-m+1)!(m-1)!}.$$

Hence, by (3.11) and (3.12),

(3.13)
$$G_{n+1,m}^{(p)} = \sum_{\substack{k=1\\k \geqslant m-p}} {k+p-1 \choose m-1} {pn-k+1 \choose m-k} G_{n,k}^{(p)} \qquad (1 \leqslant m \leqslant pn+1).$$

Summing over m, we get

$$G_{n+1}^{(p)}(1) = \sum_{k=1}^{pn-p+1} G_{n,k}^{(p)} \sum_{m=k}^{k+p} {k+p-1 \choose k+p-m} {pn-k+1 \choose m-k}.$$

By Vandermonde's theorem, the inner sum is equal to

so that
$$G_{n+1}^{(p)}(1) = {pn+p \choose p},$$
 Since $G_1^{(p)}(x) = x$, it follows at once from (3.14) that

(3.15)
$$G_n^{(p)}(1) = (p!)^{-n}(pn)!$$

By (3.10) we have

$$p!G_2^{(p)}(x) = x \sum_{i=0}^{p} {p \choose i} (p+1)_j (1-x)^{p-j} \cdot \frac{p!}{j!} x^j,$$

so that

(3.16)
$$G_2^{(p)}(x) = x \sum_{j=0}^{p} {p \choose j} {p+j \choose j} x^j (1-x)^{p-j}.$$

The sum on the right is equal to

$$\sum_{j=0}^{p} \binom{p}{j} \binom{p+j}{j} x^{j} \sum_{s=0}^{p-j} (-1)^{s} \binom{p-j}{s} x^{s} = \sum_{k=0}^{p} \binom{p}{k} x^{k} \sum_{j=0}^{p-j} (-1)^{k-j} \binom{k}{j} \binom{p+j}{j}$$

The inner sum, by Vandermonde's theorem or by finite differences, is equal to $\binom{p}{k}$. Therefore

(3.17)
$$G_2^{(p)}(x) = x \sum_{k=0}^{p} {p \choose k}^2 x^k.$$

An explicit formula for $G_3^{(p)}(x)$ can be obtained but is a good deal more complicated than (3.17). We have, by (3.10) and (3.17),

$$p!G_{3}^{(p)}(x) = x \sum_{j=0}^{p} {p \choose j} (1-x)^{p-j} \cdot \frac{d^{p-j}}{dx^{p-j}} \left\{ \sum_{k=0}^{p} {p \choose k}^{2} x^{k+p} \right\} = x \sum_{j=0}^{p} (2p+1) \cdot {p \choose j} \sum_{s=0}^{p-j} (-1)^{s} {p-j \choose s} x^{s}$$

$$\cdot \sum_{k=0}^{p} {p \choose k}^{2} \frac{(k+p)!}{(k+j)!} \cdot x^{k+j} = x \sum_{m=0}^{2p} x^{m} \sum_{k+j+s=m} (-1)^{s} {p \choose j} {p-j \choose s} {p \choose k}^{2} \frac{(k+p)!}{(k+j)!} (2p+1)^{s}$$
The interpretation and the

$$\sum_{k+j+s=m} (-1)^s \frac{p!}{j!s!(p-s-j)!} \binom{p}{k}^2 \frac{(k+p)!}{(k+j)!} (2p+1)_j = \sum_{k+t=m} \binom{p}{k}^2 \binom{p}{t} \frac{(k+p)!}{k!} \sum_{j=0}^t (-1)^{t-j} \binom{t}{j} \frac{(2p+1)_j}{(k+1)_j}$$

$$= \sum_{k+t=m} (-1)^t \binom{p}{k}^2 \binom{p}{t} \frac{(k+p)!}{k!} \frac{(k-2p)_t}{(k+1)_t} = \sum_{k+t=m} \binom{p}{k}^2 \binom{p}{t} \frac{(k+p)!}{m!} \frac{(2p-k)!}{(2p-m)!}.$$

Therefore

(3.18)
$$G_3^{(p)}(x) = x \sum_{m=0}^{2p} x^m \sum_{k=0}^m {p \choose k}^2 {p \choose m-k} \frac{(k+p)!(2p-k)!}{p!m!(2p-m)!}.$$

4. COMBINATORIAL INTERPRETATION

As in the Introduction, put $Z_n = \{1, 2, \cdots, n\}$ and consider sequences $\sigma = (a_1, a_2, \cdots, a_N)$, where the $a_i \in Z_n$ and the element j occurs e_j times in σ , $1 \le j \le n$. A rise in σ is a pair a_i , a_{i+1} such that $a_i < a_{i+1}$, also a conventional rise to the left of a_1 is counted. The ordered set of nonnegative integers $[e_1, e_2, \cdots, e_n]$ is called the signature of σ . Clearly $N = e_1 + e_2 + \cdots + e_n$.

