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ABSTRACT. Using the finite difference calculus and differentiation, we ob-
tain several new identities for Bernoulli and Euler polynomials; some ex-
tend Miki’s and Matiyasevich’s identities, while others generalize a sym-
metric relation observed by Woodcock and some results due to Sun.

1. INTRODUCTION
Bernoulli polynomials B, (x) (n € N={0,1,2,...}) and Euler polyno-
mials E,(z) (n € N) are defined by the power series

~eTZ 0 Pl 2eT? 0 Pl
= B, (z)— d = E,(x)—.
e —1 T;) () n! an e +1 T;) () n!

The rational numbers B,, = B,(0) and integers E, = 2"E,(1/2) are
called Bernoulli numbers and Euler numbers, respectively. Here are some
well-known properties of Bernoulli and Euler polynomials (see, e.g., [AS,
pp. 804-808]):

Bu(1=a) = (-1 Bola), Bulat9) = Y- (1) Bulal ™
k=0

Bu(1 =) = (<1 E,(a), Eala+) = () Bulon™ ™,

k=0
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In particular,

A(B,(z)) =nz""' and A*(E,(z)) = 22",

where A(f(x)) = f(z +1) — f(x) and A*(f(@)) = f(z +1) + f(x). (A
is usually called the difference operator.) For n € ZT = {1,2,3,...}, we
have B! (z) = nB,_1(z) and E/(x) = nE,_1(x). Euler polynomials can
be expressed in terms of Bernoulli polynomials in the following way:

En(z) = - i 1 <Bn+1(a:) ~2B, (5) )

Bernoulli and Euler numbers and polynomials play important roles in

many aspects. Most related research concentrates on their congruence
properties (see, e.g., [Sul] and [Su3]). However, there are also some inter-
esting identities in this area (see, e.g., [Di] and [Su2]).

In 1978 Miki [Mi] proposed the following curious identity which involves
both an ordinary convolution and a binomial convolution of Bernoulli num-

bers:
Ban k - BB, B,
=2H,— 1.1
k;n— Z() I(n—1) n (1.1)
k=2
for any n =4,5,..., where
1 1
Hy=1+4 =4+ —.
2 n

In the original proof of this identity, Miki showed that the two sides of
(1.1) are congruent modulo all sufficiently large primes. In 1982 Shiratani
and Yokoyama [SY] gave another proof of (1.1) by p-adic analysis, and
recently Gessel [Ge| reproved Miki’s identity (1.1) by using the ordinary
generating function and the exponential generating function of Stirling
numbers of the second kind.

Inspired by Miki’s work, Matiyasevich [Ma] found the following two
identities of the same nature by the software Mathematica.

n—2
B n\ B
i > ()5 Buei = Hu B, 1.2
P i (z) [ (12)

ﬁm.
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and
n—2 n—2 71%_2
(?’L + 2) Z BB —2 Z ( I )Ban—l = TL(TL + 1)Bn (13)
k=2 1=2
for each n = 4,5,.... However, (1.2) is actually equivalent to Miki’s

identity (1.1). The reason is as follows:

S BiBax = (n) BB,

— k(n—k)

2
n—2 n—2
1 11 1 n\ /1 1
== - ByBp_j — — “4+—— BB,
n;(k+n—k) FEonk nz(l>(l+n—l) o
n—2
2 Bk 2 n Bl
=N, =2 2B,
nk; g omh nz(l>l :

1=2

Quite recently Dunne and Schubert [DS] presented a new approach to
(1.1) and (1.3) motivated by quantum field theory and string theory.

In this paper we extend Miki’s identity (1.1) and Matiyasevich’s identity
(1.3) to Bernoulli polynomials via differences and derivatives of polynomi-
als. We also deduce some mixed identities involving both Bernoulli and
Euler polynomials.

