THE MODIFIED q-EULER NUMBERS AND POLYNOMIALS

Taekyun Kim

Abstract

In the recent paper (see [6]) we defined a set of numbers inductively by $$
E_{0, q}=1, \quad q(q E+1)^{n}+E_{n, q}= \begin{cases}{[2]_{q},} & \text { if } n=0 \\ 0, & \text { if } n \neq 0\end{cases}
$$

with the usual convention of replacing E^{n} by $E_{n, q}$. These numbers $E_{k, q}$ are called "the q-Euler numbers" which are reduced to E_{k} when $q=1$. In this paper we construct the modified q-Euler numbers $\mathcal{E}_{k, q}$

$$
\mathcal{E}_{0, q}=\frac{[2]_{q}}{2}, \quad(q \mathcal{E}+1)^{n}+\mathcal{E}_{n, q}= \begin{cases}{[2]_{q},} & \text { if } n=0 \\ 0, & \text { if } n \neq 0\end{cases}
$$

with the usual convention of replacing \mathcal{E}^{i} by $\mathcal{E}_{i, q}$. Finally we give some interesting identities related to these q-Euler numbers $\mathcal{E}_{i, q}$.

§1. Introduction

Let p be a fixed odd prime. Throughout this paper $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}$ and \mathbb{C}_{p} will respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field and the completion of the algebraic closure of \mathbb{Q}_{p}. Let ν_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-\nu_{p}(p)}=\frac{1}{p}$. When one talks of q-extension, q is variously considered as an indeterminate, a complex $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, one normally assumes $|q|<1$. If $q \in \mathbb{C}_{p}$, then we assume $|q-1|_{p}<p^{-1 / p-1}$, so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. The ordinary Euler numbers are defined by the generating function as follows:

$$
F(t)=\frac{2}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!}, \quad \text { cf. }[6]
$$

From this equation, we derive the following relation:

$$
E_{0}=1, \quad(E+1)^{n}+E_{n}= \begin{cases}2, & \text { if } n=0 \\ 0, & \text { if } n \neq 0\end{cases}
$$

where we use the technique method notation by replacing E^{n} by $E_{n, q}(n \geq 0)$, symbolically. In the recent(see[6,8]), we defined "the q-Euler numbers" as

$$
E_{0, q}=1, \quad q(q E+1)^{n}+E_{n, q}= \begin{cases}{[2]_{q},} & \text { if } n=0 \tag{1}\\ 0, & \text { if } n \neq 0\end{cases}
$$

with the usual convention of replacing E^{n} by $E_{n, q}$. These numbers are reduced to E_{k} when $q=1$. From (1), we also derive

$$
E_{n, q}=\frac{[2]_{q}}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l} \frac{(-1)^{l}}{1+q^{l+1}}, \quad(\text { see }[6])
$$

where $\binom{n}{l}=\frac{n(n-1) \cdots(n-l+1)}{l!}$. The q-extension of $n \in \mathbb{N}$ is defined by

$$
[n]_{q}=\frac{1-q^{n}}{1-q}=1+q+q^{2}+\cdots+q^{n-1}
$$

and

$$
[n]_{-q}=\frac{1-(-q)^{n}}{1+q}=1-q+q^{2}-\cdots+(-q)^{n-1}, \quad \text { cf. }[4,5,7,9]
$$

In $[1,2]$, Carlitz defined a set of numbers $\xi_{k}=\xi_{k}(q)$ inductively by

$$
\xi_{0}=1, \quad(q \xi+1)^{k}-\xi_{k}= \begin{cases}1, & \text { if } k=1 \tag{2}\\ 0, & \text { if } k>1\end{cases}
$$

with the usual convention of replacing ξ^{i} by ξ_{i}. These numbers are q-extension of ordinary Bernoulli numbers B_{k}, but they do not remain finite when $q=1$. So, he modified the Eq.(2) as follows:

$$
\beta_{0}=1, \quad q(q \beta+1)^{k}-\beta_{k}= \begin{cases}1, & \text { if } k=1 \tag{3}\\ 0, & \text { if } k>1\end{cases}
$$

