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1. INTRODUCTION AND THE MAIN RESULT

As usual, Fibonacci polynomials F,(x), Lucas polynomials L, (x), and Pell polynomials
P, (z) are defined by the second-order linear recurrence

tn+2 = atn+1 + bt?’u (1)

with given a,b, o, t; and n > 0. This sequence was introduced by Horadam [3] in 1965, and it
generalizes many sequences (see [1, 4]). Examples of such sequences are Fibonacci polynomials
sequence (F),(z))n>0, Lucas polynomials sequence (L, (z))n>0, and Pell polynomials sequence
(Pn(2))n>0, when one has a = z,b = ¢, = 1,tg = 0; a = t; = x,b = 1,tp = 2; and
a=2x,b=1t; =1,ty = 0; respectively.

Chebyshev polynomials of the second kind (in this paper just Chebyshev polynomials) are
defined by

sin(n + 1)0

Uy(cos@) = ————
(cos ) sin @

for n > 0. Evidently, U,(z) is a polynomial of degree n in x with integer coefficients. For
example, Up(x) = 1,Ui(z) = 22,Us(z) = 422 — 1, and in general (see Recurrence 1 for
a=2zb=—1t =1, and t; = 2z, Upt2(x) = 22Up41(z) — U, (x). Chebyshev polynomials
were invented for the needs of approximation theory, but are also widely used in various other
branches of mathematics, including algebra, combinatorics, and number theory (see [5]).
Lemma 1.1: Let (t,)n>0 be any sequence that satisfies tnyo = 22 - tne1 — tn with given to,t1,
andn > 0. Then for alln >0,

by =t1 - Up_1(x) — to - Un—a(x),

where Uy, is the m*™ Chebyshev polynomial of the second kind.

Proof: A proof is straightforward using the relation U, 12 (z) = 22U, 41(x) — U, () and
induction onn. 0O

Let A be a tile of size 1 x 1 and B be a tile of size 1 x 2. We denote by L,, the set of all
tilings of a 1 x n rectangle with tiles A and B. An element of £,, can be written as a sequence
of the letters A and B. For example, £; = {A}, Lo = {AA, B}, and L3 = {AAA, AB, BA}.
We denoted by |a| the number of tiles A and B in «. For example, |[AAA| = 3 and |AB| = 2.
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Proposition 1.2: The number of tilings of a 1 xn rectangle with tiles A and B is the Fibonacci
number Fy 1, that is, | L] = Frq1.

Proof: The result is immediate for n < 1, so it is sufficient to show that the number of
such tilings satisfies the recurrence F,,, = F,;,_1 + F,,—2. To do this, we observe that there is
a one-to-one correspondence between the tilings of a 1 x (n — %) rectangle and the tilings of a
1 x n rectangle in which the rightmost tile has length i, where ¢ = 1,2. Therefore, if we count
tilings of a 1 x n rectangle according to the length of the rightmost tile, we find the number
of such tilings satisfies the recurrence F,, = F,, 1 + F,,_o, as desired. 0O

Let o be any element of £, we define 8 by 8; = 1 if o; = A; otherwise 8; = 2, and we
write 8 = x(«). For example, x(AAABAB) = 111212.

Now, let us fix an integer s and a natural number ¢ such that ¢ > 1. Let
ag, A1y -+, Ag—1, bo, bl, ey bq,1 be 2q constants and a = (CLo,CLl, ey (qul), b= (bo, bl, ey bqfl).

For any « € L,,, we define v(n;s) = vap(n;a,¢,8) = HLi‘l k(8;) where

k(ﬁ) — { a(s+ﬁ1+...+ﬁi) mod ¢» lf 62 - 17
b(5+ﬁ1+"'+ﬁi) mod gq, if /81 = 27

and 8 = x(a). For example, if ¢ = 3,a, = n and b, = 1 for n = 0,1,2,s = 0, and
o = AABAB, then we have that

Ua,b(n; o, q, S) = @1 mod 302 mod 304 mod 385 mod 307 mod 3 = a1a2b1a2b1 = CLM% =4.