In 1979, using some deep results, Woodcock [Wo| discovered that

Aptn=An_1,m forany m,neZ* (1.4)
where
A —1§n: ") (=1)*B,,1B (1.5)
mn = 1 m+kBn—k- .
k=1
Thus
1<~ (n
_ Z ( )Bk:Bn—k: + Bn—l = Al—l,n = An—l,l = _Bn
n k
k=1
for every n = 1,2,... as noted by L. Euler. Here is another symmetric

result due to the second author [Su2]: If m,n € N, FF € {B,E} and
r+y+z=1, then
(1 ek B () — (1 g Fmgir (2)
—1)ym m—k < n+ 1" n
03 () e s X () e
(_l.)m—i—n—i—l
(m+mn+1)(™")

n

(1.6)
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and

) f:o < ) R e(y) = (_1)"Zn: (Z) 2" Fe(z). (17)

k=0

Our method to deduce polynomial versions of Miki’s and Matiyasevich’s
identities also allows us to obtain some general identities related to both
Woodcock’s symmetric relation and Sun’s above result.

In the next section we present three theorems and derive some conse-
quences of them. Section 3 contains our proofs of the theorems.

2. MAIN RESULTS

Our first two results recorded in Theorem 2.1 provide bivariate exten-
sions of Miki’s and Matiyasevich’s identities.

Theorem 2.1. Let n > 1 be an integer. Then

<— By(2)By_1(y) " (n—1\ Bi(z — y)Bn_1(y) + Bi(y — 2)Bp_i(x)
2 k(n — k) _Z(l—1> 12

Bu(e) + Buly) | Bal) = Bal)
n e =)

k=1

= Iip—-1

and
kZ_OBk(x)Bn_k(y) _ ; <Tll:11) B(r — y)Bn_z(yg iQBz(y — &) By ()

_ Buni(@) +Baa(y) 2 Buya(a) = Busa(y)
(z —y)? n+2 (z —y)? '

(2.2)

Remark 2.1. The identity (2.1) has the following equivalent version:

/’\

W
E%

3

?r
<
S~—
+
e
|~
s

™

i

>
G
~_

i ( > (Bl Buoi(y) + MBR_I(@) (2.1)
] By () — Bu(y)
z—y

~

+ Hy1(Bn(2) + Ba(y)) +

This is similar to the remark after (1.3).
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Corollary 2.1. Let n > 2 be an integer. Then we have

& Bi(@)Buoi(z) <~ (n—1\BiBasi(z) _ Bo(2)
g; k(n — k) —222(1_1>——?7——_2m%1 o (23)

and

> BB -2 () 1) A e nm@. @

P — [+1 [+2

Proof. Letting y tend to x and recalling that B](x) = nB,_1(z), we
immediately find that (2.1) implies (2.3).

Now we proceed to prove (2.4). Let P(z) = B,12(2)/(n + 2). Then
P'(z) = Bpt1(2), P"(2) = (n+ 1)B,(2) and P"'(2) = n(n + 1)B,_1(2).
In light of Taylor’s expansion, we have

P(y) ~ Pa) = Pa)(y o) + -y — ) + LDy -y
and po
)~ P(a) = P/(a)y — )+ Do Dy )2 +
Therefore

lim (Bn+1(96) + Bnt1(y) 2 _ By ya(r) — Bn+2(y))
y—x (.I — y)2 n -+ 2 (Z’ — y)3
i (PP 2P) =Pl
v—r (2 —y)? (z —y)?
i (W) = P'(z) Ply) — P(z) - P(z)(y — 2)
B z}—m ( (y — x)? 2 (y —x)3 )
) P//(x) Pl/l(x) P”(.’E) P///(x)
:;Ec(y—x_l— 21 +”._2(2!(y—x)+ 3! +)>

In view of this, we can easily get (2.4) from (2.2) by letting y tend to
r. U

Remark 2.2. An equivalent version of (2.3) was stated without a de-
tailed proof by Gessel [Ge, (12)] (but note a misprint: B,_1(\) should
be —B,_1()\)).
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Now let us see how Miki’s identity follows from (2.3). In fact, (2.3) in
the case x = 0, together with the observation (?__11)% = (”l_l) ﬁ, yields

n—1 n—1
Ban,k n—1 Ban,l an 2
— =2 —2B1B,,_ —H,_1B,
Z ( ) Iln—1) n? ! L n !