These numbers $\beta_{k}=\beta_{k}(q)$ are called "the q-Bernoulli numbers", which are reduced to B_{k} when $q=1$, see $[1,2]$. Some properties of β_{k} were investigated by many authors (see $[1,2,3,4,9]$). In $[3,10]$, the definition of modified q-Bernoulli numbers $B_{k, q}$ are introduced by

$$
B_{0, q}=\frac{q-1}{\log q}, \quad(q B+1)^{k}-B_{k, q}= \begin{cases}1, & \text { if } k=1 \tag{3}\\ 0, & \text { if } k>1\end{cases}
$$

with the usual convention of replacing B^{i} by $B_{i, q}$. For a fixed positive integer d with $(p, d)=1$, set

$$
\begin{aligned}
& X=X_{d}=\underset{\widetilde{N}}{\lim _{\widetilde{\prime}} \mathbb{Z} / d p^{N} \mathbb{Z}} \\
& X_{1}=\mathbb{Z}_{p}, \\
& X^{*}=\underset{\substack{0<a<d p \\
(a, p)=1}}{\cup}\left(a+d p \mathbb{Z}_{p}\right), \\
& a+d p^{N} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\bmod d p^{N}\right)\right\}, \text { cf. }[3,4,5,6,7,8] \\
&
\end{aligned}
$$

where $a \in \mathbb{Z}$ satisfies the condition $0 \leq a<d p^{N}$.
We say that f is uniformly differentiable function at a point $a \in \mathbb{Z}_{p}$, and write $f \in U D\left(\mathbb{Z}_{p}\right)$, if the difference quotient $F_{f}(x, y)=\frac{f(x)-f(y)}{x-y}$ have a limit $f^{\prime}(a)$ as $(x, y) \rightarrow(a, a)$. For $f \in U D\left(\mathbb{Z}_{p}\right)$, an invariant p-adic q-integral was defined by

$$
I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{q}} \sum_{x=0}^{p^{N}-1} f(x) q^{x}, \quad \text { see }[3,4] .
$$

From this we can derive

$$
\begin{equation*}
q I_{q}\left(f_{1}\right)=I_{q}(f)+(q-1) f(0)+\frac{q-1}{\log q} f^{\prime}(0), \quad \text { see }[3] \tag{5}
\end{equation*}
$$

where $f_{1}(x)=f(x+1), f^{\prime}(0)=\frac{d f(0)}{d x}$.
In the sense of fermionic, let us define

$$
\begin{equation*}
q I_{-q}\left(f_{1}\right)=\lim _{q \rightarrow-q} I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x), \quad \text { see }[6] \tag{6}
\end{equation*}
$$

Thus, we have the following integral relation:

$$
q I_{-q}\left(f_{1}\right)+I_{-q}(f)=[2]_{q} f(0)
$$

where $f_{1}(x)=f(x+1)$. Let $I_{-1}(f)=\lim _{q \rightarrow 1} I_{-q}(f)$. Then we see that

$$
\int_{\mathbb{Z}_{p}} e^{t x} d \mu_{-1}(x)=\frac{2}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!}, \quad \text { see }[6,8]
$$

In the present paper we give a new construction of q-Euler numbers which can be uniquely determined by

$$
\mathcal{E}_{0, q}=\frac{[2]_{q}}{2}, \quad(q \mathcal{E}+1)^{n}+\mathcal{E}_{n, q}= \begin{cases}{[2]_{q},} & \text { if } n=0 \\ 0, & \text { if } n \neq 0\end{cases}
$$

with the usual convention of replacing \mathcal{E}^{n} by $\mathcal{E}_{n, q}$. These q-Euler numbers are corresponding to q-Bernoulli numbers $B_{k, q}$. Finally we shall consider q-zeta function which interpolates $\mathcal{E}_{k, q}$ at negative integers. As an application of these numbers $\mathcal{E}_{k, q}$, we will investigate some interesting alternating sums of powers of consecutive q-integers.

