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Abstract

We show how Padé approximations are used to get Diophantine approximations of real or complex numbers, and
so to prove the irrationality. We present two kinds of examples. First, we study two types of series for which Padé
approximations provide exactly Diophantine approximations. Then, we show how Padé approximants to the asymptotic
expansion of the remainder term of a value of a series also leads to Diophantine approximation. (©) 2000 Elsevier Science
B.V. All rights reserved.

1. Preliminary

Definition 1 (Diophantine approximation). Let x a real or complex number and ( p,/q,), a sequence
of Q or Q7).

If lim, o |g.x— p,|=0 and p,/q, # x, Vn € N, then the sequence ( p,/q,), is called a Diophantine
approximation of x.

It is well known that Diophantine approximation of x proves the irrationality of x.

So, to construct Diophantine approximation of a number, a mean is to find rational approximation,
for example with Padé approximation.

We first recall the theory of formal orthogonal polynomials and its connection with Padé approx-
imation and e-algorithm.,

1.1. Padé approximants

Let / be a function whose Taylor expansion about t=0 is > .~ ¢;". The Padé approximant [m/n],
to 4 is a rational fraction N,,(¢)/D,(¢t) whose Taylor series at ¢t = 0 coincides with that of 4 up to
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the maximal order, which is in general the sum of the degrees of numerator and denominator of the
fraction, i.e,

deg(N,)<m, deg(D,)<n, D, ()h(t) — N,,(t) = O™, t—0.

Note that the numerator N,, and the denominator D, both depend on the index m and n.
The theory of Padé approximation is linked with the theory of orthogonal polynomials (see [10]):
Let us define the linear functional ¢ acting on the space 2 of polynomials as follows:

c:?—R (or C),
X = (ex)y=¢, i=0,1,2,... and if p € Z,
P R (or C),

X = (WP X i=(e, XY = ¢y, 1=0,1,2,... (¢;=0,i <0),
then the denominators of the Padé approximants [m/n] satisfy the following orthogonality property:
("D X¥'D,(x)) =0, i=0,1,2,...,n—1,

where D,(x) = x"D,(x~") is the reverse polynomial. Since the polynomials D, involved in the ex-
pression of Padé approximants depend on the integers m and n, and since D, is orthogonal with
respect to the shifted linear functional ¢"~"*!D, we denote

Pl(,lm—n+l)(x) — Dn(x)’

~(m—n+1)

0, (x) = Nau(x).
If we set
RN ()= <c<m—"+1) P 3mn+l)(x)_P£'mnH)(t)> RO €
3 x —t bl n—1»s

where =1 acts on the letter x, then

N,(t) = (th) Ty g e R g,

—n+1)

~ _ ~(m—n+1)
where B V(1) = =1 RO, BTV (6) = POy and SV e =0, n < m.

The sequence of polynomials (P,(("))k, of degree k, exists if and only if Vn € Z, the Hankel
determinant

Cp ot Cpgk—1
HM:=| o o . | £0
k - b
Cntk—1 *° Cpy2k—2

where ¢, =0 if n < 0.
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In that case, we shall say that the linear functional ¢ is completely definite. For the noncompletely
definite case, the interested reader is referred to Draux [15].

For extensive applications of Padé approximants to Physics, see Baker’s monograph [5].

If ¢ admits an integral representation by a nondecreasing function o, with bounded variation

Ci :/xidoc(x),
R

then the theory of Gaussian quadrature shows that the polynomials P, orthogonal with respect to c,
have all their roots in the support of the function o and

m—n+ ~(m—n+1)
h(t) — [m/n],(¢) = %rriTl)lc(m_nJrl) (W)

CARNO) b=t
tmfnJrl _ ﬁ(m—nH) X 2
ZW/X'" ”H("lA do(x). (1)
P, (#))* /® -
Note that if ¢y =0 then [n/n],(¢)=t[n— 1/n],,(?) and if ¢, =0 and ¢, =0, then [n/n],(¢) = *[n—

2/n]h/t2(t)-
Consequence: If o is a nondecreasing function on R, then

h(t) # [m/n](t) Vt € C — supp(a).
1.2. Computation of Padé approximants with e-algorithm

