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FOUR COMPOSITION IDENTITIES FOR CHEBYSHEV POLYNOMIALS

CLARK KIMBERLING®
University of Evansville, Evansville, IN 47702

1. INTRODUCTION
Let {#,(x)}, .o be the sequence of Chebyshev polynomials defined by
tola) =1, t,(x) =z, t,(x) = 20, 1(x) ~ ¢, ,(x) for n > 2,

These are often called Chebyshev polynomials of the first kind to distinguish
them from Chebyshev polynomials of the second kind, which are defined by

ug () = 1, uy (@) = 22, u,(x) = 2ou, ;&) - u,_, &) forn > 2.

It is well known that any two Chebyshev polynomials of the first kind commute
under composition. Explicitly,

t,(t, (@)Y = t,{t,(x)) = t,,(x) for nonnegative m and n.

Similar identities involving Chebyshev polynomials of the second kind are not
well known. This paper offers three such identities, one for each of the ex-
pressions %, (%, (x)), t,(",(x)), and u,{(t.(x)), where U,(x) = u, (@)1 - x2,

Literature relating to the identity ¢,(%,) = £,(%,) shows that this com-
mutativity, also called permutability, is, among polynomials with coefficients
in a field of characteristic 0, a distinctive property of Chebyshev polynomi-
als of the first kind. TFor example, Bertram [1] shows that if p is a polyno-
mial of degree m> 1 which is permutable with some %, for n>2, then p = xf,.
Another theorem (é,g., Kuczma {5, pp. 215-218] and Rivlin [6, pp. 160-164])
characterizes the sequence {Z,} as the only nontrivial semipermutable chain
(up to equivalence, as described below). Sections 3 and 4 of this paper deal
with analogous results for the functions u,.

We deal with the Chebyshev polynomials in slightly altered form. Assume
throughout that all numbers, including coefficients of all polynomials, lie in
a field of characteristic 0. With this in mind, the nonmonic polynomials Z»
and 1, are altered as follows: define

v

Tolx, y) = 2, Ty(x, y) =x, T(x, y) = T, (e, y) - yT,_,(x, y) for n > 23
Uglie, y) =0, Uy, y) =1, Uz, y) =0, _y(x, y) - yU,_,(x, y) for n > 2,

In the sequel, the polynomials 7, are regarded as Chebyshev polynomials of the
first kind, and the polynomials U, are regarded as Chebyshev polynomials of
the second kind. The connections with the polynomials ¢, and u, are simply

T, {x, 1) = 2¢,(x/2) for n > 0 and Uplxs, 1) = u,_,(x/2) forn > 1.

All the results obtained below for {7,} and {U,} carry over, as in Corollary
1,to{%,} and {u,}. We also wish to carry over some results to certain poly-
nomials of number-theoretic interest, namely the generalized Lucas polynomials
Ly(x, y) and generalized Fibonacci polynomials F,(x, y), discussed in 141 and
elsewhere. Tor these, we have

T, {xs y) = L, (x, =y) and U, (x, y) = F,(x, ~y).

2, THE FOUR IDENTITIES

Consistent with the modification u,{x) of u,(x) already mentioned, we in-
troduce a modification of U,{(x, y):

—Zjn(xs y) = Un(.’X,‘, y)Yl?y - CCZ for n > 0.
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354 FOUR COMPOSITION IDENTITIES FOR CHEBYSHEV POLYNOMIALS [Dec.

Although 7, is not a polynomial for n > 1, it is convenient to say that
—Zjn(x, y) has degree n in x. [The polynomial U,(x, y) has degree n — 1 in x.]
Generally, a function P(x, y)vS(x, y), where P(x, y) and S(x, y) are polyno~
mials of degrees #n . and 2k, respectively, in x, is regarded as a function of
degree n + k in x.

Deginition: Suppose P(x, y) and Q(x, y) are functions of degrees m and n, re-
spectively, in x. The composite function P o § is defined by

P o Qx, y) = PlQ(x, y), y"].

Theonem 1: Suppose m and »n are nonnegative integers. Then

(1 T © Tnlts ¥) = Tnn (s ¥)
(2) Uy o T, (@, Y) = Upn (s )
_ (—1)m/2Tmn (x, y) for even m
(3) Tm ° Un(xs y‘) = _
(-1)m-V /2 (e, y) for odd m
_ _ (—1)(m_2)/2ﬁmn (x, y) for even m
(4) Uy o Uplx, y) =
(-1)"-V/2p  (x, y) for odd m.

Proof: It is easy to establish (as in [4]) that
T (z, y) = 2y ™*cos(m cos™ x/2/y)

and
Uy (2, y) = (by - x2)" Y2 2y ™ 2sin(m cos™tx/2/y),

so that .
o U,(x, y) = Zy"'/zsin(m cos rxz/2y) .

en

n/2 -1
Ty o Tp(x, y) = Zymnlzcos[m cos™? 24 _“cos(n cos x/z‘/‘{/')jl = T (xs Y.
Zy n/2

Similarly,

_ n/2 -1 _

U, o Ty(x, y) = Zy'””/zsinl:m cos™t 2 cos(nnc/(z)s x/Z/y_)] = Upp (s Y)o
Next, 2y

Ty o U,(x, y) = 2y ™ ?cos[m cos™! sin(n cos t/2/y)]

2y mn/ZCOS[m(,ﬂ_/z -n Cos‘lx/z@_)]
2y mn /2

+ sin mm/2 sin(m cos *z/2/y) 1,

I

it

[cos mm/2 cos(mm cos™tz/2/y)

and from this, (3) clearly follows. Finally,
Up o Uy y) = 2y ™/ ?sin[m cos™ sin(n cos lz/2/y)]
=2y nn/2gin(m(n/2 - n cos™ e /2/y) ]
= 2y ml20sin mu/2 cos(m cos™tx/2Vy)
- cos mm/2 sin(mn cos lx/2Vy) 1,
and this proves (4).