Let

$$A(e_1, e_2, \cdots, e_n \mid r)$$

denote the number of sequences σ of specification $[e_1, e_2, \cdots, e_n | r]$ and having r rises. In particular, for $e_1 = e_2 = \cdots = e_n = p$, we put

i ne tollowing lemma will be used. Lemma. For $n\geqslant 1$, we have

$$A(n,p,r) = A(p,p,\cdots,p|r).$$

(4.2) $A(n+1,p,r) = \sum_{j=1}^{r} {\binom{pn-j+1}{r-j}} {\binom{p+j-1}{r-1}} A(n,p,j) \qquad (1 \le r \le pn+1).$

It is easy to see that the number of rises in sequences enumerated by A(n + 1, p, r) is indeed not greater than pn + 1.

To prove (4.2), let σ denote a typical sequence from z_n of specification $[p, p, \dots, p]$ with j rises. The additional p elements n+1 are partitioned into k nonvacuous subsets of cardinality $f_1, f_2, \dots, f_k \ge 0$ so that

$$(4.3) f_1 + f_2 + \dots + f_k = p, f_i > 0.$$

Now when f elements n+1 are inserted in a rise of σ it is evident that the total number of rises is unchanged, that is, $j \rightarrow j$. On the other hand, if they are inserted in a nonrise (that is, a fall or level) then the number of rises is increased by one: $j \rightarrow j + 1$. Assume that the additional p elements have been inserted in p rises and p nonrises. Thus we have p + p = r, p + p = r, so that

$$a = k + j - r, \qquad b = r - j.$$

The number of solutions t_1, t_2, \cdots, t_k of (4.3), for fixed k, is equal to $\binom{p-1}{k-1}$. The a rises of σ are chosen in

$$\begin{pmatrix} j \\ a \end{pmatrix} = \begin{pmatrix} j \\ k+j-r \end{pmatrix} = \begin{pmatrix} j \\ r-k \end{pmatrix}$$

ways; the b nonrises are chosen in

$$\begin{pmatrix} pn-j+1\\b\end{pmatrix}=\begin{pmatrix} pn-j+1\\r-j\end{pmatrix}$$

wavs

It follows that

$$A(n+1, p, r) = \sum_{j} A(n, p, j) \cdot \sum_{k=1}^{p} {p-1 \choose k-1} {j \choose r-k} {pn-j+1 \choose r-j}$$

The inner sum is equal to

$$\binom{pn-j+1}{r-j}\sum_{k=0}^{p-1}\binom{p-1}{k}\binom{j}{r-k-1}=\binom{pn-j+1}{r-j}\binom{p+j-1}{r-1},$$

by Vandermonde's theorem. Therefore

$$A(n+1,p,r) = \sum_{j=1}^{r} {pn-j+1 \choose r-j} {p+j-1 \choose r-1} A(n,p,j).$$

This completes the proof of (4.2). The proof may be compared with the proof of the more general recurrence (2.9) for $A(e_1, \dots, e_n | r, s)$ in [3].

It remains to compare (4.2) with (3.13). We rewrite (3.13) in slightly different notation to facilitate the comparison:

(4.4)
$$G_{n+1,r}^{(p)} = \sum_{j=1}^{r} {pn-j+1 \choose r-j} {p+j-1 \choose r-1} G_{n,j}^{(p)}.$$

Since

$$A_{n,1}^{(p)} = G_{n,1}^{(p)} = 1$$
 $(n = 1, 2, 3, ...),$

it follows from (4.2) and (4.4) that (4.5)

$$G_{n,r}^{(p)} = A(n,p,r).$$

To sum up, we state the following

Theorem. The coefficient $G_{n,k}^{(p)}$ defined by

$$G_n^{(p)}(x) = \sum_{k=1}^{pn-p+1} G_{n,k}^{(p)} x^k$$

is equal to A(n, p, k), the number of sequences $o = (a_1, a_2, \dots, a_{pn})$ from Z_n , of specification $[p, p, \dots, p]$ and having exactly k rises.

As an immediate corollary we have

(4.6)
$$G_n^{(p)}(1) = \sum_{k=1}^{pn-p+1} G_{n,k}^{(p)} = (p!)^{-n}(pn)!.$$

Clearly $G_n^{(p)}(1)$ is equal to the total number of sequences of length pn and specification $[p, p, \cdots, p]$, which, by a familiar combinatorial result, is equal to $(p!)^{-n}(pn)!$ The previous proof (4.6) given in § 3 is of an entirely different nature

5. RELATION OF
$$G_n^p(x)$$
 TO $A_n(x)$

The polynomial $G_n^{(p)}$ can be expressed in terms of the $A_n(x)$. For simplicity we take p=2 and, as in § 2, write $G_n(x)$ in place of $G_n^{(2)}(x)$.