The values of Padé approximants at some point of parameter ¢, can be recursively computed with
the e-algorithm of Wynn. The rules are the following:

e =0,e"=8, n=01,...,

1
(n) __ (n+1) _
Gl =&y +s("“) pok k,n=0,1,... (rhombus rule),
v T &

where S, = >}, it
e-values are placed in a double-entry array as following:

s(,o{ =0
0 =5

8_1} =0 8%0)
s(()l) =5 séo)

2 —o & RO
D=5

& { =0 8(12)
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The connection between Padé approximant and &-algorithm has been established by Shanks [26] and
Wynn [35]:

Theorem 2. If we apply e-algorithm to the partial sums of the series h(t) =3 >, cit', then
e = [n+ K[k, (0).

Many convergence results for ¢-algorithm has been proved for series which are meromorphic func-
tions in some complex domain, or which have an integral representation (Markov—Stieltjes function)
(see [29,6,11] for a survey).

2. Diophantine approximation of sum of series with Padé approximation

Sometimes, Padé approximation is sufficient to prove irrationality of values of a series, as it can
be seen in the following two results.

2.1. Irrationality of In(1 —r)

We explain in the following theorem, how the old proof of irrationality of some logarithm number
can be re-written in terms of ¢-algorithm.

Theorem 3. Let r=a/b, ac 7, b€ N, b # 0, withb.e(1—+/1 —r)* < I(Ine=1) Then e-algorithm
applied to the partial sums of f(r):=—In(1 —r)/r = 3,1 /(i + 1) satisfies that ¥n € N, (&)
is a Diophantine approximation of f(r).

Proof. From the connection between Padé approximation, orthogonal polynomials and ¢-algorithm,
the following expression holds:

~(n+1)

(n) __ - ri n 1Rk—1 (}") _ Nn+k(r)
€k _Z i1 +rT ~(n+1) T x(nfl) >
= By BT
where

k k k 1
]55;1“)(2‘):l‘kpfcnﬂ)(f_l)zz <k ) ( +r.l+ >(1 — 1y

i=0 —1 !

is the reversed shifted Jacobi polynomial on [0,1], with parameters « =0, f=n+ 1, and Iéinjll)(t) =

(1+1), \_ plnt1) )
AR with RUTD(r) = (etth, B 97 Oyt yiy:—1/(n + i + 2)) (c acts on the

variable x ).

Since ﬁf{nﬂ)(t) has only integer coefficients, b"f’f{nﬂ)(a/b) eZ.

The expression of R,(C"jll)(t) shows that d,,+k+1bk1§f{n_+ll)(a/b) € 7, where d, ;,1:=LCM(1,2,...,n+
k + 1) (LCM means lowest common multiple).

We prove now that the sequence (sg',? )i is a Diophantine approximation of In(1 — a/b).

x—t
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The proof needs asymptotics for d,,;.1, for ﬁ,ﬁnﬂ)(a/b) and for (sé’,? — f(r)) when k tends to
infinity. d, = e""*°) follows from analytic number theory [1].

limk(ﬁfjﬂ)(x))‘/":x(y—i—\/y2 —1), x> 1, y=2/x—1, comes from asymptotic properties of Jacobi
polynomials (see [30]), and lim;_,..(e\} — f(r))"* = (2/r — 1 — \/(2/r — 1) — 1)* (error of Padé
approximants to Markov—Stieltjes function).

So

. ~(n+1) 1/k
lim sup |dy 1P, (a/b)f (1) = dysici 1B Nya(a/)|

k—+4o00

~(n+1)

1/k 1/k
< lim sup(d,HkH)l/klimsup‘kak (a/b)‘ lim sup [&ff) + 1/rIn(1 — )
— T 00 k —+00

Sebr(2fr — 14+/@/r— 17 = D@/r =1 —\J@r — 12 — 17
—eb(2fr — 1= \J@)r 1P — 1) =eb(1-VI—r) <1

by hypothesis, which proves that

~(n+1)

Vne N, lim (dynb P (@fb)f(r) = dygr b Nyi(a/b)) = 0.

