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ON POLYNOMIALS RELATED TO TCHEBICHEF POLYNOMIALS
OF THE SECOND KIND

D. V. JAISWAL
Holkar Science College, Indore, India

1. Tchebichef polynomials of the second kind have been defined by

Uppil) = Zx Upfx) — Up_slx) ,
Up=1 U=2x.
It is known [1] wat

U, feos8) = Sin [n *+ 1)6 £7n+07)0 ,
and
{n/2]
Unld = 35 (771} (=17 (207720
=0
Also [2]

Foeg =17 UL012),
where F,, represents the n™ Fibonacer number.
The first few polynomials are

Uglxh = 1
Uiln) = 2%
Ualx) = &° 1

Usfix) = 8¢° — 4x
Uglx) = 18x* — 122+ 7,

Figure 1

if we take the sums along the rising diagonals in the expression on the right-hand side, we obtain an interesting
polynomial p,(x), which is closely related to Fibonacci numbers.
The first few polynomials are

pifx) =1, polx) = 2x, palx) = 42,

(1.1
palx) = 8~ 1, psixt = f6x? - ax .

In this note we shall derive the generating function, recurrence relation and a few interesting properties of these
polynomials.

2. Onputting 2x = y in the expansion on the right-hand side in Figure 1 we obtain
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The generating function for the k% column in Figure 2is (—1)%(1 - ty}_(k+”. Since we are summing along the

rising diagonals, the row adjusted generating function for the k™ column becomes

hidv) = (—1)5(1 — gy~ (k1) 3k31

Since
oo [==] k
oy 7 % -—l‘3
hely) = — Z ( )
o 1—ty k=2‘ 1—ty
_ t
IT~ty+ 3
we have
(2.1) Glxt) = 2 pofiht" = —E—
n=0 1—2xt+1¢

From {2.1) we obtain

o

}: px)e" = t1—2xe+¢3)77

n=1

On expanding the right-hand side and comparing the coefficients of t"”, we obtain
2 2 ‘ [n/3] 2
(2.2) Pprilx) = (2x)" ~ ( ”; ) (2x)7 + (”5 ) (2x)76 + .= Z (”'} r) (1) (2%) 3",

r=0
Again from {2.1} we have

(1= 2xt 413 2 ppldt™ = ¢ .
n=7

n+3

On equating coefficient of ¢ on both sides, we obtain the recurrence relation

(2.3) Potzix) = Zxpprofxl —pplxd, 0 > 1, pix) =1, pofx) = 2x, p3zlx) = 2,

Extending (2.3} we find that p,(x) = &
From (2.1} we have

(2.4) Gixt) = tF2xt—t3), Flu) = (1-w™" .
Differentiating {2.4) partially with respect to x and ¢ we find that Gfx,t/ satisfies the partial differential eguation

2t 28 _(x-32) 25 _26-=90.
At 3x
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Since ” -

§7§—5~= g npplx) e, % = :2; phlx)e"
it follows that
{2.5) 2xppanix) — 3ppixh = 2n + 1hppeaix) .

3. On substituting x = 7 in the polynomials p,{x/, we cbtain the sequence {P,, } which has a recurrence relation
(3.1} Poig = PorytPu+l, Pp=48 Psj=1.

The sequence gP,,g. is refated to the Fibonacci sequence an} by the relation

Po=Po—y = Fp :
which {eads to
Izl
(3.4) Py= 2. Fr .
k=0

From (3.4) several interesting properties of the sequence an} can be derived. A few of them are

(” P” = Fn+2—7
]
1,

{2) Py = Fppa—(n+3)

{3.5) k=1

1]

(3) 2iPE = FuroFusa=2Fprat o +4
I

{4} with .H1{7+xl"f/ =agag X+ tapXT, m= Lytlyttl, .
P

and g, equal to the number of integers & such thatboth 0< k< m and ag=4 Leonard [3] has proposed
a problem to find 2 recurrence relation for g ,,. The author [4] has shown that the recurrence relation is

Gne2 = Qpryt9ptl 9750 g2=1.
Comparing this result with (3.1} we observe that

Pn = Opir .
On using (3.5)—(1) and (2.2} we obtain
{n/31
(3.6) Frug= 1t E& (”72’*} (~1) 2% s o0,
g

a result which is believed to be undiscovered se far.
[ am grateful to Dr. V. M. Bhise, G.S. Technolagical institute, for his help and guidance in the preparation of this
paper.
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