Conollany 1: Let {t,l,-0 and {u,},-o be the sequences of (unaltered) Cheby-
shev polynomials of the first and second kinds, respectively. Put u_;(x) = 0
and T,(x) = u,(@)/1 - 2? for n > 0. Then for nonnegative m and #,
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an t(t,(2)) = £, (x)

" Un(tn (@) =%, @)

31 b (T, (2)) = { (-1) 2ty (@) for even m
(-1, (@) for odd m

“n (T, () = { (-1) "t e (@) For even m'
(1)Y= /27 man(z) for odd m.

Proog: These identities come directly from Theorem 1 via the transformations

ta(@) = 20, (22, 1) and  7,(2) = 3V, (22, 1) for n 2 0.

We turn now to the problem of expressing (1)-(4) in terms of generalized
Lucas and Fibonacci polynomials. Corresponding to the functions U,(x, y) we
define

f}(x, y) = F,(x, y)/gi_;—zg_for n>0,
noting that this equals iﬁ%(m, ~y). Two lemmas are helpful.
Lemma Za: For 0 < m < n,
(5) Lp(@s L@, ¥) = Fp (@ PF, @y y) = 2(-) " Tpon(x, y) .
Egggﬁ: It is well known and easily shown by induction that

L,(x, y) =o" + 8" and F,(x, y) =a" - B",
where oo + B = x and af = -y. The desired identity now follows immediately.
Lemma 2b: TFor m > 0O,
L,(ix, ~y) = i"L,(x, y) and F,(ix, -y) = T"F,(x, ¥).

Eﬁggﬁ: This is easily seen by induction, using the recurrence relation

Ho(x, y) = xH,_,(x, y) + yH,_, @, y)

satisfied by both {L,} and {F,} for m > 2.
From (1) and the relation T,(x, -y) = L,(x, y) comes

T AL, (xs ¥)s 1D"Y"] = Ly, (@, y) s

so that

(1a) Ly o L,(xs Y¥) = Lpy (x, y) for odd n.

But, for even n, ) o [g] . [g]"

(6) LM = Gp_ Ii 7y + an  Jn My - e+ DLy = Lnn (2> 40

n

where the a,'s are coefficients in the polynomial n

m mn
T,(x, y) =™ ~ a, ,x" %y + Gp_yx™ My = e 4 (—1)[2]a2x1y[2];
here, L = 0 if m is even and & = 1 if m is odd (see Lemma 2e). Adding

20 L"7%y" + 2a L7764+ ...

m=-2-"n m-6-n

to both sides of (6) gives
(1) T, o Do(@y y) = Loy(os y) + 2(a, 17 2y+ a  IN7Sy™ +.ou 4 g, 155"")

m=-2"n m-6"n

for even n, where
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0 if m= 2 mod 4
_)1ifm= 3 mod 4 _ oy fm -2
 =92ifm=Omods 2 t"l[a ]+1'
3 ifm= 1 mod 4
Now from (2) and the relation'ﬁn(x, -y) = -iF, (x, y) comes
LUy L, (s ¥)s (-1)"y™] = F,,(x, y),
so that N _
(2a) F, ° L,(x, y) =F_(x, y) for odd n.

But for even u, _ _
Fo.(xs y) = 12U, 1L, (x, y), y"]

Fm[[ln(xa y)s —y”]
VL% - &y"F, (D, (@, y), "]
=F, (@, Y, [Lnlx, y), "1,

]

by Lemma 2a. Thus,

Q) T (s y) =, @, y>{L:-1 — b, L%y 4B, Iy
m-1 m-1
- —s—in
- e + (_1)[ 2 ]sz:y[ 2 ] },
‘where the by's are the coefficients of the polynomial [m_l]
m-5,2 2

E;(x, y) = "t o+ bm_3xm'3y + bp_s2" CyS + ccr + byxty

here, £ =0 if m is even and £ = 1 if m is odd (see Lemma 2e). Adding

0, s y) By D0 %y™ + b, L7 7y +al)

”n m-7-n

to both sides of (7) gives

[Dec.

Fo(@s y)Fy © L,y y) =F @, y) + PGy y) Bp_sLh y" + by L0 'y +000).

For n > 0, we divide both sides by’fz (x, y) and have
Fun (s y) n-3 n

(2b) F oo L,(xs y) = gFr—=x—+ 2(bn-3L + bu_sL7 Ty
m n e YT e, y) m-35n Y m-7bn Y
+ «es + b, Ly"") for evenn > 0,
where
0 ifm = 3 mod 4
_}J1difm= 0 mod &4 _ En - 3]
S=924ifm=z1mds ¢ F=2 77 |+1
3ifm=2 mod 4
Identity (3) leads to
m
— (‘l)szn(x’ Y) for even m
(8) T, [-iF, (s y)s (-1)"y"] = mel
(-1) * 4F,, (x, y) for odd m.

For even n > 0, we apply Lemma 2b to find, without difficulty, that

(32) L

= L'mn for even n and even m
man_ b2 ‘

" \F,, for even n and odd m.

For odd 7, suppose first that m is odd also. Then (8) with Lemma 2a gives

LLlF, (xs y)s y"] =F,, (s ¥).
As in the derivation of (lb), we add

2(a,_ Fy Y" + ap_oFy fy?t A+ )

m-2-n

to both sides. This gives
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(3p) Ly e E’l(x’ y) = F—mn (x5 y) + 2(a f""zy” + a 7m-6y3n

m=-2"n m-6""n
+ «oo 4+ aFy*") for odd »n and odd m,

where the a;'s, s, and ¢ are the same as for (1b).
Continuing with odd #n, suppose now that m is even. Using (8) and Lemma
2a, we find

(3c) Lm ° Fn (x’ y) = Lmn('x’ Z/) + 2(am—27;1n—2yn + am—G—Fg_Gyan
+ «ev 4+ q,Fly*) for odd n and even m,

where .the a;'s, s, and ¢ are the same as for (1b).
Identity (4) leads to

_ . (—I)Eiﬁgn(x, y) for even m
(9 U, [-1F, (x, ¥), (-1)*y"] = m-1
(-1) ? L.,(x, y) for odd m.

whence,

7 oo F = Fn, for even »n and even m
m L, for even n and odd m.