Moreover,
2k-+n+1 L platD) 2
8(2,;() + 1/}"111(1 — l") = — ~:n+1) / ( k (X)) (1 _x)n-H dx # 0.
By Lo
So the sequence (sg,'())k is a Diophantine approximation of In(1 — a/b), if b.e.(1 — /1 —a/b)* < 1.

]
2.2. Irrationality of > t"/w,

The same method as previously seen provides Diophantine approximations of f(z):=>"°,"/w,
when the sequence (w;); satisfies a second-order recurrence relation

Wap1 =SW, — pW,1, n €N, (2)

where wy and w_; are given in C and s and p are some complex numbers.

We suppose that w, # 0, Vn € N and that the two roots of the characteristic equation z? — sz +
p=0, « and f satisfy |o| > |f].

So w, admits an expression in term of geometric sequences: w, = Aa" + Bf", n € N.

The roots of the characteristic equation are assumed to be of distinct modulus (|a| > |f]), so there
exists an integer » such that |a/f|" > |B/A|.

Lemma 4 (see [25]). If o, [,4,B are some complex numbers, and |o| > ||, then the function

o0

tk
SO=2 B

k=0
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admits another expansion
r—1

B " S [(~B/AYB/ay T
FO=2 b v B aw 2 ga-(fy

where r € N is chosen such that |o|"|A| > |B|"|B|.

With the notations of Section 1.1, the Padé approximant [n + k — 1/k], is

~(n)
[+ k= 1k, (0 = 2650,

P, (1)

where ﬁin)(t) =P ).

In a previous papers by the author [24,25], it has been proved that for all n € Z, the sequence of
Padé approximants ([n + k — 1/k]), to f converges on any compact set included in the domain of
meromorphy of the function f, with the following error term:

Ve C\ {a(o/By,j € N}, Vn e N, limsup|f(¢) — [n+k — 1/k] ()" <§’ (3)
k

where o and f are the two solutions of z2 — sz + p=0, |a| > |B].

~(n)

Theorem 5. If O, (t)/lsl((n)(t) denotes the Padé approximant [n+k — 1/k],, then

e RN 11 A+ Bg"
@)ém:Z<Jw”WwwH—ii——

i=0 p o A+ By
where
K\ _ (—g)...(1—g—)
q:=pla, = —  1<i<k (Gaussian binomial coefficient),
(i) 1=-g)1—=¢*)...(0 —¢")

()

k—1
~ (1) ;
(b) [P (t) = [J(1 — ¢/ <Rlql", k=Kq

J=0

for some constant R independent of k and K, is an integer depending on A,B,q,n.
Moreover, if s, p,w_1,wy € Z(i), for all common multiple d,, of {wo,w1,..., Wy}

() Wot - Woink 1Py € Z()[t], Vn € Zn+k— 120
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and

() dysis Wosk - Wosair OV € ZW[E], Vn € Z fn+k — 130.
Proof. (a) is proved in [16] and (b) is proved in [25]. (¢) and (d) comes from expression (a). [J

The expression of w, is
w, = Aa" + Bp".

If A or B is equal to 0 then f(¢) is a rational function, so without loss of generality, we can assume
that AB # 0.

The degrees of Q,({n) and }52”) are, respectively, k +n — 1 and %, so if we take r € Q(i) with
vt € Z(i), the above theorem implies that the following sequence:
/ ~(n) / ~(n)
een: =1 (1) X 05 dyps Wik - Wik Py (1) = 0 doyi Wik - Wik Oy (0),
where &’ = max{n + k — 1,k} is a Diophantine approximation to f(¢), if

(1) Vn € Z,limy_, o€, =0,
(i) [n+ k — l/k]f(t) # [n+kik + 11,(2).

For sake of simplicity, we only display the proof for the particular case n = 0.
We set

~(0) (0)
eri=ey,0, Q=0 and Py =Py

From the asymptotics given in (3), we get

0.0 e
lim sup |e| ¥ < limsup | /(¢) — =% lim sup )vkdk_lwk W Pr(t) (4)
k k Pi(t) k
<|pltim sup|pi 1", (5)

where pi:=d;/ Hf;o Wi.
We will get lim;_,, ¢, =0 if the following condition is satisfied:

lim sup | p—1 | < 1/| pl.
k—o00
Moreover, from the Christoffel-Darboux identity between orthogonal polynomials, condition (ii) is

satisfied since the difference
2

Y
0, (P~ Py = 1 )HAsz’ ol — Y

Wzl 1W21W21 2

is different from 0.
The following theorem is now proved.