$\S 2$. A note on q-Bernoulli and Euler numbers associated with p-adic q-integrals on \mathbb{Z}_{p}

In [4], it was known that

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} e^{[x]_{q} t} d \mu_{q}(x)=\sum_{n=0}^{\infty} \beta_{n} \frac{t^{n}}{n!} \tag{7}
\end{equation*}
$$

where β_{n} are Carlitz's q-Bernoulli numbers. By (5) and (7), we see that

$$
(q-1)+t=q I_{q}\left(e^{\left(1+q[x]_{q}\right) t}\right)-I_{q}\left(e^{[x]_{q} t}\right), \quad \text { cf. }[3] .
$$

Thus, we have

$$
\beta_{0}=1, \quad q(q \beta+1)^{n}-\beta_{n}= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { if } n>1\end{cases}
$$

Lemma 1. For $n \in \mathbb{N}$, we have

$$
\begin{equation*}
q^{n} I_{q}\left(f_{n}\right)=I_{q}(f)+(q-1) \sum_{l=0}^{n-1} q^{l} f(l)+\frac{q-1}{\log q} \sum_{l=0}^{n-1} q^{l} f^{\prime}(l) \tag{8}
\end{equation*}
$$

where $f_{n}(x)=f(x+n)$.
Proof. By Eq.(5) and induction, Lemma 1 can be easily proved.
It was known that

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}}[x+y]_{q}^{n} d \mu_{q}(x)=\beta_{n}(x), \quad \text { see }[3,4], \tag{9}
\end{equation*}
$$

where $\beta_{n}(x)$ are Carlitz's q-Bernoulli polynomials. Let $n \in \mathbb{N}, k \in \mathbb{Z}_{+}$. Then, by (8), we have

$$
\begin{equation*}
q^{n} \int_{\mathbb{Z}_{p}}[x+n]_{q}^{k} d \mu_{q}(x)=\int_{\mathbb{Z}_{p}}[x]_{q}^{k} d \mu_{q}(x)+(q-1) \sum_{l=0}^{n-1} q^{l}[l]_{q}^{k}+k \sum_{l=0}^{n-1} q^{2 l}[l]_{q}^{k-1} \tag{10}
\end{equation*}
$$

By (7), (8) and (10), we obtain the following:
Proposition 2. For $n \in \mathbb{N}, k \in \mathbb{Z}_{+}$, we have

$$
q^{n} \beta_{k}(n)-\beta_{k}=(q-1) \sum_{l=0}^{n-1} q^{l}[l]_{q}^{k}+k \sum_{l=0}^{n-1} q^{2 l}[l]_{q}^{k-1}
$$

Remark. If we take $n=1$ in Proposition 2, then we have

$$
q(q \beta+1)^{k}-\beta_{k}= \begin{cases}1, & \text { if } k=1 \\ 0, & \text { if } k>1\end{cases}
$$

In [10], it was also known that the modified q-Bernoulli numbers and polynomials can be represented by p-adic q-integral as follows:

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} q^{-x}[x]_{q}^{n} d \mu_{q}(x)=B_{n, q}, \quad \text { and } \int_{\mathbb{Z}_{p}} q^{-y}[y+x]_{q}^{n} d \mu_{-q}(y)=B_{n, q}(x) \tag{11}
\end{equation*}
$$

From the definition of p-adic q-integral, we easily derive

$$
\begin{equation*}
I_{q}\left(q^{-x} f_{1}\right)=I_{q}\left(q^{-x} f\right)+\frac{q-1}{\log q} f^{\prime}(0) \tag{12}
\end{equation*}
$$

By (12), we obtain the following lemma:

