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THE PRODUCT OF TWO EULERIAN POLYNOMIALS 

L. CARLITZ, Duke University 

The Bernoulli and Euler polynomials can be defined by means of 

text X tm 2ext X tm 
= E Bm(x) -2 -=ZE Em(x) - - 

et1 m=MO! et+ 1 m=O ml 

The formula 

(1) ~~Bm(x)Bn,(x) =i n+ ()m} jn ? 

(1) ~~~~~r {(2r) (2r) m + n -2r 

is proved in Nielsen's book [3, p. 75]; a different proof occurs in [2]. Nielsen 
also obtains similar formulas for 

Em(x)En(x) and Em(x)Bn(X). 

The Eulerian polynomial Hm(xI X) can be defined by means of 

(1 - )et 00 t 
(2) (1- 

=ext E Hm(x i X, -; 
)et -X mO m 

for properties of Hm(x I X) see for example [1]. Since 

Hm(x I - 1) = Em(x), 

it may be of interest to get a formula for the product of two Eulerian poly- 
nomials. 

We assume that a c 1, I 3 1, aoq3 5 1. It follows from (2) that 

E Hm(x|a)MTn(xVf3) 7U = (1 - a)exu (1 -f)exv 
m,n=O m!n! eu-a, eVn_f 

aa(1-))(1-A) (1- f3)ex(u+v) eu+V - a4 

1 a-af eu+V - ea (eU _ a) (ev _l) 

a)(1 - af ) (1- f3)ex(u+v) ( a 
_u+v~~~q es-1 + + 

a#0g eu+V - aog eu- a e'V _ 

1 ? UmVn 
E Hm+n(X I aC) 

1- a4 m,n=O m!n! 
( ~~~~~~~00coV 

(1-a)(1-f) + a((l ) EHr[a] -+ fl(1 - a) E H8[f]-, 
r=O r! 8=0 Si 

where we have put 

(3) Hr[a] = Hr(O I a) 

the so-called Eulerian number. Comparison of coefficients evidently yields 

Hm(x I a) Hn(x I A) = Hm+n (X I a3) 
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+ Zt( K @( 
)Ir[a]IHm+n_r(XI afi) 

+ - CSa ) Ha [H]Hm+n- (X Ia3), 

provided a 5 1, j 31, ao 53 1. 
In the next place we have 

E Bm(x)Hn(X I a) Umvn uexb (1 - c4exv 
m,n=O m!n! eu - 1 ev - a 

(1 -o) ex (u+v) eu+v _- a 

eu+v - a (eu 1)(ev - a) 

(1 - a)ex(u4+v) J u aU_I 
- + + 

eu+V -, a eu- ev - a, 

00 UmVn (00lUr u 00 

= E Hm+n(X la) + E Br-+ H-a [a] 
m,n=O m!m r=O r! a-,=o sI 

It follows that 

Bmr(x)Hn(X I a) = mHm+n- 1(x I a) + ; ( ) BrHm+n-r(X | a) 
(5) 

r=O r 
ma In \ 

+ Io H S[a] Hm+n-s- (x I a), 
a-a s=O s 

provided a#c1. 
If a 5lbut ao= 1 we take 

00 UmVn (1 - a)exu (1 - a1)exv 

(u + v) E Hrm(x l a)Hn(x | '1) ! ! = (u + v) 
mn,n=O m in! eu - a e'v a- 

( + V))ex (u+v) aeu, 
-(1-t)(1-l) (-ej-+va1 + + > 

eu+V_1 etb _ a ev_ o- 

This implies 

mHm-l(x | a)Hn(x I a-') + nHm(x | a)Hnl(x | a') 

= (1- a)(1 - a-)Bm+n(X) - (1 - a) ( Hr[a]Bm+n-r(X) 
r=O r 

-(1 
- 

1) 
a 

H)[a-1]Bm+n-s(X) 

- (1- a) H( )Hr[a]Bm+n-r(X) 
r=( r 

-(I _ o-1) H )ffa-1]Bm+n-s(x). 
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Since 

