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1. INTRODUCTION

Let {U,(p, q)} be the sequence of fundamental functions defined by Lucas
[2] as follows:

Un+2 = plUys1 — qUn (n 2 0)

with initial values U, = 0, U; = 1. Further, let {S,(z)} and {7,(x)} denote
the Chebychev polynomial sequences of the first and second kind, respectively.
In [5], formulas were obtained for

(x) w (DT

n N3
i -1 U3n+j i -1 53n+j 4 E 3n+j(x)
R NI N Gn+ ! M LT BT

n=0

i=0,1, 2.

As mentioned in [5, Remark 4], we generalize the above formulas in this paper
to obtain

- (DU

E nr+J
Ly ne + G000

Jg=0,1, ..., p -1,
and similar formulas for {5, (x)} and {7, (x)}.

2. PRELIMINARIES

The generalized circular functions are defined as follows. For any posi-
tive integer r,

o (_1)ntrn+j
. = - =0, 1, ..., -1,
M, (&) é%% T IR 0, 1 r
and .
0 tPVL+,7 . )
Nr,j<t) = jg% ?;E—i_ETT’ Jg=0,1, ..., »r - 1.

Note that M; ¢(¢) = e %, M, o(£) = cos t, M, ;(¢) = sin t, and N, ,(¥) = e*,
Nz,o(t) = cosh t, Ny o(£) = sinh ¢.

The notation and some of the results presented here are found in Pethe and
Sharma [4].

Following Barakat [1] and Walton [7], we define generalized trigonometric
and hyperbolic functions of any square matrix X by

rm+J

= (-1)"x .
;E; (rm + 5yt 7

MY’)J(X> r - ]—9

1]
<o
—

and .
XI”VI+J

Np,j(X)=n;O m, j=0, 1, ..., » - 1.
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Lemma 1. Let X be a 2 x 2 matrix given by

i1 d1p
dz1 G2
Let tr X = p and det X = g. Then, for any integer #,
= UHX - qUn—lI’
where U, is the nth fundamental function and I the unit matrix of order 2.

This is proved in [1].

Lemma 2. We have,for a positive integer v and j =0, 1, ..., r - 1,
r-1
M, (@ +y) = 2: My, x @My 53 (y) _k 2 My @M, Jrag 1Y)
J+1

This is proved in [3].
Lemma 3. Let » be a positive integer, and j =0, 1, ..., » - 1. Then:

a. For even r,
M, ;(x), J even
Mr,j(x) + My i (-x) = { (2.1)
0, J odd,
and
(0, J even
Mr’j(oc) - Ml,,,j(-x) = (2.2)
My, ;(x), J odd.

b. For odd r,
2oy, 5 (), J even
M, i(x) + M, ;(-x) = . (2.3)
~2Wyp nes(@),  J odd,
and

2N2r’r+j(x), J even

My,,j(.%') - Ml,,’j(-—x) (2.4)

2Ny, J(x), J odd.

Proof: We prove (2.1) and (2.4). The proofs of (2.2) and (2.3) are simi-
lar.

Let r be even. Now,

N nr+J

.= +4
M, (&) + My s(-x) = EE'T;ET:TEST_(I + (-1 (2.5)
Since r is even, (—1)”P+j = (~1)j. Hence (2.5) becomes
w 2(_l)nxmﬂ+j .
o (_l)nxnr+g ngo (nr + ,j)' » J even
M, (x) + M, (=) -n‘;{) o T F - 17y =
0, J odd,
(continued)
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2M

O)
which proves (2.1).

p’j(‘r)y

ONS AND CHEBYCHEV POLYNOMIAL SEQUENCES

J even

7 odd,

Now, let » be odd. Then
_ _ ~ o (_l)nxnr+j —
Mo g (&) = My () = 30~ (L= (D) (2.6)
Since ” is odd, (-1)™*7 = (—IY“T'1)+”+j =(—1)n+j; therefore, (2.6) becomes
() — . = (=Dt nt g
Hr 3@ = M, 55 _nz:o LT IR
5}: 2(-D"zx nr+ j .
o, even
D EEE v GOl !
© n,.ar+J
Z A(__l.)._m’ J odd,
n=0, 2, (nr + !
eS) xz?’ll+l”+J
=2 o ne + o+ Gyt J even
© 2nr’+g .
22 w404
2N2P Y+J(x), J even
Wy, s (x),  J odd,
which proves (2.4).
Lemma 4. We have for j =0, 1, ..., 2r - 1 and © = V-1,
(‘l)jﬂzsz,j(m), r even
a. My, j(iz) = ‘ (2.7)
(-I)J/zsz’j(x), r odd,
(-1)j/2N2p,j(x), r even
b, N,p, ;(lx) = ) (2.8)
-1, (@), 7 odd.
Proof: By definition,
. © ( 1) 27!!’+,]x2711‘+J 2.9
Moy, ; (T2) = E: (2nr + )1 (2.9
Now .
. (292 (47, r even
.(7:)2711/‘+J = ; ) .
GOV, v odd,
so that
1985]
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. (—l)j/z, r even
()2 H = _ (2.10)
(-T2 p oodd.