Theorem 6. Let | be the meromorphic function defined by the following series:

oo g
f(t)=§;n,
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where (w,), is a sequence of Z(i) satisfying a three-term recurrence relation
Worl =S Wy — P Wat, S, p € Z(i)
with the initial conditions: w_i,wy € Z(i). If for each integer m, there exists a common multiple
d,, for the numbers {wo,wi,...,w,} such that p,, defined by
T,
satisfies the condition

limsup |p,,|"" < 1/ pl, (6)
then for t € Q(i), t # a(o/B)/, j=0,1,2,... we have

f(t) € Q).
See [25] for application to Fibonacci and Lucas series. (If F, and L, are, respectively, Fibonacci
and Lucas sequences, then f(¢)=> t"/F, and g(t) =>_¢"/L, are not rational for all ¢ rational, not
a pole of the functions f or g, which is a generalization of [2].)

3. Diophantine approximation with Padé approximation to the asymptotic expansion of the
remainder of the series

For sums of series f, Padé approximation to the function f does not always provide Diophantine
approximation. Although the approximation error |x — p,/q,| is very sharp, the value of the denom-
inator ¢, of the approximation may be too large such that |¢,x — p,| does not tend to zero when n
tends to infinity.

Another way is the following.

Consider the series f(1) =)~y cit' => 1, c;t' + R,(¢). If, for some complex number 7, we know
the asymptotic expansion of R,(#)) on the set {1/n’,i =1,2,...}, then it is possible to construct an
approximation of f(#), by adding to the partial sums S,(z):=> ., cit}, some Padé approximation
to the remainder R,(# ) for the variable n.

But it is not sure that we will get a Diophantine approximation for two reasons.

(1) the Padé approximation to R,(#,) may not converge to R,(%),
(2) the denominator of the approximant computed at #,, can converge to infinity more rapidly
than the approximation error does converge to zero.

So, this method works only for few cases.
3.1. Irrationality of {(2),{(3), In(1+4) and Y, 1/(q" +r)

3.1.1. Zeta function
The Zeta function of Riemann is defined as

=3 ™
n=1
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where the Dirichlet series on the right-hand side of (7) is convergent for Re(s) > 1 and uniformly
convergent in any finite region where Re(s)>1+ J, with ¢ > 0. It defines an analytic function for
Re(s) > 1.

Riemann’s formula

1 00 X571
{(s)= F(s)/o ~ 1 dx, Re(s) > 1,

where
I'(s) —/ ¥ 'e”?dy is the gamma function (8)
and
ﬂmr(l _ S) —1
()= 2in v e —1 dz ©)

where % is some path in C, provides the analytic continuation of {(s) over the whole s-plane.
If we write formula (7) as

C(S) = Z ks Z (n + k)s

and set W (x):=I'(s) >, (x/(1 + kx))* then

n

1 1
C(S)— e TG )?’ «(1/n). (10)

The function Y 2, (x/(14kx))*) is known as the generalized zeta-function {(s, 1 + 1/x) [32, Chapter
XIII] and so we get another expression of ¥ (x):

00 —u/x
?’S(x):/ w! ‘Z du, x>0,
0 et — 1

whose asymptotic expansion is
P (x)= i @r(k 45— 1kt
N - P k' B

where B, are the Bernoulli numbers.
Outline of the method: In (10), we replace the unknown value ¥ (1/n) by some Padé-approximant
to ¥,(x), at the point x = 1/n. We get the following approximation:

n

1 1
{(s) ~ - o =+ m[P/‘]]%(x = 1/n). (11)

We only consider the particular case p =gq.
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Case {(2): If s =2 then (10) becomes
1
{2)= Z 2 + ¥s(1/n),
k=1

and its approximation (11):

"1
(Q)~> =i [p/Ply,(x = 1/n), (12)
pa
where
Wy(x) =Y Bix**' = Box + Bix* + Byx’ + -+ (asymptotic expansion). (13)
k=0