Lemma 3. For $n \in \mathbb{N}$, we have

$$
\begin{equation*}
I_{q}\left(q^{-x} f_{n}\right)=I_{q}\left(q^{-x} f\right)+\frac{q-1}{\log q} \sum_{l=0}^{n-1} f^{\prime}(l) \tag{13}
\end{equation*}
$$

where $f_{n}(x)=f(x+n)$. That is,

$$
\int_{\mathbb{Z}_{p}} q^{-x} f(x+n) d \mu_{q}(x)=\int_{\mathbb{Z}_{p}} q^{-x} f(x) d \mu_{q}(x)+\frac{q-1}{\log q} \sum_{l=0}^{n-1} f^{\prime}(l) .
$$

From (11) and (13), we note that

$$
\begin{equation*}
B_{k, q}(n)-B_{k, q}=k \sum_{l=0}^{n-1} q^{l}[l]_{q}^{k-1}, \quad \text { cf. } \quad[5,7] \tag{14}
\end{equation*}
$$

where $n \in \mathbb{N}, k \in \mathbb{Z}_{+}$. By the definition of $I_{-q}(f)$, we show that

$$
\begin{equation*}
q I_{-q}\left(f_{1}\right)+I_{-q}(f)=[2]_{q} f(0) \tag{15}
\end{equation*}
$$

From (15) and induction, we derive the following integral equation:

$$
\begin{equation*}
q^{n} I_{-q}\left(f_{n}\right)+(-1)^{n-1} I_{-q}(f)=[2]_{q} \sum_{l=0}^{n-1}(-1)^{n-1-l} q^{l} f(l), \tag{16}
\end{equation*}
$$

where $n \in \mathbb{N}, f_{n}(x)=f(x+n)$. When n is an odd positive integer, we have

$$
\begin{equation*}
q^{n} I_{-q}\left(f_{n}\right)+I_{-q}(f)=[2]_{q} \sum_{l=0}^{n-1}(-1)^{l} q^{l} f(l) \tag{17}
\end{equation*}
$$

If n is an even natural number, then we see that

$$
\begin{equation*}
q^{n} I_{-q}\left(f_{n}\right)-I_{-q}(f)=[2]_{q} \sum_{l=0}^{n-1}(-1)^{l-1} q^{l} f(l) \tag{18}
\end{equation*}
$$

By (17) and (18), we obtain the following lemma:
Lemma 4. Let n be an odd positive integer. Then

$$
[2]_{q} \sum_{l=0}^{n-1} q^{l}[l]_{q}^{m}=q^{n} E_{m, q}(n)+E_{m, q}
$$

If $n(=$ even $) \in \mathbb{N}$, then we have

$$
q^{n} E_{m, q}(n)-E_{m, q}=[2]_{q} \sum_{l=0}^{n-1}(-1)^{l-1} q^{l}[l]_{q}^{m} .
$$

Let us consider the modified q-Euler numbers and polynomials. For any nonnegative integer n, the modified q-Euler numbers $\mathcal{E}_{n, q}$ are defined by

$$
\mathcal{E}_{n, q}=\int_{\mathbb{Z}_{p}} q^{-x}[x]_{q}^{n} d \mu_{-q}(x)=[2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+q^{l}}
$$

By using p-adic q-integral on \mathbb{Z}_{p}, we can also consider the modified q-Euler polynomials as follows:

$$
\mathcal{E}_{n, q}(x)=\int_{\mathbb{Z}_{p}} q^{-t}[x+t]_{q}^{n} d \mu_{-q}(t)=[2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{q^{x l}}{1+q^{l}}
$$

From (6) and (15), we derive the following p-adic q-integral relation:

$$
\begin{equation*}
I_{-q}\left(q^{-x} f_{1}\right)+I_{-q}\left(q^{-x} f\right)=[2]_{q} f(0) \tag{19}
\end{equation*}
$$