We will be interested in the sum of all v,p(n; e, q,s) over all oo € L, which is denoted
by V(n;s) = Vap(n;q,s), that is, Vi(n;s) = >° . vap(nja,q,s). For example, V(1;s) =
U(s41) mod ¢ a0 V(2;5) = G(541) mod q@(s+2) mod q T D(s+2) mod ¢+ We extend the definition
of V(n;s) as V(0;s) = 1 and V(n;s) = 0 for n < 0. We remark that V(n;g¢,s) can be given
by a combinatorial interpretation as follows: V(n;gq,s) counts the number of ways to tile a
boards of length n, with cells numbers s+ 1 through s+ n, using colored tiles of size 1 x 1 and
tiles of size 1 x 2. For a tile of size 1 x 1 on cell 4, we have a; mod ¢ color choices; for a tile of
size 1 x 2 on cells i — 1 and 4, we have b; moq ¢ choices. The main result of this paper can be
formulated as follows.

Theorem 1.3: Let (z,,)n>0 be any sequence (x, = xn.q(a, b)) that satifies
Tgn+d = Qd * Tan+d—1 + bd - Tagntd—2, (2)
foralln > 1,0 <d<gq—1, with given xo,x1,...,Tq—1. Then forn > 1,x4,44 is given by
\/Tq;d " <xq+d\/Tq;dUnfl(wq;d) + (T2g+d = Ig;aTq+a) - Unf2(wq;d)> )
for allm > 1, where U, is the m*™ Chebyshev polynomial,
Tgrda =V(d+1;—1)xg_1 + bV (d;0)xg_2

Togrd = V(g+d+1;—1Dzg 1 +boV(g+d;0)zy_o,
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and

Wy = Ig:a
q;d 9 /—_Jq;d7
Iq;d = b(d+1) mod ¢q ° V(q - 27 d+ 1) + V(q7 d)’ (3)

Jg:d = b(a+1) mod ¢ - V(@ —1;d+1)V(qg —1;d) — V(g; d)V (g — 2;d + 1)) .

The paper is organized as follows. In Section 2 we give a proof of Theorem 1.3, and in Section
3 we give some applications for Theorem 1.3.

2. PROOFS

Throughout this section, we assume that ¢ is a natural number (¢ > 1) and s is an
integer. Also, let ag,a1,...,aq-1,b0,b1,...,b,—1 be 2¢ constants and a = (ag,a1,...,aq-1),
b= (bo,by,...,by—1). We start from the following lemma.

Lemma 2.1: Let { be an integer such that £ > s+ 2. Then

V(l—58)=0ar modg- VIl —5—1;8)+bs modq - V(l—5—2;5).

Proof: To verify this lemma, we observe that there is a one-to-one correspondence
between the tilings of a 1 x (¢ — s — i) rectangle and the tilings of a 1 x (¢ — s) rect-
angle in which the rightmost tile has length ¢, where ¢ = 1,2. Hence V(¢ — s;5) =
¢ modgq - VIl — 5 —1;8) + by modq - V(l —s —2,s), where the first term corresponds to
the case ¢ = 1 and the second one to the case : =2. O

Now, let us apply this lemma to find Zgn4dym in terms of Tg4q and Tgniq_1.