The asymptotic expansion (13) is Borel-summable and its sum is

[e's) e—u/x
Y,(x) :/ u I du.
0

eu_

Computation of [ p/ply,).: We apply Section 1.1, where function f(x)= ¥,(x)/x. The Pad¢ ap-
proximants [ p/p] , are linked with the orthogonal polynomial with respect to the sequence By, By, B, .. ..
As in Section 1, we define the linear functional B acting on the space of polynomials by

B:27—-R

¥ — (B,xY=B, i=0,1,2,....
The orthogonal polynomials 2, satisfy
(B,xX'Q,(x))=0, i=0,1,....,p—1. (14)

These polynomials have been studied by Touchard ([31,9,28,29]) and generalized by Carlitz ([12,13]).
The following expressions

2x+p-—-2
am-3 (1 (1)
2r<p p r r

o (D) C0)R ) E) e

hold (see [34,12]).
Note that the €2,’s are orthogonal polynomials and thus satisfy a three-term recurrence relation.
The associated polynomials A, of degree p — 1 are defined as

A1) = <B, M> ’

x—t
where B acts on x.
From expression (15) for Q,, we get the following formula for A ,:

o £(0) (1) P

k x—t

2
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The recurrence relation between the Bernoulli numbers B; implies that

)5

Using the expression of the polynomial ((; ) — (,i))/(x —t) on the Newton basis on 0,1,...,k — 1,
X t X
k k) (1 z": i—1
x—t - k)= (1 ’
i
i

we can write a compact formula for 4 ,:

Pofp\[(ptR\ [\ & (1)
-5 ()T DEG e
p kg k k k ;ﬂ(t) P

i

Approximation (12) for {(2) becomes

"1 A0 "1 Ayn)
Q)= ) 5 +it=" =) 5t o
kzz; ke,0l,,, 1; k2 Qy(n)
Using partial decomposition of 1/ (") with respect to the variable n, it is easy to prove that
d, .
eN, Vie{l,2,...,n} (16)

n
I
I
with d,:=LCM(1,2,...,n).
A consequence of the above result is
d2A,(n)eN, VpeN
and
d,Q2,(n){(2) — d;(S,2,(n) + A,(n)) (17)

is a Diophantine approximation of {(2), for all values of integer p, where S, denotes the partial
sums S, = >;_, 1/k*. It remains to estimate the error for the Padé approximation:

Pa(t) = [/ ple, (1) = Va2(t) = [P = 1/ Ply,(0)-
Touchard found the integral representation for the linear functional B:

.
—1—

o+ioco dx
<B,xk>::Bk = / ka, -1 <a<O.
2 Jusio  sin“(mx)
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Thus, formula (1) becomes

2 /x+ioo 0? (x) dx

f_l'll’z(f) —[p— 1/p]'1’2/t(t) = 2 ~2(t)

s—ico 1 — Xt sin (TC)C)

and we obtain the error for the Padé approximant to ¥,:
atico ()2 (x) dx
ZQZ 171 Jusioo 1 — Xt sin®(mx)

(1) — [p/ply,(t) =

and the error for formula (17):
T atico ()2 (x) dx
2n Q2 (n) _ico 1 —x/nsin (nx)

d;Q2,(n){(2) — d3(S,Q,(n) + A,(n)) = —dyji~ (18)

If p=n, we get Apéry’s numbers [4]:

" (n ? n+k
b =Q,(n)=
-2 (1) (")

n " ’ k
a;:SnQn(n)—i_A”(n):(Z%) b;+z<z> <n: )
k=1

k=1

and

The error in formula (18) becomes

Lo Q3 (x)  dx
BB L02) - dPd = dzl—/ Syt Y
n n&:( ) nan ”12 b/ —ico I*X/n sinthx ( )

In order to prove the irrationality of {(2), we have to show that the right-hand side of (19) tends
to 0 when n tends to infinity, and is different from 0, for each integer n.