n—1

n—1 n—1 Ban_l 2
— —H,B, + B, _
Z(( l )+(n—Z))Z(n—Z)+n o

— BB, 2
- (”) 2Pn-l L 2H B 4B ..
— Iln=1) n

Note also that (2.4) in the case x = 0 gives Matiyasevich’s identity (1.3).
Corollary 2.2. Let n > 4 be an integer. Then

%Bn_k = g BiBn-r = ; (Z) %Bn—k + H,,_1By,
where By = (217% — 1)By,.

Proof. Simply take x = 1/2 in (2.3) and use the known formula B,,(1/2) =

B,,. (Note also that n/(k(n —k)) =1/k+1/(n—k).) O

Remark 2.3. The second equality in Corollary 2.2 was first found by Faber
and Pandharipande, and then confirmed by Zagier (cf. [FP]).

Similar to Theorem 2.1 we have the following identities involving Euler
polynomials.

Theorem 2.2. Let n be any positive integer. Then

4 ) By i2(z) — Bnia(y)

> En(@)Eni(y) -
k=0

n+ 2 z—y
ey Ey( )B (y) + Eu \B (@) (2.5)
_ n I\r—y n+1—1\Y 1y —x na1—1(z
: ’ ; ( ! ) [ +1 .
Also,
S P g ) ) - P
- (2.6)
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and

> Bi(2)En-x(y)
k=0

Corollary 2.3. Let n € N. Then we have

n n+2 n+2 l Bl
n-+2 EkxEn_kx =8 2—1—Bn 21\T),
n+2) Y BEa@ =83 (1))@ -0, @

Proof. Letting y tend to x and noting that F;(0) = 2(1—2"1) By 1 /(1+1),
we then obtain (2.8) and (2.9) from (2.5) and (2.6) respectively.
Since

Eni1(y) — Enii(z) = E) 1 (2)(y — x) + E"";—}(w)(y —x)? 4
we have
; En(r)  Epy1(r) — Enpa(y)

Z}I—I’I}”((n—l_l)x—y_ (r —y)? )

— lim Eny1(y) — Eng1(z) — (y — 2)E], 4 ()
y—o (y —x)?

_Ena(@)  n(n+1)

- —;' — 2 En_l(l‘).

Thus, (2.10) follows from (2.7) by letting y tend to x. We are done. [

Our next theorem gives bivariate extensions of Sun’s (1.6) and (1.7).
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Theorem 2.3. Let m,ne N andz+y+2=1. Then

(=)™ i (m> Bin—k41(®)  Brirs1(y)

Z\k)m—k+1 n+k+1

+(=1) zn: (n> Bp-k+1(®) Bmik+1(2)

P k) n—k+1 m+k+1
( 1)m—|—n—|—1 Bm+n+2(x) Bm+1(2) . Bn+1(y)

TmAn+ (™) mAn+2  m+l n+l

(=)™ Bugnea(®) | (“D™" Brinia(2)
m+1 m—+n+2 n+1 m+n+2°

(2.11)

Also,

- m Bn 1
173 (1) Brtoy 2l

k=0

- n Bm 12
R (1) Brestor ety (212)

()M B g1 (@) En(2)En(y)

(m+n+ 1)(m+”) 2

and

)En+k+1 (y)
n+k+1

m
k
nzn: Bp-k+1(®)  Emirt1(?)
— n—k+1 m+k+1
= (=™ Bminia(z) | (D" Emgnia(z)
(m+n+ )(m+”) m+n+2 n+l m+n+2

(2.13)