Using (2.10) in (2.9), we obtain

i w (_l)annPJrj
g (-1 ngo——(zm‘ e r even
Mo, 5 (C2) = 2 on _onr+
_ydl2 s (D
-1 E;% (2nre + )1 ° r odd,

which proves (2.7). We can prove (2.8) in a similar manner.

3. SUMMATION FORMULAS FOR LUCAS FUNDAMENTAL FUNCTIONS

We shall now prove

Theorem 1. a. For evenr and J =0, 1, ..., r =1,
o DUy 5| Patio )
Y e T C 5| L M oken 0/, 0 (8/2)
" e (3.1)
B(r-2)
o [%Z )]Mr,2k+m(p/2)Mp,p+a(5/2)
=[h(+1
b. For odd » and j =0, 1, ..., r -1,
n .
s DUy, | BGD)
2;% e + )1 & ;Z% My, o 4m P/ 2y o (8/2)
L(r-3)+m
= X Mgk on /Dy, g 1(8/2) (3.2)
k=0
Bp-1-m ‘[
+ D My, 2k 4m P/ D Vo, 904 (8/2)
k=D500+1)] _l

where, in both (a) and (b) above and in Theorems 2 and 3 below,

1, J even
o=g-2k-m B=g7~-2k+m, and m =
0, J odd.

Further, [S] = the greatest integer < S and § as defined below.

Proof: By Sylvester's matrix interpolation formula (see [6]), we have

1
M (X)) = ———{[M e\ - M (A X
I‘,J( ) )\1 »_ )\2{[ p,J( ]_) r’J( 2)] (3'3)

- [Aer,j()\l) - AzMr,j(Az)]I},

where A;, A, are distinct eigenvalues of X as defined in Lemma 1. It is easy
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to see that A, = (p + 8)/2, X, = (p - 6)/2, where § = V(p2 - 4g). Now

My i) = M. (A,) = Mr,j(p S 6) - Mr,j<p - 5). (3.4)

Using Lemma 2, (3.4) becomes

J
My, ;) = My 5(h,) = kZ:OMP’k(p/Z) M, 5 _3(8/2) = M, ; 1(~6/2)]
oy (3.5)

- Z Mr,k(p/Z) (Mr,r+j—k(6/2) - Myl’p+j_k(_6/2)).
k=g+1

Let r and J both be even. Breaking the summation on the right side of (3.5)
into even and odd values of k and then using (2.2), we obtain

g-1
Mp, 5(0) = My () =2 My o (p/2)My, 5 _3(8/2)
k=1.3, ... ,
r-1
- 2 2 My (DI 2DMy, 4y 52872

k=G+1,5+3, ...

Changing k to 2k + 1, because k takes only odd ¥alues, we obtain

%(j-2)
Mp, 5 (0) = My, 5(hy) =2 k}% My, gie1 P/ DMy 5 oz -1(6/2)
L(r-2) (3.6)
-2 Mr, 2k+1(p/Z)Mr,r+j~2k_1(6/2)-
k=gr2
Now, by definition of Mr,j(X) and Lemma 1, we have
M, 0 = 3 DTy vy e -
v, g ) L Ty gyt kgt T W gt .

Fquating the coefficients of X in (3.7) and (3.3) and then making use of (3.6),
we get (3.1) for even j. For odd j, (3.1) and (3.2) are similarly proved.

4, SUMMATION FORMULAS FOR S, (x)

For Chebychev polynomials S,(x) of the first kind, we prove the following
theorem. Let & = cos 6 and y = sin O.

Theorem 2. a. Let r be such that r/2 is even, and J = 0,1, ..., = 1. Then

o (DS .. (x) (i - 1] _
o 1 DM, @M, @)
= (i + I Y =5
b(r-2)
B(r+a-1)
- Z (_1) Mr,2k+m(x)Mr,r+cx(y) .
k=[%(+ 1]

b. Let » be such that r/2 is odd, and J = 0,1, ..., » — 1. Then
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= (-D"8 ., (@) La(j = 1]
_1 _yyz(a= 1)
I T Ty & (N @l @)
B(r-2)
(r+o-1)
- Z )](_1) e Mr,2k+m(x)Nr,r+a(y)}'
k=%(7+1

c. Letr be odd, 4=0,1, ..., » -= 1. Then

i 8)
(nr + Ny DN CED R MU €O PSS ¢

n=0 k=0

w (—1)nsm,+j(x) 1{%(r-3)+m

Us(d = 1)]

+ Y DR, (Mo, o ()
k=0

B(r-1)-m

+

L(2r+a-1)
k=[50 1)](_1) My, ok m (@M, 2r+a(y>}'
= (359 +

Proof: 1If we write & = cos 6 and let p = 2x and ¢ = 1, then U,(p> q) are
the Chebychev polynomials of the first kind, i.e.,

U, 2z, 1) = 85, (x) = SR8 (50,
where

Spyo = 228,41 - S, with S =0 and S5, = 1.
We shall prove (a) and (b). Now

f (‘1)nUnr+j B zw: (_1)nSnr’+j(x)

Ly + )0 e (nr + )

1 o (_l)n 8i(nr+j)e _

sinez(nr+j)!l: 27

n=0

_ i (-D)"sin(nr + 7)0
- (nr + J)! sin 6

e-i(nr+,7')9:|

1 = (“l)n [(ei6)nr+j _ (e—ie)nr+j]
27 sin @ &4 (nr + 4)!