We have
Sl 2(x)  dx 0 QN—1 +iu)  du 1
/ <l | < [(8.23()
“1)2—ice | —X/nsin” mx 1+ 1/2n cosh’mu| 1+ 1/2n

since cosh’mu is positive for u € R and Qﬁ(—i + iu) real positive for u real (€2, has all its roots on
the line —% + iR, because Qn(—% + iu) is orthogonal with respect to the positive weight 1/cosh’nu
on R). The quantity (B, Q2(x)) can be computed from the three term recurrence relation between
the @'s [31]:

=1

2n+ 1

The Diophantine approximation (19) satisfies

(B, Q(x)) =

T 1

BhL2) — dd| <dP— " x —.
4:5,82) = dya| "Cn+ 12 b

n=n
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In [14], it is proved that &, ~ A’((1 4 /5)/2)*n~" when n — oo, for some constant 4’. From a
result concerning d, = LCM(1,2,...,n): (d, = ¢"(+°)) we get

lim |d2b'((2) — d2al| =0, (20)

n-n

where d?b! and d2a/, are integers.
Relation (20) proves that {(2) is not rational.
Case {(3): If s =3 then equality (10) becomes

"1 1
(B) =Y 5 + 5 Ws(U/m), 1)
k=1

where

v [eS) s efu/x d
3(X)—/0 u 6’”7—1 u

whose asymptotic expansion is
Pi(x) =Y Bi(k + 12
k=0
Computation of [ p/ply,. - Let us define the derivative of B by
(=B, x") = (B,k" "y =kBy_y, k=1,
(—B',1):=0.
So, the functional B’ admits an integral representation:

o+ico
(B',x") = in2/ x* ".053((”)) dx, —l<a<0.
a—ioco sin (7Tx

Let (I1,), be the sequence of orthogonal polynomial with respect to the sequence
—B,:=0, —B| = B,, —B, =2B,, —B,=3B,,... .

The linear form B’ is not definite and so the polynomials II, are not of exact degree n.

More precisely, I1,, has degree 2n and II,,. |, = Il,,. For the general theory of orthogonal poly-
nomials with respect to a nondefinite functional, the reader is referred to Draux [15]. If we take
o= —%, the weight cos 7x/sin’® (mx) dx on the line —% + iR becomes sinh mt/cosh’ it df on R, which
is symmetrical around 0. So, I1,,(it — —) only contains even power of ¢t and we can write

I1,,(it — —) = W,(t*), W, of exact degree n. Thus W, satisfies

t smh Tt

/W(t)W( ) dt=0, n#m.

The weight ¢sinh nt/cosh it equals (1/4*)|I°(5 + it)[|I(2i¢)|* and has been studied by Wilson
[33,3]:

" (n n+k y+k y
" M T2 k k k
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Let ©,, the polynomial associated to II,:

(1) = <_ 3. Hzn(x; - 572,,0)

For the computation of ©,,, we need to expand the polynomial
x+k X t+k t
(6 ()6)
x—t ’
On the Newton basis with the abscissa {0,1,—1,...,n,—n}

x+k X t+k t
()G s v

23

Y1 2 N [G+ D2

where NO(x)::la Nl(x) = ()1()1 N2(x) = ()1() (XJIFI) 7“"N2i(x) = ();) (X;Li) N2i+1(x) = (iil) (X;Ll)
By recurrence, the values (—B’, N;(x)) can be found in

ieN, (—B,Ny(x)=0, <—B/’N2"“(x)>:(§:rll)l)2'

Using the linearity of B’, we get the expression of @,,:
g g

<t+k> (t—i)

n k k 1)iH s o

@2n(r>:2<n> (H )Z( 1) e g, (23)
i=1

Eq. (16) implies that

—~\ k k (k)z
i
diQZn(t) S N, vt S N.

The link between II,,, ©,, and the Apéry’s numbers a,, b, is given by taking y =n in (22) and
t=mnin (23):

n n : n+k :
Hn()ZE ( ) ( )an,
A AVI AW

(Z %) Hzn(n) + %@211(}1) = a,.

k=1

> , B actson x.