Thus, we obtain the following proposition:
Proposition 5. For $n \in \mathbb{N}$, we have

$$
\begin{equation*}
I_{-q}\left(q^{-x} f_{n}\right)+(-1)^{n-1} I_{-q}\left(q^{-x} f\right)=[2]_{q} \sum_{l=0}^{n-1}(-1)^{n-l-1} f(l) \tag{20}
\end{equation*}
$$

If we take $f(x)=e^{[x]_{q} t}$ in Eq.(19), then we have

$$
\begin{align*}
{[2]_{q} } & =\int_{\mathbb{Z}_{p}} q^{-x} e^{[x+1]_{q} t} d \mu_{-q}(x)+\int_{\mathbb{Z}_{p}} q^{-x} e^{[x]_{q} t} d \mu_{-q}(x) \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} q^{l} \mathcal{E}_{l, q}+\mathcal{E}_{l, q}\right) \frac{t^{n}}{n!} \tag{21}\\
& =\sum_{n=0}^{\infty}\left((q \mathcal{E}+1)^{n}+\mathcal{E}_{n, q} \frac{t^{n}}{n!}\right.
\end{align*}
$$

with the usual convention of replacing \mathcal{E}^{n} by $\mathcal{E}_{n, q}$.
Therefore we obtain the following theorem:

Theorem 6. Let $n \in \mathbb{Z}_{+}$. Then

$$
(q \mathcal{E}+1)^{n}+\mathcal{E}_{n, q}= \begin{cases}{[2]_{q},} & \text { if } n=0 \\ 0, & \text { if } n \neq 0\end{cases}
$$

with the usual convention of replacing \mathcal{E}^{i} by $\mathcal{E}_{i, q}$.
Note that $\lim _{q \rightarrow 1} \mathcal{E}_{n, q}=E_{n}$, where E_{n} are ordinary Euler numbers. From (19) and (20), we can derive the following theorem:

Theorem 7. Let $k(=$ even $) \in \mathbb{N}$, and let $n \in \mathbb{Z}_{+}$. Then we have

$$
\mathcal{E}_{n, q}-\mathcal{E}_{n, q}(k)=[2]_{q} \sum_{l=0}^{k-1}(-1)^{l}[l]_{q}^{n}
$$

If $k(=o d d) \in \mathbb{N}$ and $n \in \mathbb{Z}_{+}$, then we see that

$$
\mathcal{E}_{n, q}+\mathcal{E}_{n, q}(k)=[2]_{q} \sum_{l=0}^{k-1}(-1)^{l}[l]_{q}^{n} .
$$

Let χ be the Dirichlet's character with conductor $d(=$ odd $) \in \mathbb{N}$. Then we consider the modified generalized q-Euler numbers attached to χ as follows:

$$
\mathcal{E}_{n, \chi, q}=\int_{X}[x]_{q}^{n} q^{-x} \chi(x) d \mu_{-q}(x)
$$

From this definition, we derive

$$
\begin{aligned}
\mathcal{E}_{n, \chi, q} & =\int_{X} \chi(x)[x]_{q}^{n} q^{-x} d \mu_{-q}(x) \\
& =[d]_{q}^{n} \frac{[2]_{q}}{[2]_{q^{d}}} \sum_{a=0}^{d-1} \chi(a)(-1)^{a} \int_{\mathbb{Z}_{p}}\left[\frac{a}{d}+x\right]_{q^{d}} q^{-d x} d \mu_{-q^{d}}(x) \\
& =[d]_{q}^{n} \frac{[2]_{q}}{[2]_{q^{d}}} \sum_{a=0}^{d-1} \chi(a)(-1)^{a} \mathcal{E}_{n, q^{d}}\left(\frac{a}{d}\right) .
\end{aligned}
$$