Biyry2(y)
-k(2) n+k+2°

Remark 2.4. Fix y and replace z in (2.11) by 1 —  — y. Then, by taking
differences of both sides of (2.11) with respect to x, we can get (1.6) with
F = B. In fact, both (1.6) and (1.7) follow from Theorem 2.3.
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Clearly (2.11) has the following equivalent form:

— ( m+ ) — )Bn+1+k(y)

— k n+1+k

+<—1> i nt D\ p () Beries()
ntl &\ k)R g

(—1)™ L) Bpi1(2)  Bnya(y)

m+n+2 (x) -

(m+n+2)! m+1 n+1

So, if m,n € Z* and x + y + z = 1, then we have

=™ é <7Z> B 1 () Brii(y) + (1" Zn: (Z) Bn_k(x)BLk(z)

m n+k no = m+k
= (—1)m+n (m zni)i(:z; 1)!Bm+n(x) + B”;TEZ) ) Bnn(y).

(2.11')

Corollary 2.4. Letz+y+z=1. Given m,n € Z™ we have the following
identities:

(2.14)

(2.15)

and

(2.16)

Proof. View z = 1 — x — y as a function of x and y. Taking partial
derivatives with respect to y, we then obtain (2.14) from (2.11"). Identity
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(2.15) can be easily deduced from (2.12) by taking partial derivatives with
respect to y. Similarly, (2.16) follows from (2.13) with n replaced by n—1;
note that after taking partial derivative with respect to y the right-most
summation in (2.13) with n replaced by n — 1 turns out to be

m m m—1
Z (,Sij)g)E - n+k Z ni—gil) m— k—l(Z)Bn+k+1(y)
k=0 k k=0 k+1

which equals E,,,(2)B,(y). O

Corollary 2.5. For m,n € Z* we have

Amt.0(t) = Ap_1.m(t) and Chn(t) = Cr.m(t), (2.17)

(2.18)

- I;J </{?) (_1)kBm+k(t)En—k(2t) - §Em(t)En—1(t). (2.19)

Proof. Just apply (2.14) and (2.15) withz =1—-2tand y=2=t¢. O

Remark 2.5. The first equality in (2.17) is an extension of Woodcock’s
identity.

Corollary 2.6. If m,n € Z™ then

1 < (m L(1—=2tRB L
— 1-2m""B,,_
m ];) (k) o ) Bt
1 . (1 2mhyp (2.20)
== 1)k "B k.
n e (k’) (=1) m+ k g

Proof. Note that (—1)!E;(1) = E;(0) = 2(1 — 2""Y) B, 1 /(1 + 1) for [ € N.
Applying (2.16) with £ = 1 and y = z = 0 and replacing m by m — 1, we
then obtain (2.20). O
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Corollary 2.7. For any m,n € Z" we have
m
(k m,kE%,1+k

2m+1 Zn: 2k+1)B . (1 _ 2m+k+1)Bm+k+1
no = " m-+k+1 '

(2.21)

Proof. Take x =y = 1/2 and z = 0 in (2.16), and note that B, (1/2) =
(2t~ — 1)B,, and also (—1)"B,, = B, unless n = 1 (cf. [AS, pp.804-
808]). O

3. PROOFS OF THEOREMS 2.1-2.3

Let C be the field of complex numbers. For polynomials P(z), Q(zx) €
Clx], it is easy to verify that

A(P(z)Q(z)) =P(z + 1)A(Q(z)) + A(P(z))Q(x) (3.1)
=A"(P(2))Q(z + 1) — P(2)A"(Q(z)) ‘
and
A*(P(z)Q(z)) =A(P(2))Q(z + 1) + P(z) A" (Q(x)) (32)

=Pz +1)A%(Q(x)) — A(P(2))Q(x).

The first equality in (3.1) is the so-called product rule in difference calculus
(see, e.g., [Ro, p.190]).

The crucial trick of our method is the following basic lemma.
Lemma 3.1. Let P(x),Q(z) € Clz].

(i) If A(P(z)) = A(Q(x)), then P'(z) = Q' ().