Apéry was the first to prove irrationality of {(3). He only used recurrence relation between the a,
and b,. We end the proof of irrationality of {(3) with the error term for the Padé approximation.
Let us recall equality (21),

"1 1 1
S N A
(B=Y 5+ ()
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in which we replace the unknown term ¥3(1/n) by its Padé approximant [21/2n], (x=1/n). It arises
the following approximation for {(3):
. 1 1 @211(”)
3) =~ — + =
<) kzz; i3 + 2 I1,,(n)

and the expression

e, = 2d,11,,(n)(3) — [(i %) 211,(n) + @2n(”)] d,
=1

will be a Diophantine approximation, if we prove that lim, e, = 0 (since I1,,(n) and d>©,,(n) are
integer).
Let us estimate the error ¢,. The method is the same as for {(2):
O,,(t7!
V(1) — [20/2n],, () = P5(0) = P12 = 2/2n]y, (1) = V(1) - %

The integral representation of B’ gives

i #Hieo T2 (x) cos mx

I,(t7") Jucico 1 —xt sin’mx

¥5(t) — [2n)2n]y,(1) = —

The previous expression implies that the error ¥;(¢) — [2n/2n], (¢) is nonzero, and also that

¢ u sinh u
Yi(t) — [2n/2 < W2(u*) du, tcR"'.
[5(6) = [2n/2n]y, (1) 2,17 1+t/2 / ¢ cosh3nu !

From the expression of the integral (see [33]) we get
4n?
(2n + 1213, (n)

The error term in the Padé approximation satisfies

|¥3(1/n) = [2n/2n]y,(1/n)| <

4n?
S 2n+ 1R (n)

’2&3) —22 — [2n/2n],,(1/n)| <
k=1

and the error term e, satisfies
8n? d}
S (2n+ 1) ,(n)

len| = ‘2diﬂzn(n)6(3) - [ (Z k3> I,(n) + @2,,(;1)] 4| <

I,,(n) = b, implies that IT,,(n) = A(1 + v/2)*'n=3? [14], and so we get, since d,, = e"("*o()),

2d°b,((3) — 2d3a,| — O,
| 3) | 24)

n— 00,

where 2d3b, and 2d’a, are integers.
The above relation (24) shows that {(3) is irrational.
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Of course, using the connection between Padé approximation and e-algorithm, the Diophantine
approximation of {(3) can be constructed by means of the following e-array: a,/b, = ;_, 1/k* +
84n)(T )—84n)(zk , 1/k*+T,), where T, is the partial sum of the asymptotic series (nonconvergent)
Tw=13>0 Bulk + 1)1/n".

We get the following e-arrays for n =1,

0

0 0
1 1/22/5=¢" 1, 1+ 3« &) =% =aq,/b, (Apery’s numbers),
0 1/3
1/2

and for n =2,
- o ]
0 0
1/4  1/6 2/13
1/8 320 2/13 2/13
5/32  5/32 21/136 37/240 45/292 = &
5/32 5/32  2/13 53/344
59/384 59/384 37/240
59/384 59/384
| 79/512

(we have only displayed the odd columns), 1+1/2°+1 /2*3(0) 351/292=a,/b,. e-algorithm is a par-
ticular extrapolation algorithm as Padé approximation is particular case of Padé-type approximation.
Generalization has been achieved by Brezinski and Haivie, the so-called E-algorithm. Diophantine
approximation using E-algorithm and Padé-type approximation are under consideration.

3.1.2. Irrationality of In(1 + 1)
In this part, we use the same method as in the preceding section:

n

We set In(1+2) =3 (— 1)’f+1’L Z -

k=1

1 )k+n+1

e (25)

From the formula 1/(k +n)= [;~ e"*™"du, we get an integral representation for the remainder
term in (25):

—hnv

i(_l)k+n+l )”k+n :(_l)n/ }I’l-‘rl ¢ do.
po k+n 0 e’ 4+ A
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If we expand the function

142 & vk
= Ri.(—=1)—
e’ + A ; i )k!’

where the R,(—1)’s are the Eulerian numbers [12], we get the following asymptotic expansion:

0 }»/ﬁLn (_ 1 )n in+1 0
-1 k+n+1 — R —)u k .
2 (=1 k+n  n(1+7) (Z ( )x>1/

k=1 k=0

Let us set
®i(x) = Re(—A)".
k=0

Carlitz has studied the orthogonal polynomials with respect to Ro(—4), Ri(—4),....
If we define the linear functional R by

(R, x"):=Ri(—= 1),

then the orthogonal polynomials P, with respect to R, i.e.,
(R,X*P,(x)) =0, k=0,1,....,n—1,

satisfy P,(x) = >, (1 4+ A) (}) () [12].