(4a)

For odd »n, suppose first that m is odd also. Then (9) and Lemmas 2a and 2b
apply, and we find

il

Lon(@s y) = F 0F, (%, y), -y*] =VE, - 4y"F,[F,(z, y), -y"]

LG, ) ERY = by Fu %y + b, Fr -y - -0).

m=-3-n

At this point, we add 2L,(xs y) (Pn-sby Y™ + busFn "y + -++) to both sides
and then divide both sides by L,(x, y), getting
LonCes )

L,(x, y) ]
+ <« + b F°y?) for odd n and odd m,

+ 2(b, _JF Ty + By Fn Ty?"

m=3-n

(4b) Fry o B (x, y) =

where the b.'s, s, and t are the same as for (2b).
Continuing with odd »n, suppose now that m is even. With the method which
is now familiar, we find
Frn (s )

Fn(-%', y) + Z(bm—afz—3yn + bm—7?:_7ygn

+ oo + b, Fy™) for odd m and even m,

(4c) F,oo F,(x, y) =

where the b,'s, s, and £ are the same as for (2b).

Table 1. Examples of Composites Involving Generalized
Lucas and Fibonacci Polynomials

From (1b) and (2b), for even n > O:

L, ® Ly=1L,, + 4y" F, °L,=F, [F,

Ly ° L,=L,, + 6L,y" Fy ° L,= F,,/F, + 2yn

L, ° L,= L,, + 8Liy" F, ° L,=F,, [F, + 4L,y"

Lg ° L,= Ly, + 10L}y" Fg © L,= Fg,/F, + 6L2y"

Lg © L,= Ly, + 120}y" + 4y°" Fg © L,=F., [F, + 8L3y»

L, ® L,= L,, + L4L3y™ + 141,4%" F, © L,=F, IF, + 10L}y" + 2y°"
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Table 1—continued

YSHEV POLYNOMIALS [Dec.

From (3b) and (3c), for odd n > 1:
L, o F, = F,, + 6F,y" L, o F, =L, + &4y"
Ly © F, =F, + L0F y" L, ° F, =1I,, + 8Fy~»
L, o F, =F,, + liFy" + 14F°y" Lg ° F, = Ly, + 12F'yn + 4y*"
Ly ° F, = Fy, + 18F/y" + 60F yn Ly © F, = Ly, + 16F5y™ + 32F°y™
‘ From (4b) and (4c), for odd n > 1:
F, °F, = F, °F, =F, /L,
Fy ©F, =L, /L, + 2y" F, °F, =F, IL, + 4E,y"
Fg o F, = Lg,/L, + 6F’y" Fg ° F, = Fs L, + 8Ey”
F, ° F, = L, /L, + 10Ey" + 2y°" Fg o F, = Fg [L, + 128" + 8F,y*"
Fg ° F, = Lg,/L, + 14Fsy™ + 20F;y®  F,,° F, =F,,/L, + 16F y" + 40F,y*"
For m > 0, define [m
|n
V.(x, ¥) = Y am 4 m9c""’zy+---+ " 2ty 2]
0 1 [m/2]
and
Wm(xa .7/) = Vm(x:v _y),
where 4 = 0 for even m and ! = 1 for odd m.
Lemma 2c¢: Suppose 7 and % are nonnegative integers. Then
i V., ° L;(x, y) for even n
L,(x, y) = .
Wyp © Ly(x, y) for odd 7,
_ W, ° Li(z, y) for even m and even n
an(xs y) = ”
Vp ° Li(x, y) for even m and odd n,
. W, ° ff(x, y) for odd m and even n
Fl(x, y) = _
(V, ° F:(x, y) for odd m and odd #n;
in these formulas, after expansions on the right sides, each symbol of the

form Lf (or F?) is to be changes to L; (or F;).

is discussed in Hoggatt and Lind [3].)
Proof: These are direct results of writing

L,(x, y) =a™+ B" and

and applying the binomial formula, where a + B

F

(This "symbolic substitution"

(s y) = a™ - B"

2 and aB = -y.

Lemma 2d: Suppose m and n are nonnegative integers. Then
T, ° L,(x, y) for even n
Lyp(e, y) =
L, ° L,(x, y) for odd n
and
o (Zs y) { U, ° Lplx, y) for even n > 0
Fa (25 ) F, ° L,(x, y) for odd n.

m
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Proog: WNear (la) and (2a) these two are already proved. (They are restated
here for later convenience and as inverse formulas for the formulas in Lemma

2c. Tables of coefficients for these two formulas are found in Brousseau [2,
pp. 145-1501.)

Lemma 2¢: TFor m > 0,

p .
- m m=-3 =N _m-25, 5 . _ m/2 for even m
Ly (s ) ;g; m - 2j< J )x y? with p (m = 1)/2 for odd m
where the summand on the right equals 2y?, by definitdion, in case j =p = m/2.
Also

q ,
) m-d - I\ me2j-1. 7 . _f(m - 2)/2 for even m
F (x, y) J;( 7 >x y® with q = {(m - 1)/2 for odd m.

Proof: These well-known formulas are easily proved by induction.

The composite functions in Tablel can also be expressed as linear combi-
nations of terms of the form L ,y* or ?;nyk. To obtain such expressions, one
may use Table 1 with substitutions from Lemma 2c, or one may use Binet forms
(e.g., F, = a” — B") and binomial expansions. These methods give the follow-
ing results.