(ii) If A*(P(x)) = A™(Q(x)), then P(z) = Q(x).
Proof. (i) Suppose that A(P(z)) = A(Q(x)). Then,

n—1 n—1
P(n) = P(0) = Y A(P(k) = Y A(Q(k)) = Q(n) — Q(0)

for every n = 1,2,3,.... Now that the polynomial g(x) = P(z) — Q(x) —
P(0) + Q(0) has infinitely many zeroes, we must have g(z) = 0 and hence
P(z) = Q'(a).

(ii) Now assume that A*(P(x)) = A*(Q(z)). Then

P(n)—=Qn)=—-(P(n—-1)=Qn—1)) =--- = (=1)"(P(0) = Q(0))
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for every n = 1,2, .... Therefore the equations P(z)—Q(x) = P(0)—Q(0)
and P(z) — Q(xz) = —(P(0) — Q(0)) both have infinitely many roots. It
follows that P(x) = Q(x).

The proof of Lemma 3.1 is now complete. [J

Remark 3.1. Lemma 3.1 also holds for polynomials over a field of charac-
teristic zero. Despite its simplicity Lemma 3.1 is a useful tool; using it we
can easily prove Raabe’s multiplication formula

mzl <x+r):m1”3n(m) (meZ" neN)

and other known identities concerning Bernoulli or Euler polynomials.

Lemma 3.2. Let n be any positive integer. Then

- Bk('r+y) n—=k - n Bl(y) n—I n
— " = Z )R H,x (3.3)
k=1 =1
and
n o n n+1 .
Ei(z+vy)z k:Z(Z+1)EZ(y)x L (3.4)
k=0 =0
Proof. Note that
n B n n—k k k
Z k(q;€+y)xn—kzzxk (Z(z)Bl(y)wk_l—'—xk)
k=1 k=1 =1
“Bi(y) o= (k-1 "L g
=2 ) Tl
=1 k=l k=1

where in the last step we have applied a well-known identity of Chu (see,
e.g. [GKP, (5.10)]). Similarly, we have

ZEkxﬂ, ankz() -
:Z%El(y)xnl 21: (I;) - zn: (7:11) Ei(y)z"".

=0
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So both (3.3) and (3.4) hold. O

Proof of Theorem 2.1. Observe that

0 9 " /n—1\ B(y — x)B,,_i(x)
5’x8yz(l—1) 12

S (100) e

=1

_ nf (7_‘5) ”T_ZBH(@/ — 2)Bu_14(z)

=1

_ - (n B 1) l_—lBl_g(y —z)Bp_i(x)

=1

~

-1 [
1=2

5 (n;l)Bl_lw—mBn_l-m)

n - (7;__11> (% . 1) Bi_o(y — x)Bn_i(z)

l [+1 [+2
Therefore

D 9~ (n— 1) Bi(z = y)Bni(y)
ox Oy — -1 [2

:ﬁﬁi n—1\ Bi(z — y)Bn-i(y)
Oy Ox — -1 12

_N~ (n— 1\ Bilz = 9)Bus-1(y)

[+1 [+2

We also have

0 9 (Bnly) = Bu(x)

away( n(y — ) )

_2 nBn,_1(y) _ By (y) — Bn()
_390(”(9—&7) n(y —x)? )

)
_Bna(y) | Bnoa(z) 2 Bn(x) — Ba(y)
(y—=)? (-2 n '

13
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Let L(x,y) and R(z,y) denote the left hand side and right hand side of
(2.1) respectively. In view of the above, a—x—L(x Y) = 5- ayR(ac y) gives
(2.2) with n replaced by n — 2.

If we substitute x 4y for y in (2.1), then we get the following equivalent
version of (2.1):

— k(n —k)
::E:Z%<7:jf)(Bmy)Bn—K$)+-BK—y)Bn—Nx‘%y» (39

=1

-+E;WBAx+w+BM@%+BA$+2;BMm'

Therefore it suffices to prove (3.5) only.