By (1.6) and $(1.1)^n$ we have

$$2^n \frac{G_n(x)}{(1-x)^{2n+1}} = \sum_{k=0}^{\infty} (k(k+1))^n x^k = \sum_{k=0}^{\infty} x^k \sum_{j=0}^n \binom{n}{j} k^{n+j} = \sum_{j=0}^n \binom{n}{j} \sum_{k=0}^{\infty} k^{n+j} x^k = \sum_{j=0}^n \binom{n}{j} \frac{A_{n+j}(x)}{(1-x)^{n+j+1}},$$

so that

(5.1)
$$2^{n}G_{n}(x) = \sum_{j=0}^{n} {n \choose j} (1-x)^{n-j} A_{n+j}(x).$$

The right-hand side of (5.1) is equal to

$$\sum_{j=0}^{n} \binom{n}{j} \sum_{s=0}^{n-j} (-1)^{s} \binom{n-j}{s} x^{s} \sum_{k=1}^{n+j} A_{n+j,k} x^{k} = \sum_{m=1}^{2n} x^{m} \sum_{j=0}^{n} \sum_{\substack{k=1 \\ k \leq m}}^{n} (-1)^{m-k} \binom{n}{j} \binom{n-j}{n-k} A_{n+j,k} .$$

Since the left-hand side of (5.1) is equal to

$$2^n \sum_{m=1}^{2n-1} G_{n,m} x^m$$
,

it follows that

(5.2)
$$2^{n}G_{n,m} = \sum_{k=1}^{m} (-1)^{m-k} \sum_{j=0}^{n-m+k} {n \choose j} {n-j \choose m-k} A_{n+j,k} (1 \le m \le 2n-1)$$

and

(5.3)
$$0 = \sum_{k=n}^{2n} (-1)^k \sum_{j=0}^{k-n} {n \choose j} {n-j \choose 2n-k} A_{n+j,k}.$$

In view of the combinatorial interpretation of $A_{n,k}$ and $G_{n,m}$, (5.2) implies a combinatorial result; however the result in question is too complicated to be of much interest.

For p = 3, consider

$$6^n x \frac{G_n^{(3)}(x)}{(1-x)^{3n+1}} = \sum_{k=0}^{\infty} k^n (k^2-1)^n x^k = \sum_{j=0}^n (-1)^{n-j} {n \choose j} \sum_{k=0}^{\infty} k^{n+2j} x^k = \sum_{j=0}^n (-1)^{n-j} {n \choose j} \frac{A_{n+2j}(x)}{(1-x)^{n+2j+1}}$$

Thus we have

(5.4)
$$6^{n}xG_{n}^{(3)}(x) = \sum_{i=0}^{n} (-1)^{n-i} {n \choose i} (1-x)^{2n-2i} A_{n+2i}(x).$$

The right-hand side of (5.4) is equal to

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \sum_{s=0}^{2n-2j} (-1)^{s} \binom{2n-2j}{s} x^{s} \sum_{k=1}^{n+2j} A_{n+2j,k} x^{k} = \sum_{m=1}^{3n} x^{m} \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \sum_{k=1}^{n+2j} (-1)^{m-k} \binom{2n-2j}{m-k} A_{n+2j,k}.$$

It follows that

(5.5)
$$G^n G_{n,m-1}^{(3)} = \sum_{j=0}^n (-1)^{m-j} {n \choose j} \sum_{k=1}^{m+2j} (-1)^{m-k} {2n-2k \choose m-k} A_{n+2j,k} .$$

REFERENCES

- 1. L. Carlitz, "Eulerian Numbers and Polynomials," Mathematics Magazine, 30 (1958), pp. 203-214.
- 2. L. Carlitz, "Extended Bernoulli and Eulerian Numbers," Duke Mathematical Journal 31 (1964), pp. 667-690.
- L. Carlitz, "Enumeration of Sequences by Rises and Falls: A Refinement of the Simon Newcomb Problem," Duke Mathematical Journal, 39 (1972), pp. 267-280.
- J. F. Dillon and D.P. Roselle, "Simon Newcomb's Problem," SIAM Journal on Applied Mathematics, 17 (1969), pp. 1086-1093.
- 5. P. A. M. MacMahon, Combinatorial Analysis, Vol. 1, University Press, Cambridge, 1915.
- 6. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.

[Continued from page 129.]

Recalling [2, p. 137] that

$$(j+1)$$
 $\sum_{k=1}^{n} k^{j} = B_{j+1}(n+1) - B_{j+1}$,

where $B_j(x)$ are Bernoulli polynomials with $B_j(0) = B_j$, the Bernoulli numbers, we obtain from (2.3) with x = 1, B = 1, and $C_k = k$ the inequality

(2.4)
$$B_{2p}(n+1) - B_{2p} \le (B_p(n+1) - B_p)^2$$
 $(n = 1, 2, \dots)$

For p = 2k + 1, $k = 1, 2, \dots, B_{2k+1} = 0$, and so (2.4) gives the inequality

$$(2.5) B_{4k+2}(n+1) - B_{4k+2} \leq B_{2k+1}^2(n+1) (n,k=1,2,...)$$

3. AN INEQUALITY FOR INTEGER SEQUENCES

Noting that $U_k = k$ satisfies the difference equation

$$U_{k+2} = 2U_{k+1} - U_k$$

[Continued on page 151.]