For even n, the coefficients Croog in the expression

Lm o L, = cmLmn + cm-?_L(m-Z)nyn +oeee C”m—Zp];(m—Zp)nypn’

n

where p is as in Lemma 2e and for temporary convenience L;,= 1 (inmstead of 2):

Table 2
Cn cm-z Cm~4 cm—e cm—B cm—lo
m = 2 1 4 Formula: Crooj =
3 1 6 ;
411 8 16 Z m (m—k— 1)<m - 2K
5101 10 30 - 2R\ K i-k
6 1 12 48 76
7 1 14 70 154 for 0 < § < p, where the
8 1 16 96 272 384 summand on the right = 2,
9 1 18 126 438 810 by definition, in case
10 1 20 160 660 1520 2004 k = m/2
(which occurs in ¢,.op for
even m) .

For even n, the coefficients ¢, _ in the expression

24 -1
7 = . qan
Fpoo Ly = cm—lL(m-l)n + cm—3L(m—3)nyn + + C”"ZQ"lL(”"Zq‘l)”y ’

where ¢ is as in Lemma 2e and for temporary convenience [, = 1 (instead of 2):
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Table 3
c)m-l cm-—?; cm—S cfﬂ-—? cm—9
m=21 1 Formula: ¢, ,, , =

3 1 3
4 1 5 j
5 1 7 13 Z(m - 7; - 1)(771 - 27<k— 1)
6 1 9 25 k=0 J -
7 1 11 41 63 .
8| 1 13 61 129 for 0 =g < q.
9 1 15 85 231 321
10 1 17 113 377 681

For odd n > 1, the coefficients ¢,.,; in the expression

B {cmLmn + Cnoolgn-2yny? * o+ F CuopLin-2p)nYP" for evenm 2 0
Lyeo F, =

cmfmn + cm-zjﬁ(m—z)nyn toeee 4 cm-—Zp?T(m—Zp)nypn for odd m > 1

are precisely the same as in Table 2. Similarly, for odd » > 1, the coeffi-
cients ¢ . in the expression
m=-27-1
7 7 n ¢ s ® I qn
— cm—lp(m—l)n + Cm—SF(m—a)ny + + cm—Zq—J.F(m-Zq-l)ny for even mz 2
F,oF, =
Cn-1bm-1)n F Cn-al(m-sm¥Y™ + -+ Cping 1 Lm-2q-1)2Y7" for odd m> 1.

are precisely the same as in Table 3.

Now let us recall (la), (2a), (3a), and (4a): For odd n > 1,
F ooL,=F._ and TLpe° L, =DLn,;
for even n > 0,

. Lpn for evenm > 0 Fun for evenm > 0
Lm o Fn = E

F,, for oddm > 1 Dy for oddm > 1.

These four identities lead to identities for products of composites. TFor ex-
ample, suppose s and ¢ are odd positive integers and ¢ and T are even nonneg-
ative integers. Then

F,

8

° P, = L and F, ° Fy = Lgq.
By identity (5) in [4], Ls:Lyr = Lst 4ot + Lst -or- Therefore,
Fy, o FYFE, o F) =1

st+otT + Lst-GT'

Ten identities are obtainable in this way. To facilitate listing them, we
make certain abbreviations. The identity just derived appears below in (10)
as

(Fe © F,)(Fy © Fr) = Ly + Ly, oeoe,

where the designation "oeoe' means "for odd s, even t, odd O, even T."
Table 4. Product-Composition Identities

Notation: s, t, 0, T are nonnegative integers and st > OT.
Also, § = st + 0T and % = st - 0T as in the example above.

(10) L@ +
= L TN, o Ty = J £4 — Fy, oeee = W FNT o - J Iy = Iy, oeeo
(Fy o T)Fs © Foy =4 74 1 Fos ceoe (F, ° F)(Fy © L) = Ly + Dy, eeoo

Lﬁ - Ly, eeee Lﬁ ~ Ly, eeeo

- Ly, oeoe (11) E@ + Ej\,, 0eoo
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Table 4.—continued

(12) bﬁ - ?s, oeoe (13) Ls - Ly, oeoo
= o7 o T - Ly + Ly, oeee = o T o _ Lag + Lb’ oeeo
F, ° F) g ° Fp) 2% T e By o F), 0 L) = ﬁg DR eeoo
Fy + Fg, eeee Fﬁ +‘Fb, eeeo

(14) L§ - Ly, ceoce (15) Fy, 0eoo
I o Ty _ ) P4+ Fy, oeee o = . Fy, oeeo

@e ° F)@g ° Fr) = Fﬁ - Fy, eeoe (L Fy) Dy © Do) eeco
L@ + Ly, eeee L@ + Ly, eeeo

Lg ~ Ly, oooe
and eooe
Fﬁ + Fb’ ooee
and eoee

i
I

= . = . and eooo T o
(Fy © L) (F, ° L) Iy - Ty, ooeo (Fy ° L) (Tg ° F)

and eoceo

(18)
Fe ° L) (Tg © L)

?ﬁ - Fb’ 0000 (19)
B épd eooo0
Fﬁ + Fb’ 00eo

and eoeo

Lﬁ - Ly, 0000
and eooo
Lg + Ly, ooeo
and eoeo

]
P Ny P Ny P N P Ny
[y
IR b
[ |
4
& F

(s ° L) (T, ° L)

(16) ; L¥ + Ly, oooo (17

3. FUNCTIONS COMMUTING WITH U (x)

Bertram [l] proves that, except for a possible factor -1, the only non-
constant polynomials that are permutable (i.e., commute) with nonlinear Cheby-
shev polynomials (of the first kind) are Chebyshev polynomials (of the first
kind). Here we obtain analogous results for Chebyshev polynomials of the sec-
ond kind. The same arguments give further analogous results for composites
involving one Chebyshev polynomial of each kind.