\S 3. q-zeta function associated with q-Euler numbers and polynomials
In this section we assume that $q \in \mathbb{C}$ with $|q|<1$. Let $F_{q}(t, x)$ be the generating function of $\mathcal{E}_{k, q}(x)$ as follows:

$$
F_{q}(t, x)=\sum_{\substack{n=0 \\ 7}}^{\infty} \mathcal{E}_{n, q}(x) \frac{t^{n}}{n!}
$$

Then, we show that

$$
\begin{align*}
F_{q}(t, x) & =\sum_{m=0}^{\infty}\left(\frac{[2]_{q}}{(1-q)^{m}} \sum_{l=0}^{m}\binom{m}{l}(-1)^{l} \frac{q^{l x}}{1+q^{l}}\right) \frac{t^{m}}{m!} \\
& =[2]_{q} \sum_{m=0}^{\infty}\left(\frac{1}{(1-q)^{m}} \sum_{l=0}^{m}\binom{m}{l}(-1)^{l} q^{l x} \sum_{k=0}^{\infty}(-1)^{l} q^{k l}\right) \frac{t^{m}}{m!} \tag{22}\\
& =[2]_{q} \sum_{k=0}^{\infty}(-1)^{k} \sum_{m=0}^{\infty}\left([k+x]_{q}^{m} \frac{t^{m}}{m!}\right)=[2]_{q} \sum_{k=0}^{\infty}(-1)^{k} e^{[k+x]_{q} t} .
\end{align*}
$$

Therefore, we obtain the following:
Theorem 8. Let $F_{q}(t, x)$ be the generating function of $\mathcal{E}_{k, q}(x)$. Then we have

$$
F_{q}(t, x)=[2]_{q} \sum_{k=0}^{\infty}(-1)^{k} e^{[k+x]_{q} t}=\sum_{n=0}^{\infty} \mathcal{E}_{n, q}(x) \frac{t^{n}}{n!}
$$

From Theorem 8, we note that

$$
\mathcal{E}_{k, q}(x)=\left.\frac{d^{k}}{d t^{k}} F_{q}(t, x)\right|_{t=0}=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n}[n+x]_{q}^{k} .
$$

Corollary 9. For $k \in \mathbb{Z}_{+}$, we have

$$
\mathcal{E}_{k, q}(x)=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n}[n+x]_{q}^{k}
$$

Definition 10. For $s \in \mathbb{C}$, we define q-zeta function as follows:

$$
\zeta_{q}(s, x)=[2]_{q} \sum_{n=0}^{\infty} \frac{(-1)^{k}}{[n+x]_{q}^{s}}
$$

Note that $\zeta_{q}(-n, x)=\mathcal{E}_{n, q}(x)$, for $n \in \mathbb{N} \cup\{0\}$. Let $d(=$ odd $)$ be a positive integer. From the generating function of $\mathcal{E}_{n, q}(x)$, we derive

$$
\mathcal{E}_{n, q}(x)=[d]_{q}^{n} \frac{[2]_{q}}{[2]_{q^{d}}} \sum_{a=0}^{d-1}(-1)^{a} \mathcal{E}_{n, q^{d}}\left(\frac{x+a}{d}\right) .
$$

Therefore we obtain the following:

Theorem 11. For $d(=o d d) \in \mathbb{N}, n \in \mathbb{Z}_{+}$, we have

$$
\mathcal{E}_{n, q}(x)=[d]_{q}^{n} \frac{[2]_{q}}{[2]_{q^{d}}} \sum_{a=0}^{d-1}(-1)^{a} \mathcal{E}_{n, q^{d}}\left(\frac{x+a}{d}\right) .
$$

Let χ be the Dirichlet's character with conductor $d(=o d d) \in \mathbb{N}$ and let $F_{\chi, q}(t)$ be the generating function of $\mathcal{E}_{n, \chi, q}$ as follows:

$$
F_{\chi, q}(t)=\sum_{n=0}^{\infty} \mathcal{E}_{n, \chi, q} \frac{t^{n}}{n!}
$$