1 . ,
= S stn g e (8% - My (TP
Hence, "
o G S @ _ ,
RN T v ST A A A A O (4.1)

Now, by Lemma 2,
J
M, (@ o+ i) - M, (- dy) = 2 M, @) (M g (Gy) = My s g (=iy)]

k=0
o (4.2)
- X My @M e Gy - M (I
k=g+1
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First, let j be even. Breaking up the right-hand side of (4.2) into summations
over even and odd values of X and making use of (2.2), we obtain

J~1
My i@+ iy) =M, (e - dy) = 3 2, ()M, ;5 (iy)
k=1,3, ...
(4.3)
r-1
- 2 My g OYMy, s 1 (TY)

k=g+1,5+3, ...

Now, since » is even, /2 is an integer that is either even or odd. First, let
r/2 be even. By (2.7), (4.3) then becomes

J-1

My s+ iy) - My (x -y =2 2 (@) T, (@M, ;@)
k=1,3, ...
. (4.4)
r- .
-2 ) COEIL I COT/ A H S
k=g+1,5+3, ...
If »/2 is odd, then again making use of (2.7), (4.3) becomes
. j-1 _
M, 5@+ iy) = M, (x-1y) =2 35 (DI7U, (), o ()
k=1,3, ... (4 5)

! r+J

-2 P ()
k=g+1,7+3, ...

-k
Mr,k(x)N%,r+j—k(y)'

Note that the power of 7 in all the summations in (4.4) and (4.5) is odd,
so that when we substitute (4.4) and (4.5) in (4.1) and cancel Z from the num-
erator and denominator, the remaining power of 7 will be an even integer. Then
(4.1) becomes

o (-1)n5nr+j(oc) -1 _
1 3(j- k-1

A~ (i + ! Ylx=1.3 D Moy @M 53 ()
B (4.6)

ro S+ -k=1)

- b (-1 Mp,k(x)Mr,r”_k(y):,
when r/2 is even, and

= CDT5 5@ [ i (7 - k- 1)
(nr + J)! _'k Z D My, @ 5o 3 (Y)

=1,3, ... (4.7)
r-1

L f-k-1
- Ty M,kw)zvp,w-k(y)}
k=gd+1,d+3, ...

n=0

when r/2 is odd.
Replacing k by 2k+ 1 in the right-hand side of (4.6) and (4.7), we finally

get (a) and (b) for even j. By adopting similar techniques, we get (a) and (b)
for odd J and (c).
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5. SUMMATION FORMULAS FOR T, (x)

Theorem 3. TFor the Chebychev polynomials T,(x) of the second kind, the follow-
ing summation formulas hold.

a. Let r be such that r/2 is even and J =0, 1, ..., r -= 1. Then

w (-7 (®) L2,
J (8- 1)
BT T 5 0T @l @
Y(r~2) 1
L(r+B8-1)
k [x(z':+z>](_l) My, 2k +1 -m(2My nyg (4 -
= 13(J

b. Let » be such that »/2 is odd, § =0, 1, ..., » — 1. Then

w DT (@) /2]

(B- 1)
z (e + )0 kzo -1 My, ok 41 - (@I Wy, g1 ()
n=0 =
Y(r-2) 1
i(r+ B~ 1)
- (‘1)2 M},2k+1—m(x)Nr,r+B—l(y)‘
k=[3(j+2)]

c. Let »beodd, j =0, 1, ..., » - 1. Then

o (DT @ 15/2]
- (8- 1)
z% (nr + Y kz% D My oy 1 < kMo, g1 (Y)

n=

L(r-1)-m

Y
- kz_:o (-1) (P+G)Mr. 2k+m(x>M2r,r+0.(y)

L(r-3)+m N _
+ E (_1)»1(2r+8 l)M
k=Us(i+2)]

oy 2k 41 - Moy 2 g1 ()

Proof: The proof follows the same technique as in Theorem 2 and is there-
fore omitted. Notice that the power of (-1) in each of the above summations is
an integer.

Remark. Since

sin #0

G sin ©

and T, (x) = cos nb,

summation formulas in Theorems 2 and 3 also give those for

o

& (1) 'sin(nr + 5)6 (-1)" cos(nr + )0
;z% (nr + J)! and ;é% (nr + j)! '

For example, formula (a) in Theorem 2 can be expressed as

G-
= k};o (-1) My, og 4m(cOs 6)My o (sin 0)
Y(r-2) .
_ z (_1)/2(r+on— l)M
k=55 +1)]
64 [Feb.
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