_There is no real loss in disregarding the symbol y in T,(x, y), UnCxs y)s
and U,(x, y) in this section. Accordingly, we write 7,(x) for T,(x, 1), U,(x)
for U,(x, 1), and U,(x) for U,(x, 1). TFollowing the notation and arguments in
Bertram, if P and § are functions, the substitution of @(x) for x in P(x) is
derioted either by P(Q(x)) or P(Q). Ordinary multiplication of functions is
given by juxtaposition, as in v4 — z?U,{(x), or by brackets, as in A[P']7 and
(4 - x®)[Ul(x)] ,in order to avoid confusion with the composition (i.e., sub-
stitution) operation.

Proofs in this section are abbreviated or omitted, but the interested
reader with[1] at hand should have no trouble writing out the proofs in full.
One must of course bear in mind the transformations already given between T, ,
Uys and t,, U,.

Lemma 3a: Suppose P(x) satisfies the following differential equation for some
positive integer n:
(20) (4 - &) [P (x)1% = n?[4 - P?(x)].
If P(x) is of the form /4 - mEP(x), where P(x) is a polynomial, then

P(z) = U, (x). [That is, P(x) = *7,(x).]
Lemma 3b: Suppose A(x), a polynomial of degree j > 0, and §(z) = v4 - 2°§(2),
where §(x) is a polynomial of degree m-1 > 1, satisfy the differential equa-—
tion
(21) {A@ Q7 (®)17}? = [n74(F(=))12.
If P{x) = v4 - x?P(x), where P(x) is a polynomial of degree m-1 > 0, is per-

mutable with §(x), then P(x) satisfies the same differential equation with n
replaced by m.
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Proof: Let

¢ = {4[P'17}? - [miA(®)1?,
and suppose ¢ # 0. The highest degree term of both {A[F’]7}? and [m7A(P)]?

1s .
N 2g 2. 25 2mg
-1)'m a:p,l s

so that the degree d of ¢ is strictly less than 2jm. We next prove that ¢ # 0

also implies d = 2jm. Using (21), the commutativity, and the chain rule,
n26(@) = n*{A@ P (@112 - m¥n¥ [A(P@))])?

AP[QIHF P ]Y - m* [AP)]2[Q'(P) 1%

A2IPII QI (PYY - m¥ (AP 1217 (P) 1%

[Q'P) 1Y {4%[P'1% - m¥ 4(P)]%} = [' P 1¥¢.

Equating degrees gives nd = d + 2j(n~ 1)m, so that d = 2jm since n # 1. This

contradiction shows that @ = 0, as desired.

1

Theorem 3: Let {U,},., be the sequence of (altered) Chebyshev polynomials of
the second kind. Suppose P is a polynomial of degree m - 1 > 0 such that the

functions
Uy(x) = V4 - 22U, (x) and Plx) = /4 - 2°P(x)

are permutable for some positive integer m. Then P = [, if n is odd, and P =
U, if n is even.

Proog: First suppose n = 1. If m = 1 also, then the desired result is easily
obtained. If m > 1, then the method of proof of Theorem 6 below shows that
P = ty,. Now suppose n > 1. By  Lemma 3a, *U, are the only polynomials Y of
degree n ~ 1 > 1 which satisfy the differential equation

AP[Y1Y = A%,
where Y(z) = /4 - x?Y(x) and A(x) = 4 — z?. But the hypothesis that 7, (P) =

P(@W,) for n > 1, together with Lemma 3b implies that P satisfies this differ-
ential equation with »n replaced by m. Thus, taking square roots,

(4 - ) [P (@]" = n’l4 - PP(®)] or #’[4-P].

The latter leads to m? + n® = 0, which is impossible. Therefore, Lemma 3a ap-
plies, and P = zy,. If »n is odd, then U, is an even function, and P = [,; if
n is even, then U, is an odd function, and P = xV,.

Identities (2) and (3) show that U, and T, sometimes commute. Theorems
4 and 5 below tell precisely when this happens and also answer the following
questions: What polynomials ¢ commute with a given U,? What functions of the
form v4 - x?P(x) commute with a given T, for n > 2? The proofs, which are
omitted, follow closely the arguments already used in this section.

Iﬁeanem 4: Suppose g(x) is a polynomial of degree m > 2 and @(x) commutes with
U, (x) for some n > 1. Then m = 1 mod 4 and g(x) = T, (x). Moreover, if

Q(U,(x)) = -U,(Q(x)) for some n > 1,
then m = 3 mod 4 and P(x) = T, (x).
Theonrem 5: Suppose P(x) is a polynomial of degree m - 1 > 0 and

Plx) = V4 - 2?Plx).

If ﬁzx)commuggs with T, (x) for some # > 2, then m = 1 mod 4 and Plx) = U, (x).
Moreover, if P(7,(x)) = -7, (P(x)) for some n > 2, then m = 3 mod 4 and P(x) =
U, ()



1980] FOUR COMPOSITION IDENTITIES FOR CHEBYSHEV POLYNOMIALS 363

L. SEMIPERMUTABLE CHAINS

Two functions f(x) and g(x) are defined in Kuczma [5,p. 215] to be semi-
permutable if there exists a function

Ke + L
d(x) =
such that Me + I
(22) Flgz)) = olg(fx))].
Two functions f(x) and v(x) are equivalent if there exists a function
(23) o(x) = rx + 2, where r» #£ 0,
such that

TP ()] = v(x).

Lemma 6a: Suppose ¢(x) and &{(x) are as just described and that (22) holds.
Then the functions

F(z) = ¢ Ff(p(x))] and GGx) = ¢ g(d(x))]
are semipermutable.

Proog: TFor ¥(x) =
we have

%%};}%%, where A =K - sM, B =L - oN, C = M, and D = rl,

F(G(x))

97 o fog e p@ =97t 0 8o go fo )
=V o¢logofod@ =Y[EF@)I,

where the symbol o indicates composition.
Suppose [' is a sequence of positive integers and

P=1{p,(x)} and D = {d,(x)}

are sequences of functions indexed by I'. We define P to be an SP chain under
D if every pair of functions in the set

{p, (©)d, (x) :n e T}

are semiparmutable. This definition generalizes that for SP chains given in
[5], which is obtainable from the present definition in the case d,(x) = 1 for
all positive integers .