Let us view y in (3.5) as a fixed parameter. Denote by P, (x) and Q. (x)
the left hand side and the right hand side of (3.5) respectively. It is easy
to check that

Ploy() — nPy(a) = 22ETV T B o) nQu(a).

n

By Lemma 3.1(i) we need only to show A(P,+1(z)) = A(Qns1(x)).
Indeed, in view of (3.1) and the fact that A(By(z)) = kz*~1, we have

- B ( ZU—l—y Bij1-k()

n n

- Br(r+y) . 4 Bni1-k(2) k—1 k—1_n—k
_Z; PR +;27H%_%Jx+m +Z;@+y) z

n n n—1

B B

:Z k($k+y)xnk+z kkgx>(x_’_y)nk+2(x_’_y)k n—1—k
k=1 k=1 k=0

Applying Lemma 3.2 we then get

AP =3 (1) 20t a3 (1) P oy

(x+y)" —

+ Hy(z+y)"+——2
(v +y) Gty -z

On the other hand, it is easy to see that A(Q,+1(x)) also equals the right
hand side of the last equality. Therefore A(P,11(z)) = A(Qn+1(x)) as
required. This concludes our proof. [J
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Proof of Theorem 2.2. Substituting = + y for y in (2.5) we then get the
following equivalent form of (2.5):

4 Bpio(z+y) — Buga(x)
n -+ 2 Y

Z Ep(x+y)En_r(x) —

k=0

_ i (n + 1) Ei(y)Buy1-1(x) + Ei(~y) Buy11(x +)
I+1 '

(3.6)

If we substitute z +y for = and x for y in (2.6), we then have the following
equivalent version of (2.6):

zn: ME,%_R(Q;) — H,E,(z) — Ep(z + y; — B, (z)

k=1

Note that (2.7) with n replaced by n—1 follows from (2.6) by taking partial
derivatives with respect to x. In view of the above, we only need to prove
(3.6) and (3.7) with y fixed.

(a) For 0 < k < n, by (3.1) we have

(3.7)

A(Ek(z + y)En—r(x))
=A% (Ek(z 4+ y)) A (En—r(2))

— Ep(z +y) A% (En—k(2)) — En—k(2) A" (Ex(z 4 y))
=2(x+y)¥ - 22" F — Ep(x +y) 22" — B, (2) - 2(z + )",

Thus
A(ZEk(az + y)En—]g(Cl?)) — 42(33 ty)Rznk
k=0 =
==2) Bi(e+ye"™* =2} Eoi(@)(@+y)"
k=0 k=0

With the help of Lemma 3.2, we have

A(ZEk(I +y)En—k(l‘)) o 4(33 +y)n+1 _ a;n—l-l

port (z+y)—=

:_22(’;:) _zz(’;:) (=)@ + )"
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From this we can easily check that A(f,(x)) = A(gn(x)) where f,(x) and
gn(z) denote the left hand side and the right hand side of (3.6) respectively.

Now that A(f+1(2)) = Algns (@), we have ., () = gl (@) by the
first part of Lemma 3.1. It can be checked that f)_ (z) = (n + 2)fn(x)

and g, 1(z) = (n +2)gn(x). So fn(x) = gn(r) and thus (3.6) holds.
(b) Now we turn to prove (3.7). For 1 < k < n, by (3.2) we have
A*(Bi(x + y) En—r(2))
=A(Br(z +y) A" (En—k(2))
+ Bi(z +y)A™(En k(7)) — ABk(z +y)) En—i(2)
=k(z4+9)" 122" % + Bp(z 4+ 9)22" " — k(z +y) T E_i(z).

Therefore
Bi(z +y)
A*
(z s IR
k=1
_2Zm+yk 1,n k+2sz($+y) n—k i(w—l-y)k B, (x)
k
— k=1 k=1
(z+y)" —a" ”(ﬁ)&@) !
=2 +2 "4+ 2H,
(x+y) —z ; ! l
n—1

where we have applied Lemma 3.2 in the last step. This implies that
A*(L(z)) = A*(R(z)), where L(xz) and R(x) are the left hand side and
the right hand side of (3.7) respectively. Applying Lemma 3.1(ii) we find
that L(x) = R(x).