Proposition 2.2: Let g—1>d >0 andn > 1. Then for allm > 0,
Tgn+d+m = V(m7 d) * Lgn+d + b(d+1) mod ¢ ° V(m - 17 d+ 1) *Lgn+d—1-
Proof: Let us prove this proposition by induction on m. Since

ZTgn+d+o = 1 Tgntd+0 + B(d+1) mod ¢ - 0" Tgntd—1,

V(0;d) = 1 and V(m;d) = 0 for m < 0, we have that the proposition holds for m = 0. By
Recurrence 2 we get

Tgn+d+l = G(d+1) mod q Tgn+d T D(d+r1) mod ¢~ Tantd—1
= V(L d) * Lgn+d + b(d+1) mod ¢ ° V(07 d+ 1) * Lgn+d—1,

therefore the proposition holds for m = 1. Now, we assume that the proposition holds for
0,1,...,m — 1, and prove that it holds for m. By induction hypothesis we have

Lgn+d+m—2 = V(m - 2; d) * Lgn+d + b(d+1) mod ¢ ° V(m - 3; d+ 1) * Tgn+d—1,

and
Lgn+d+m—1 = V(m - 17 d) * Lgn+d + b(d+1) mod q ° V(m - 27 d + 1) * Tgn+d—1,
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hence, by Equation 2 we get
Tgntdtm = Q(d+m) mod ¢ Tqntd+m—1 1 B(dtm) mod ¢ * Tgn+m+d—2
= (a(d+m) mod ¢+ V(m—1;d) + b(d+m) mod q Vi(m—2; d)) Lgn+d

+ b(d+1) mod ¢ (a(d+m) mod q * V(m - 27 d+ 1) + b(d+m) mod q * V(m - 37 d+ 1)) LTgn+d—1-
Using Lemma 2.1 for { = m+d,s = d and for { = m + d,s = d + 1, we get the desired
result. 0O

Now we introduce a recurrence relation that plays the crucial role in the proof of the Main
Theorem.

Proposition 2.3: Let q—1>d > 0. Then for alln > 2,

Zoni1)4d = (O(ar1) mod ¢ V(4= 2d+1) + V(g; d)) Zgnta
+0(a+1) mod ¢ (V(g—=1;d+1)V(g—1;d) = V(g;d)V(q — 2;d + 1)) Ty (1) 1a-

Proof: Using Proposition 2.2 for m = g — 1 we get
Ty(nt1)+d—1 — b(d+1) mod ¢ V(¢ —2:d+ 1) Tgnia—1 = V(g —1;d)  Tgn+a, (4)
and for m = ¢ we have
Totntty4d = V(G d)  Tgntd +bag1) mod ¢ V(@ —15d+ 1) Zgnya—1. (5)
Hence, Equation 4 yields
T(n+1)+d = b(d+1) mod ¢ V(@ —2;d+ 1) Tgnia =
=V(g;d) (quner — b(d4+1) mod q V(g—2;d+1)- qun+d)

+ b(q+1) mod q ° V(q - 17 d+ 1) (anerfl - b(d+1) mod q ° V(q - 27 d+ 1) . xq(n71)+d71> B

and by using Equation 4 we get the desired result. O

Proof of Theorem 1.3: Recall the definitions in 3. Now we are ready to prove the main
result of this paper. Using Proposition 2.3 we have for n > 2,

Tont1)+d = Lgid - Tanta + Jgia - Tan—1)+d-
If we define t,, = xgpn4q for n > 1, then we get
tn+1 = lqg;d * tn + Jq;d : tnfly

therefore, by defining (—Jy;a)"/ %!, = t!, we have for n > 2, ¢/, | = 2wgatl, — t,_;.
Let us find expressions for ¢, and ;. By the recurrence for t,, we can define ¢y as t; =

Ig.qt1 + Jg.ato, which means that t{, =ty = ﬁ(iﬂzqm —1I4.a%q+q). By definitions, ¢} = jj—+;'
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Using Proposition 2.2, we get zqyq = V(d+1;—1)zq—1 + bV (d; 0)xg—2 and xo44q = V(g +
d+1;—1)xq_1 + bV (¢ + d;0)x,_2. Hence, using Lemma 1.1 we get the desired result.

3. APPLICATIONS

There is a connection between the sequences which are defined by Recurrence 2, and the
sequences which are defined by Recurrence 1. Indeed, from Theorem 1.3 we get the following
result.