If P = {pn(x)}ner is an SP chain under D = {d,(®)},er and @ = {g,(@) ), cr
is an SP chain under E = {e,(x)},cr» then P and @ are equivalent if there ex-
ists ¢(x) as in (23) such that

67 p, (0))d,($(2))] = g, (x)e, (x) for all n in T.

Conoflarny to Lemma éa: Suppose {u,(x)} is an SP chain under {d,(x)}and ¢(x) =
rr + 3, where r # 0. Write

oM p, (9(2))dn(9(2))] as gu(x)e,(x).

[This is always possible, since we may choose ¢,(x) = 1 for all » in I'.] Then
{g,(®)} is an SP chain under {e,(x)}.

If T is the sequence of odd positive integers, and p,(x) is a polynomial
of degree n - 1 for each #n in T, and P is an SP chain under D, then P is an
even SP chain under D. Similarly, if ' is the sequence of even positive inte-
gers, and p,(x) is a polynomial of degree n - 1 for each# in ', and P is an
SP chain under D, then P is an odd SP chain under D. In particular, we define
a Chebyshev even chain by

Ip, (@] = U, (@ and d,(x) =74 - > for n = 1, 3, 5, ...}
and a Chebyshev odd chain by the same symbols, for nw =2, 4, 6, ... .
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Finally, if T is the sequence of all the positive integers, and p,(x) is
a polynomial of degree # - 1 for each n in I', and P is an SP chain under D,
then P is a complete SP chain under D.

Lemma 6b: Suppose o, a, and e are nonzero, B2 # 4oy, F(x) = e/ox? + Bz + v,

and G(x) = vox® + Bx + y(ax® + bx + ¢). If F(x) and G(x) are semipermutable,
then F(x) and G(x) are equivalent [with the same ¢ in (23)], respectively, to
the functions

U, (@) =4 - x> and a,U,(x) = a,(@® - 1)V/4 - 2°, where af = 1.
Proog:
(24) [F(G(x))1% = e?[a’a’x® + (20%ab + aBa®)z® + (@b% + 20”ac
+ 20Bab + aya®)x® + (202be  + aBb? + 20Bac + 2ayab)x®
+ (a?e? + 2aBbe + ayb? + 20vac)x® + (0Be? + 208be)x
+ (oye? +v) + Blax? + bx + e)Vox? + Bz + y1,

and

(25) [XG(F(z)) + L1% = K*[a*a?e®2® + 30°%Ba’efx®
+ alae®(Ba + 20b)z*Vox? + Bx 4+ v + co*
+ 2KL( ) +1I°%,

where the expression indicated parenthetically after 2XI contains no nonzero
constant multiple of x*ox? + Bx + Y.
In (22), suppose M # 0. Then, squaring both sides of (22) and writing

[MG(F(x)) + F1?[F(G(=))1? = [KG(F(x)) + L],

the left side contains for its highest degree term a multiple of x2'?, whereas
the highest degree term on the right side is K%a“a”e®x®. Therefore, M = 0,
and there is no loss in assuming that ¢(x) is simply Kx + L.

Equating coefficients of x® and 2% in (24) and (25) gives K?a%e" = 1 and
ab = Ra. The assumption B® # 4uy keeps vox? + Rz + v from being a polynomial,
and this implies that the coefficient (0?Ba? + 2aab)e® in (25) equals 0; to-
gether with gb = Bg and o # 0, this means § = p = 0. Thus,

(26) [P{ax))]1? = e?[a2a’x® + (202ac + aya?)z*

+ (a%e? + 2ayac)x? + aye® + v]
and

(27) [KG(F(x))+ 1% = K?[02e?x® + y(ae?+ 1) 1[oae "z + 20ae? (vae® + e)x?
+ (yaez4-e)2] + 2KIvo?e?x? + Y(uez+-1)(aaezx2 + vyae? + e) + L%.

Again comparing coefficients, we see that either L = 0 or ¢&2e2x24-y(uez-kl)
is a polynomial. The 1latter impliesae? = -1, which, by comparison of odd
powers of x, leads to L = 0.

Multiplying out the right side of (27) and again comparing coefficients
with (26), we find

(28) va(2oe? + 1) + 20e(l - 0e?) = 0,

(29) alee(ae + 2ya) - (yae®? + ¢) Bayae® + ac + 2va) = 0,

(30) e?(l - ae® + a’e®) - a”e® + yae?(ae® + 1) (yae® + 2¢) = 0.
Evaluating (26) and (27) at z? = -y/o. and equating them gives e? = x%:?, so

that 2 = 0?¢?. We mnow rewrite (28), (29), and (30) with g = va and ae = §¢,
where |§| = 1:
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(€1D) 2¢%e - 28¢? - 28ce’q - ge = 0,
(32) Se®e® + (2ge® - 8)e® - 4gSc?e? - (38qe’ + 2)qee - 2q%e® = 0,
(33) cle(e® = 1) + 8c?(1 - ") + ge®(ce + §)(ge? + 2¢) = 0.

If 28ece + 1 = 0, no g satisfies both (32) and (33). Therefore, 28ce + 1 # 0,
and in this case we find

_ 2¢%(ce - §)

" e(28ce + 1)
from (31) and substitute into (32) to obtain c¢?e¢®? = 1. For § = 1, we find
from ¢?e® = 1 that ce = -1, since if ce = 1 then g = 0, contrary to Yy # 0 # a.’
Simplifying the expression for ¢ gives yae = 4c¢?. Also, from ae = Sc¢ comes
ae? = -1. Similarly for § = -1, we determine ce =1, yae = -4¢?, and ae® = -1.