The proof of Theorem 2.2 is now complete. [

To prove Theorem 2.3, we need one more lemma.

Lemma 3.3. Let ag,aq,... be a sequence of complexr numbers, and set
g
Alt) =) (k) (1) agt' "
k=0
for1=0,1,2,.... Then, for any m,n € N, we have
() ey e st + (0 )
= \k m+k+1’l (m+n+1)(™")
zm: Y gm—h Antr+1(z +y)
("E9) n+k+1

k:O
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Proof. By [Su2], A}, (t) = (n+ 1)A,(t) and

(1)) = a2

k=0

Therefore

“/n i " /n *
An— i An— m+k
5 () Aneslo) ;(k) ) [ amar

k=0

/th( )A y)thdt = /Ithn(qut)dt

0

xT

A, t
+1(y+ ) m tm_lAn+1(y+t)dt

n+1 t:O_n+1
mAniy+ )0 m " A+t
n+1 = nt+1 n+ 2
m—1
/tm_2An+2(y+t)dt

+1 n+2
m—1)---(m—k+1) . _
n-l—l) (n+k+1)

=™

T

"Apyri(y+ 1)

Ms

t=0

_ % (m) m— An k 1(51}'—}—y) m (nmv,) Am n 1(y)
_Z(_l)k(nik)x k ;J—:k+1 - (v min++1'

This proves the desired identity. [

Proof of Theorem 2.3. We fix y and view z = 1 —x — y as a function of .
Let P, »(z) denote the left hand side of (2.11). Then, with the help of
(3.1), A(Ppn(x)) coincides with

() (Bep) e

N (7 Bn-k41(z)  Bmiks1(2)
+(=1) 2 O(k>A<n—k¢+1 mt k1

m & m M an+]€+1<y) n < n n—]{;Bm+l€+1<Z)
-1 Stk 12
kzzo<k) ntkt1 T I;)(k:)x mtk+1

Bppy1(@+1) Bpips1(z — 1) = Bngrga(2)
n—k+1 m+k+1 '

+
o
—_
S—
3
oy
I 3
o
VRS
> 3
~__
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In view of (1.6) and the above,
(_ )m—l—n—i—l

(m+n+1)(")

A(Pm,n(x)) -

n+1 Pt
_ﬂ( —1)™ (Bpsi(z +14+2—1) — (2 — 1)"*)
= 1 z n+1\T z z
:% (1) Bppai(1 —y) — (1= 2)"*1)

:(_1)m(x+y)mBg—i(f/) _ (n_i)?: (x+y)m+n+1_

Therefore A(Py, n(2)) = A(Qm,n(x)), where

Qm n(l') = (_1)m+n+1 Bm+n+2 (x)

(m+n+1)(") S mnt2
mBmt1(@+y) Bugi(y) (=1 Bmgny2(z+y)
+(-1) : — : :
m+1 n+1 n+1 m+n—+ 2
Hence Py, () = @}, ,(7) by Lemma 3.1(i).
It is easy to see that
( 1)m+n—|—l

Q;n’n(l') (m +n+ 1) (m—i—n) Bm—&-n—i—l(x)
(=1 By + ) Bgfﬁ (19) - (n_~1|—)7: Buntmir(z +9)
-1 m—l—n—i—le n+1 Bn 1 =1)"
= (731+n+ 1)(+m++”)( : + Bnl2) ntr(ly) * (n+)1 mett1 (2).
Also,

(—1)" (p,;w Py (73) Bm_k(:c)i’ith@l))

k=0

() (st - St

M-

k=0

Z (k; ﬁ 1) By _jt1(x) Brns1(2) + Biiny1(2)