Then we see that

$$
\begin{aligned}
F_{\chi, q}(t) & =\sum_{n=0}^{\infty}\left([d]_{q}^{n} \frac{[2]_{q}}{[2]_{q^{d}}} \sum_{a=0}^{d-1} \chi(a)(-1)^{a} E_{n, q^{d}}\left(\frac{a}{d}\right)\right) \frac{t^{n}}{n!} \\
& =\frac{[2]_{q}}{[2]_{q^{d}}} \sum_{a=0}^{d-1} \chi(a)(-1)^{a} \sum_{n=0}^{\infty} E_{n, q^{d}}\left(\frac{a}{d}\right) \frac{[d]_{q}^{n} t^{n}}{n!} \\
& =[2]_{q} \sum_{a=0}^{d-1} \chi(a)(-1)^{a} \sum_{k=0}^{\infty}(-1)^{k} e^{[k d+a]_{q} t} \\
& =[2]_{q} \sum_{n=0}^{\infty} \chi(n)(-1)^{n} e^{[n]_{q} t} .
\end{aligned}
$$

Therefore, we obtain the following theorem:
Theorem 12. Let $F_{\chi, q}(t)$ be the generating function of $\mathcal{E}_{n, \chi, q}$. Then we have

$$
F_{\chi, q}(t)=[2]_{q} \sum_{n=0}^{\infty} \chi(n)(-1)^{n} e^{[n]_{q} t}=\sum_{n=0}^{\infty} \mathcal{E}_{n, \chi, q} \frac{t^{n}}{n!}
$$

From Theorem 12, we derive

$$
\mathcal{E}_{k, \chi, q}=\left.\frac{d^{k}}{d t^{k}} F_{\chi, q}(t)\right|_{t=0}=[2]_{q} \sum_{n=1}^{\infty} \chi(n)(-1)^{n}[n]_{q}^{k} .
$$

Corollary 13. For $k \in \mathbb{Z}_{+}$, we have

$$
\mathcal{E}_{k, \chi, q}=[2]_{q} \sum_{n=1}^{\infty} \chi(n)(-1)^{n}[n]_{q}^{k} .
$$

For $s \in \mathbb{C}$, we define a l-series which interpolates the modified generalized q-Euler numbers attached to χ at a negative integer as follows:

$$
l_{q}(s, \chi)=[2]_{q} \sum_{n=1}^{\infty} \frac{\chi(n)(-1)^{n}}{[n]_{q}^{s}}
$$

From Corollary 13, we easily derive

$$
l_{q}(-n, \chi)=\mathcal{E}_{n, \chi, q}, \quad n \in \mathbb{Z}_{+}
$$

References

[1] L. C. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
[2] L. C. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954), 332-350.
[3] T. Kim, On explicit of p-adic q - L-function, Kyushu J. Math. 48 (1994), 73-86.
[4] T. Kim, On a q-analogue of the p-adic log gamma functions, J. Number Theory 76 (1999), 320-329.
[5] T.Kim, Sums powers of consecutive q-integers, Advan. Stud. Contemp. Math. 9 (2004), 15-18.
[6] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007), 1458-1465.
[7] T. Kim, On p-adic q-L-functions and sums of powers, Discrete Math. 252 (2002), 179-187.
[8] T. Kim, S-.H. Rim, Y. Simsek, A note on the alternating sums of powers of consecutive q-integers, Advan. Stud. Contemp. Math. 13 (2006), 159-164.
[9] H. M. Srivastava, T. Kim, Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and Basic L-series, Russ. J. Math. Phys. 12 (2005), 241-268.
[10] T. Kim, On p-adic q-Bernoulli Numbers, J. Korean Math. Soc. 37 (2000), 21-30.

Taekyun Kim

EECS, Kyungpook National University, Taegu, 702-701, S. Korea
e-mail:tkim64@hanmail.net, tkim@knu.ac.kr