Now for ¢(x) = e/yx/2, it is easy to verify that
OHF($(@))] = Vb - P
and, using the fact yge® = 48, that
OHE(O@)] = e (x? - DVA - 27,

Finally, it is easy to check directly that these two functions are semipermut-
able if and only if e? = #1, and this completes the proof.

Theorem 6: Every even SP chain under a constant sequence of the form
dy(e) = Vox? + e + v

is equivalent to a Chebyshev even chain {a,U, (&)}, afl =1, n =1, 3, .5,

Proof: Suppose {yis Y3» Y55 -+-} iS5 an even SP chain under d(x) dn (x) as
above. Let ¥, (x) =y,(x)d(xz). By Lemma.6b, we may assume that d(x) = v4 - x2.
Since every even polynomial y,(x) of degree n — 1 is a linear combination of
even U; (x)'s up to degree n - 1, we write

m
7, @) = a,U, ) +Zbiﬁi(x), n>m>1,

=1
where b; = 0 for even 7. Suppose b, # 0. Then

(B8 7, @, @)% = (4 - F2@)
m m 2
= {—aﬁﬁﬁ(x) - Zan—l—/n(x)Zbiﬁi () - [Zbiﬁi (a:):l + 4}
i=1 iT1
and

m 2
(35) [Ky, (y,(x)) + L1? = K{aﬁn(ﬁl (@) + Z b, U, (T, (x))]
i=1

i=1

+ 2KT [a,ﬁn (U, ) + E: b, U, (U, (x) )] + 2.

The highest degree term on the right side of (34) is a2x®", while that on the
right side of (35) is (-1)""1K2g2x?". Thus, X* = 1, so subtracting (35) from
(34) and using Lemma 2a [rewritten as T, (x)7,(x) + U,(x)U,(x) = 2T,_p(x) for
0<m<n],
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(e]
|

= 17,7, @)1? - [K,(G, @) + L1? = -a2T2(x) - 2a,) b, T, )T, )
i=1
- [Zbi_ﬁi (x)}z + 4 - {aﬁcﬂg @) + 22,9 b;T, (@)T; (@) + [ZbiTi (x):|2}
i=1 i=1 i=1

- 2KI, [anTn (x) + ZbiTi (nc)] - I*

=1

-2 [P (@) + T2@@)] - 24,9 b;[T,(@7; (x) + T, @)7T; @) ]
1=1

m 2 m m
_{[Z b;U,; (ac)] + [ZbiTi (x)}z} - 2KL|:anTn (x) + Zb,_-T,_. (x)]
i=1 i=1

i=1

- L% + 4.

Thus,

m m
(36) 0 = -4a% - 4a, § b,T, _;(x) - [2 E b% + 4 E bibjly_iCrﬂ
i ;

=1 l<i<jem
m
- ZKL[anTn (x) + 9 b;T; (x)] .
i=1

If I # 0, the right side of (36) is a polynomial of degree n. Therefore, L =
0. If b, # 0, the right side of (36) is a polynomial of degree n - 1, again a
contradiction. Therefore, m = 0, so that

7, (x) = a,U,(x) for n > 1,
and (36) shows that g2 = 1 for n > 1.
Lemma 7a: Suppose o, a, and ¢ are nonzero, B2 # 4ay,
F(x) = (ex + f)/ax” + Bx + v and G(x) = (ax® + ba® + cx + d)y/ax® + Bz + y.

If F(x) and G(x) are semipermutable, then F(x) and G(x) are equivalent [with
the same ¢ in (23)], respectively, to the functions

U,(@) = /b - 2> and a,0,(x) = a,(z® - 20)/4 - «?, where af = 1.
nggﬁ: Write 4 = /&57*1'E5—17§'and B =ax® + bx? + cx + d, so that
F(x) = (ex + f)4 and G(x) = BA.
Direct computations show
(37 [F(G(x))1% = ae®G* () + (af® + 2Bef + ve®)G? (x)
+ [e(2af + Be)G?(x) + F(Bf + 2ye)1BA

and
(38) [KG(F(x)) + L1% = K*[QgF%(x) + Q,F"(x) + -+ + Q,F(x) + Q,]
+ 2KLG(F(x)) + L%,
where
Qg = 0"@2’ Q; = a(20b + Ba), )
Qg = 20ac + ab? + 2Bab + Yaz, Qs = 20ad + 2obe + 2Bac + b + 2vyab,
Q, = 20bd + ac® + 2Bad + 2Bbc + 2yac + Yb?, ,
Q; = 20ed + 2Bbd + Be® + 2yad + 2ybe, Q, = ad? + 2Bed + 2vbd + ye©,
@y = d(Bd + 2ye), Q, = vd*.
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Comparing coefficients of x'® in (37) and (38) gives a’ = k%a2e®. 1In (38)
only the expression X?a(2ab + Ba)F’(x) comtains a nonzero multiple of x'34,
and (37) contains no such term. Specifically, (38) contains the term

K*alae’ (20b + Ba)zld4.

The condition B2 # 4avy keeps A from being a polynomial, and since K20’ae’ # 0,
comparison with terms in (37) gives

(39) Ba = =2ab.

In (37) only the expression e(20f + Be)G?(x)BA contains a nonzero multi-
ple of 2*14, and (38) contains no such term. Writing this expression as

e(2af + Re) (ca?x® + - ) (ax® + -..)4,

we find by comparison with (37) that

(40) RBe = -2af.
Since A is not a polynomial, the expression
(41) VoA (e + )2 + vy + BAPF (z) + d + (aF%(z) + ¢) (ex + FA]

for G(F(x)) in (38) cannot be of the form R(x) +Q(x)4A for any polynomials R(x)
and ¢(x) unless perhaps B = 0. Thus, for B # 0, the expression (41) is lin-
early independent of the other terms in (38) and all those in (37), so that
L = 0. On the other hand, if 8 =0, then b = f = 0 by (39) and (40). Then
(37) shows [F(G(x))] to be a polynomial, and (41) reduces to

Voh?elx?+ y[d + (ae”d’x® + e)exvox® + v].