Corollary 3.1: For given zo and x_1, and the recurrence T 1o = aoTn4+1 + boxn, an explicit
solution for this recurrence is given by

n—2 ag ag
=/ N bz 1)Un 1 | )+ boagUp o | —2 )|,
x 0 o(aoxo + box_1) 1<2\/—_bo>+ 0Zo 2<2\/__b0>}

where U, is the m*™ Chebyshev polynomial.

Proof: Using Theorem 1.3 for ¢ = 1 with the parameters d =0, 11,0 = ao, J1,0 = bo, 1 =
aoTo + box_1,22 = (aZ + bo)wo + agboz_1, and wy,p = 2\/"%1)0, we get the explicit solution for
the recurrence x,, 12 = apTnr1 + boxy, as requested. O

The first interesting case is ¢ = 2. Then Recurrence 2 gives

(6)

{ Ton = apTan—1 + boTon—2

Tont1l = 1T + b1Ton_1,

with given xg and x;. In this case we have two possibilities: either d =0 or d =1. Let d =0,

so the parameters of the problem are given by Is0 = aga1 + by + b1, J2,0 = —bob1, w2 =
7"“‘;“1)_1[’)‘;:1’1 ,T2 = agr1+boxo, and w4 = (aZai + agby + agbo)w1 + (agboay + b3)wo. Hence,

Theorem 1.3 gives the following result.

Corollary 3.2: The solution za, for Recurrence 6 is given by

n—2 b b b b
vV bob1 Vbobi(aoz1 + boxo)Un—1 <%> — bob1xoU,—2 <%>} )
01 0b1

where U, is the m*™ Chebyshev polynomial.
Example 3.3: If zg = 0,21 = l,a9 = z,a1 = zy, and by = by = 1, then the explicit
expression to Ta, for the Recurrence 6 is given by xU, _1(1 + %x2y). Hence, by the definition
it is easy to see that in the case y = 1, we have that the Fibonacci polynomial Fa,(x) is given
by xU,—1(1+ %:132)
If vo = 2,21 = 1,00 = x,a1 = xy, and by = by = 1, then an explicit expression to T, for
the Recurrence 6 is given by (x+2)U,—1(1+ 2a2%y) —2U,,_2(14 322y). Hence, in the case y = 1
we have that the Lucas polynomial Loy, (x) is given by (x4 2)Up—1(1+ 22%) — 2U, _5(1+ 32?).
If zg = 0,21 = 1,a9 = 2x,a1 = yz, and by = by = 1, then an explicit expression to xa,
for the Recurrence 6 is given by 22U, _1(1 + x2y). Hence, in the case y = 2 we have that the
Pell polynomial Pap(x) is given by 22U, 1(1 4 222%).
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Another example for Theorem 1.3 is when ¢ = 3 and d = 0. In this case the parameters
of the problem are given by 13;0 = apaiaz + b0a1 + b1a2 + a0b2, J3;0 = b0b1b2, T3 = apx2 + boil}l,
and z¢ = I3,0x3 = boby (2 — agw1). Therefore, we get the following result.

Corollary 3.4: The solution xa, for Recurrence 2, when q = 3, is given by

n—2
vV —bob1 b2 <\/ —bobiba(agxa + box1)Up—1(w) + boby (z2 — a2x1)Un72(w)> )

for alln > 1, where w = “"“1“2;“"b§t)b‘;)“1+b1“2, and Uy, is the m*™ Chebyshev polynomial.
—000102

For example, if we are interested in solving the recurrence

T3n = T3p-1+ T3n_2
T3n+1 = T3n + T3n—1
T3n+2 = YT3n+1 1+ T3n,

with zp = 0 and z1 = x2 = 1, then by the above corollary we get that the solution x3,, for this
recurrence is given by

20" Up1 (=i(1 4 y)) +3" (1 = y)Un—2(=i(1 + 1)),

where 72 = —1. In particular, if y = 1 then we have that the (3n)*" Fibonacci number, Fy,,, is
given by 2i""1U,, 1 (—24).
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