— m+ k m+n+1

B,i1(z) "/ m+k Brtk(2)
- 2B () — Y B, DmthlE)
1l ) ;()n_k+1 o () Dt

[y

_Butnr()  Buni(®) p mi() n—k+1(2)  Brmik(2)

m+n+1_ n+1 n—k+1 m+ k

Y

k=1
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where in the last step we note that (Z)n_LkJrl = (kfl) fork=1,2,....,n
Observe that Py, ,(x) coincides with

m+1
ym+ m+ 1\ 5 Bpak+1(y) | qynBmtn+2(2)
(-1 kzo< k ) mew1 (V) Y T

) ma) Y @ Buk41(2)  Bmira(2)

— n—k+1 mi+k+1

Bmin (y) Bm+n+2(z)
_ NP, ., _qymt12mint2\d) | qyn ZmaAnt21c)
(m 4+ 1) Prn(7) + (=1) m-+n+ 2 +(=1) m+n+2’

On the other hand, @7, ,,(7) equals

(=)™ " Binyn+2(2) | Bmt1(2)Bni1(y) + (=1)"Bisni2(2)
(m+n+2) (m+”+1) n+1 ’

Now it is clear that the equality Py, ., () = Q.1 ,(7) yields (2.11).
Next we proceed to prove (2.12). Let L(z) denote the left hand side of
(2.12). Then

AT IZ%(k)A Eim—i(@)) 11:11

+ (=" k; (Z) A* (En_k(g;)i”f—m>.

Applying (3.2) and (1.6), we obtain

A (L) =(-)" Y (k)Z ot Denly)

k=0
n - n n— Bm+k+1(2)
+(=1) kz:%(k:)%j ekl
n X (1 Bitk+1(2 = 1) = Biggs1(2)
+(=1) kzzo(k)E”"“(Hl) m+k+1
B 2( )m+n+1 o n n N L etk
T (mAn+ (" (1) kz:;) <k)En—lc( +1)(z—1)

2( )m—|—n—|—1

- C(m+n+ 1)(m+”)
2( )m+n+1

—(m +n+ 1)(m+”)

—(-D)"z-1)"Ep(z+1+2-1)

= (=)"(z +y)"En(y)-
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Therefore

st (A i)

In view of Lemma 3.1(ii), we have

_1\m+n+1 _1\m
vy = e - C B )

which is equivalent to the desired identity (2.12).
Finally let us turn to prove (2.13). Let f(z) denote the left hand side
of (2.13). In view of (3.2),

D

mm(
=0

A*
(£ n+k+1

7:) A (B () Eniri1(y)
(+) A*( TR )

e

k=0
mz my m— kEn+k+1(y)
L)Y Tt k+1
k=0
ni <TL) n— kEm+k+1( )
$ S ——
— k m+k+1

Zj Buopsi(z +1) 2(z = 1)t
n—k+1 m+k+1

Using (1.6) with F' = E, we then have

(_ )m+n+1 (_1)n+1
A* = 2R,
(/@) (m+n+1)("™) n+1
where
n n4+1 (Z . 1)m+kz+1
= B,i1— 1)
=2 ( k ) A A

0
(Z _ 1)m+n+2

S S — g Y
m-+n+ 2 (=1)

Bmtnta2(r +1)

(m+n+2)(" 1)

m
B (x+1+2-1)
kPn+k+2
+kz_0 n+1—|—lc ) (z—1)m nt ko2
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by applying Lemma 3.3 with a, = (—1)*By,. Therefore

A*(f zm: (%) 2=1D""* By
n+k+1 n+1 n+k+2

+ (_1)m—|—n 2Bm+n+2(x + 1) _ xm—|—n+1
(m+n+1)("™) m+n+2
(_1)77, 2(2, _ 1)m+n+2
n—+1 m+n+ 2

kZO

Let g(x) denote the right hand side of (2.13). It is easy to verify that
A*(g(x)) also coincides with the right hand side of the last equality. Thus
A*(f(z)) = A*(g(z)) and hence f(z) = g(z) as desired. We are done. [
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