Hn(X I a) = nHn-l(x I a), ax 

it is clear from (6) that 
rn-1 im/\rx 

Hrn (xIa) Hn (X I a-') (1 m a Bm:n r(1) 
(7) -(1- cc')r=O + H +[nI-+r n-1 Bm+n-s(x) 

8=0 S+ 1 m+ n-s 

where Cm,n is independent of x. To determine Cm,n we notice first that (6) and 
(7) imply 

mCm,l,n + nCm,n-1 = 0, 

so that 

n 
Cm,n = Cm+l,n-i. 

m + 1 

Repeated application of this recursion leads to 

m!n! 
(8) Cm,n = (1()n ) Cm+n,O 

.(m +n) 

Now if we put n=O, x=O in (7) we get 

Hm[a] = - (1 )Z ( m Hr+[a] Bm-r + C,0 
r=O r +1 m-r 

= -a _ (m + 1\i Hr[a]Bm-r+l + Cm,0. 
m+ 1 r / 

Similarly (5) implies 

Bm+l = (m + 1)Hm[a] + ( + H-r [a]Bm+ a + Hm [a]) 
r=O r 1 - ae 

so that 

(m + 1)Cm,0 - (1 - a)Hrm+1[a]. 

Therefore by (8) 

mtn 
(9) CM,n = ( m)+l + + 1! (1 - a)Hm+n+l[a]. 

(Since 

Hn[aC-1] = nHn [a] 
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the right member of (9) remains unchanged when we interchange m and n and 
replace a by a-'). 

Combining (7) and (9) we get 

m ~~Bm+n-r+l(X) 
Hm (x a)Hn(x |-) = H(1 a ) H Hr[a] m?n-r+1 

(10) - (1n- n') (n)Hs[a1] Bm+n-s+l(X) 

8=1 s m+n-s+l 

+ (1) (m + n + 1)! 

where of course a5z-1. 
In particular if we take a= -1, (5) and (10) reduce to 

m /m 

Bm(x) En(X) = Em+n(X) + E ( ) BrEm+n-r(X) 
r=2 r 

()-- ( ) 2 SCsEm+n-s,l(X)) 

Em(x) En(X) - 2 m 
2-rCr Bm+n-r+l(X) 

r )l r m + n-r +1 

(12) -2 mn 2-s Bm+n-s+l(X) 

m!n! 
+ (_ 1)n+12-m-n (m + + 

? Cm+n+li 

where [4, p. 28] 

Cn 2nE,,(O) = (2 - 2-n) n+1 
n+1 

The formulas (11) and (12) may be compared with [3, p. 77, formulas (12), 
(16)]. 

We note also that since 

r B(xdx = Bm+i(1) - Bm+l(O) 0 (m ? 1), 

(10) yields 

(13) JHm(x I a)JHn(X I a-') dx = 1) n+1 (m+(I )! a)Hm+n+l[a] 

(mi> 1 n 1) 

Finally we remark that (4), (5) and (10) imply the following special for- 
mulas: 
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(14) Hm(x I at) = Hm(x |B + - H [a] Hm- (x lA (at 5-z 5-zB 1), 

(15) Bm(X) = mHm-i(xI a) + (m)BrHm-r(x I a) (a id 1), 
r=O r 

1-a m+lm +1\ 
(1 6) Hm(x I a) = 

M m+ r=1 r[H]B mr+1(x) (a 

It is not difficult to prove these formulas directly. For example (14) follows 
easily from the identity 

( ae)eXU 1{ +(1-a}(1-l)eXu 
- = s 1 - a + (at 

- 
,B) 2 

eu - a, eu a e, x -U_ t 9 D 
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NUMBER THEORY 
A pump's a composite of handle and spout 
That has to be primed, or nothing comes out. 
A gun's a composite of barrel and butt 
That has to be primed, or nothing will sput. 
In the arts, composition is carefully timed 
And one doesn't begin till the surface is primed. 
You will find composition is easy to do 
When you start with a primer and carry it thru. 

MARLOW SHOLANDER 
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