The associated polynomials are
n n X _ t
0= (1+2) g W=l (26)
P k x—t

Carlitz proved that (R,(})) =(—4—1)7* and thus, using (26),

ao-$000 () ()£ ()
k=0 k k)5 l(i) 441
If we set A= p/q, p and ¢ € Z and ¢ = n, then
q"d,0n(n) € Z.
An integral representation for R,(—A4) is given by Carlitz:

1+)L o+ico . i—z

Ri(—=2)=— d -1 0 27
(=4) 214 Jysioo “sinmz 2 << 27)
and thus
1+ A4 ot 1 A7
[0} =—
1) 2i/ L_iw 1 — xzsinnz

The orthogonal polynomial P, satisfies [12]
o+ico )ufz 23
| Be =,

. Z =
a—ioco sin 7z i+ A




248 M. Prévost | Journal of Computational and Applied Mathematics 122 (2000) 231-250

and since Re(A ?sinnz) > 0 for z € —% + iR, we obtain a majoration of the error for the Padé
approximation to @:

ll‘l
() — 1 <
1(X) [l’l /n](bl(x)| ‘1 +X/2’
and if x = 1/n, we get
1 ||
b _ e
’ 1 (n) [n— 1/n]e (1/n)| < STh12n
Let us replace in (25) the remainder term by its Padé approximant:
( 1)n/1n+l
In(1 + 1) =~ Z( 1)k+1 ﬁ — 1/n]y, (1/n),
we obtain a Diophantine approximation for In(1 + p/q):
”2n
p 2 2 22d g’
in(1+ 2) dg P~ i) < A5 (28)
q T (n+2)Py(n)’

where T,(n) = P,(n) >, (=1 ptjkg* + (=11 Q. (n)q".
From the expression of P,(x) we can conclude that

2
n n 2
P,(n)= Z(l + ) <k> = Legendre (n, > + 1) A

k=0

where Legendre (n,x) is the nth Legendre polynomial and thus
T,(n)
P,(n)

So, the classical proof for irrationality of In(1 + p/g) based on Padé approximants to the function
In(1 + x) is recovered by formula (28).
Proof of irrationality of {(2) with alternated series: Another expression for {(2) is

k—1
(@)=2 Z( DA

= [n/n]ln(ler) ()C = 1)

Let us write it as a sum
1)k+n+1

lkl
=23 a2y G

Let @, be defined by @,(x) =7, R(—1)(k + 1)x*. So

k—1 n
(2)=2 Z( !

With the same method, we can prove that the Padé approximant [2r/2n], (x) computed at
x = 1/n leads to Apéry’s numbers a/, and b/ and so proves the irrationality of {(2) with the
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integral representation for the sequence (AR;_i(—1)):
w1+ 1) [*>~  cosnz
— z

. . 2
2i/ 4—ico sin“mz

kR 1(—1)=— dz, k=1
obtained with an integration by parts applied to (27).

3.1.3. Irrationality of > 1/(q" +7r)

249

In [7], Borwein proves the irrationality of L(r)=>_1/(q" —r), for g an integer greater than 2, and
r a non zero rational (different from ¢”, for any n>1), by using similar method. It is as follows:

Set
> X <. X"
L,(x):= = , gl > 1.
! ;fﬂ—x ;q”—l i

Fix N a positive integer and write L,(r) = Zf,v:l r/(q" —r) + L(r/gV).
Then, it remains to replace L,(r/g") by its Padé approximant [N/N] Lq(r/qN ).
The convergence of [N/N] 1, to L, is a consequence of the following formula:

vie C\{¢,j N}, VneN, limsup|L,(t)—[NN], (0" <1/q.
N

Pn/q. defined by pn/q,,::ZfL1 r/(g" — r) + [N/N] Lq(r/qN ) leads to Diophantine approximation of
L,(r) and so proves the irrationality of L,(r).

For further results concerning the function L,, see [17-19].

Different authors used Padé or Padé Hermite approximants to get Diophantine approximation, see
for example [8,20-23,27].
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