For this to be a polynomial requires y = 0, contrary to B2 # 4ay. Consequent-
ly, for B = 0, we still have L = 0.

Equation (40) shows that no multiple of xPA occurs in [F(?)]1% for any
p > 3. Since only QSFS(x) in (38) contains such a multiple for p = 9, we have
@s = 0. Because of this and the fact that QaFg(x) alone in - (38) contains a
multiple of x°4, we have @, = 0. This leaves (38) with no multiple of 234, so
that the coefficient of %4 in (37), namely Ff(Bf + 2ye), must equal 0. If
f # 0, then eliminating e¢ from Bf + 2ye = 0 and Be + 2af = 0 gives 82 = 4oy,
which is forbidden. Therefore, f = 0. By (40) and (39), 8 = b = 0 also.

For x, a root of ox? + Bx + Y

FlG(x)] = F(O) = AFf =0 and G[F(z,)] = G(0) = /d;
0. The condition B? # 4oy implies vy # 0. We sum-

since I = 0, we have vyd
marize our findings:

(42) R=0,b=0,f=0,d=0,7=0,¢, =0, 8, =0, ¢, =0.
These enable us to simplify (37) and (38) as follows:
(43) [F(G(x))]? = ola*e?x® + 20%a°e? (2ae + ya)x'?

+ aa?e?(60’c? + 8uyac + v’a®)xt?
+ 20ace? (Sayae + 2y?a® + 202c® + ayac)xt?
+ ae?(6y’a’e? + 8uyac® + a’c* + ya*)x®
+ ve? (4ayac® + 2a%e? + 2o0ac + ya®)x®
+ yee? (aye® + 2va + ae)z® + yPetelx?;
(44) KZ[G(F(.I:))]Z = KZ{OLSQZQBle + AuuazYesxlu + OL3€6(6Y2612@2
+ 20ac + va®)xl? + a’ve® (4y2a2e’® + 6oac + Iya?)xt®
+ ae" (y*ale" + boylace? + 3yia?e? + ale? + 2avac)z
+ ve' (2oylace? + vy3a?e® + 2u2e? + 4oyac)x®

+ yee? (ayce? * 2viae? + qe)x* + y?cle?x’}.

8
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Comparing coefficients of xls, xlq, eees xz, in order, gives
(45) a® = 0%e® [because of (52) below]
(46) 20e = ya

47 13a%e? = e"(3v%a?e? + 20ace)

(48) llaae = e* (v¥a?e? + 602c?)

(49) Glate" + 2oac = y'ae® + 24a’vele* + sulele?
(50) S0’ + 2a = bayee® + Soce?

(51) acd+ 20 = Soee?

(52) K* = 1.

Subtracting (51) from (50) gives

(53) c? = vye*.

Eliminating o from (46) and (47) gives

(54) 13¢2 = ve" (3ye? + 1).
Eliminating e® from (53) and (54) gives

(55) ve? = 4,

With (45), (53), and (553) in mind, we now discern four possibilities for
given g and e:

(56) o = -qe’ and e = -2e
(57) a = ae’ and c = -2e
(58) a = ~qe’ and e = 2e

(59) a = ae’ and ¢ = 2e,.

For (56), we have
F(x) = xsh - ae’x? and Glx) = et (ax® + cx)WWb - ae’z?.

For ¢(x) = x/Vae® we find that ¢ 1 [F(¢(x))] = o/4 - 2*® and, using the assump-
tion ¢ = -2e, that
OGP (X)) = (e %’ - 2mWh - x®.

It is easily checked directly that these two functions are semipermutable iff
6 =
e® = 1.
Direct checking for semipermutability further shows that (57) gives I’ and

G respectively equivalent to U, and U,, while (58) and (59) give functions

respectively equivalent to U, and -U, as desired.

Theonem 7: FEvery odd SP chain under a constant sequence of the form
d,(x) = Yox? + Bx + v

is equivalent to a Chebyshev odd chain {anUn(x)}, a2 =1, n 2, 4, 6,

Proof: Suppose {y,, Yys ...} is an odd SP chain under d(x) = da(x) as above.
Let 7, (%) = y,(x)d(x). By Lemma 7a, we may assume that d(x) 4 - x?, Since
every odd polynomial y,(x) of degree m — 1 is a linear combination of odd
U;(x)'s up to degree n — 1, we write

7@ = aU,(2) + 9, b U@, n>m>1,
=1
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where b, = 0 for odd <. The rest of the proof follows that of Theorem 6
exactly,

Theorem §: Suppose d(x) = Vox® + Bz + vy where o # 0 and B2 # 4ay. There ex-
ists no complete SP chain under D,

Proog: Referring to the definitions given just before Lemma 6b, if such a
chain {p, (x), p,(x), ...} exists, then the chain {p,(x), p,(x), ...} is an even
SP chain. The proof of Lemma 6b shows that we may assume ¢(x) = Kx + I in
(22) and oo = -1 and B = 0. Thus, we write

p(x) =a/-2® +y and P,(x) = (bx + c)-x® +y
where ¢, b, and vy are nonzero. Writing out the assumption
[5,(5,@)1% = 65,7, @) + 11,

we find the term 2K%a°bex?/~x? + v on the right side and all other terms in
this equation linearly independent of this term. Thus ¢ = 0, so that

(p,(p, @)1 = a’b’z" - ya®b’z® + ya®.
It is easily checked that L = 0, so that
(XD, (D, (®)) + L1* = -a*b?K%x* + ya’b’K* (22" - 1)z’
+ K2v2a?bh2 (1 - a%).

Comparison of coefficients of z* gives a’k® = -1, which along with comparison
of coefficients of x? implies K2 = -1. But this leads to a contradiction,
since comparison of constant terms gives 1 = yb?(X* + 1).
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