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1. INTRODUCTION

Previously in this journal [5] and {6], I have defined a generalized
sequence {wn(a,b; p,q)} and established its fundamental general arithmetical
properties, as well as certain special properties of it, In this article, the
sequence is related to Tschebyscheff functions and to some combinatorial func~
tions used by Riordan [8] This is the third of a series of articles developing
the theory of {Wn(a,b; p,q)}, as envisaged in [5]. Notation and content of
[5] and [6] are assumed when the occasion warrants.

For subsequent reference, we reproduce the Lucas results [7]
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respectively, Consequently, it follows that (p = -q = 1),
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from (1.2), with appropriate reciprocals from (1.3) and (1.4).
Making use of (1.1) above together with the first of the forms given in
(2.14) [5], we may express W as
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2, TSCHEBYSCHEFF FUNCTIONS

Write
(2.1) X = cos ¢
(2.2) p=2x, g=1
so that

2.3) d = 2isine (i=V-1) .
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Define

24) W= wn(a, 2x; 2x,1) = acos né + (2 - a)sin ng cot ¢

Using Simpson's formulae (reference Lucas [7]),

It

2cos@ sin (n+ 1)9 - sin n@
(2.5)

i

cos (n+ 2j6 2 cosé cos n+ 1)6 - cos no

{ sin (n + 2)9
we deduce that
(2.6) W = PWoq T W, s

nt+2 n

as required by the definition of wn(a,b; p,q) given in [5], in conjunction with
(2.1) and (2.2). Notice that (2.1) and (2.2) ensure [5] that

2.7) e = 4@ - 1)cosze - az s
whence, for {un}, for which a = 1,
(2.8) e = -1 |,
while for {vn}, for which a = 2,
2

(2.9) e = -4 5in“¢ .

Immediately from (2.4) we have the Lucas substitutions [7 ]
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where we have used (1.1)-(1.4).
But, the expressions in (2.10) and (2.11) exactly describe the Tscheby-
scheff functions Un(x) and 2Tn(x) = tn(x) respectively (T0 = §t0 =1). That

is,

(2.14) Wn(1,2X; 2x,1) = un(2x,1) = Un(x) = 2xUn_1(x) —Un_l(x)

and

(2.15) wn(z,zx; 2x,1) = vn(Zx,l) = 2Tn(x) = Z(XUn—'l(X) —Un_z(x)) .
Special cases are

(2.16) w111 = u @l = U@ = U @G -U 60

and

@.17) w211, = v (1,1 = 2T @ = U @ -2U @) .
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Generally,

(2.18) w_(a,b; 2x,1) = bUn_l(x)~aUn_2(x) .

nf

By means of the wn—notation, relationships among Tschebyscheff poly-
nomials may be conveniently expressed. Recalling the known result [8], for
instance, that

(2.19) T () = 25T, ®) - T
we may, writing for brevity,

(2.20) w, = wn(Z,Zx; 2%, 1) ,
express it in the form

(2.21) w - wan_l SW g

Equations (2.4), (2.10) and (2.11) enable us to express every formula in
the theory of our second-order recurrences as a corresponding formula involv-
ing trigonometrical functions. [Observe that ¢ = 1 invalidates any special-
ized application to the sequences {hn}, {fn} and {].n}, for all of which q =

—1.] ] > )

. 2 n-r 2
Corresponding to the fundamental formula Wni-rwn-r W eq Tuy 4
((4.5) in [5]), for instance, we have
2

azg cos (n+ r)g cos (n~-1)g -~ cos ng }
(2.22) L2

+ @2 - a)zcotze {Eﬁin (ntr)g sin(n-r)e —sinzno } = e —S—mTIQ

sin" 9

where e is given by (2.7). For {un} and {vn}, we obtain

(2.23) sin(n*rtr+1)e sinn-r+1)8 - sinz(nJr 1)e = -sinzra
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and

(2.24) cos (n+ 1) cos (n-r)§ - cosznf) = —sinz rée ,

in which e is given by (2.8) and (2.9), respectively. Both results (2.28) and
. ) 2 2 _

(2.24) are easy to verify. The particular result W + eu ;T aw, ((4.6) [5])

derived by setting r = m implies the identity
cos 2n§ - cosznﬂ = —Sin2 né
in (2.24).

Other trigonometrical identities are not hard todetect, but it is interest-

ing to discover just how they are disguised. As further examples, we note that

2 2 _
PWitg = @ Wy Faw, =0
(3.3) [5]), and
I
Wn+r ik Wn—r _
—_—— = v
w I
n

((3.16) [5]) lead to, respectively,

(2.25) 2 cos® sin n+ 3)6 -~ 4 cosze ~1)sin(n+2)¢ +sinné = 0
(2.26) 2 cosé cos (n+ 2)¢ - (4 cos20 - L)cos (n+ 1) + cos (n-1) =0
and

sin (n+tr+1)¢ + sin n - v+ 1)
sin(n+1)9

(2.27) = 2cosréd

cos (n+ 1) +cos (n-r1)g

= 2 cos ré
cos néd

(2.28)

where, ineach pair of identities, the first refers to {un} and the second to

{vn}. A formula also worth investigation is
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aw n+(b-pa)w = W_ W -qw

w
m+ mtn-1 m n m-1 "n-1

((4¢.1) [5])+ Furthermore, the summationformula (3.4) [5] indicates expres~

sions for
n-1
E cos ké
k=0
and
n-1

sin k+ 1) .

T
<

Similar remarks apply to the formulae for sums of squares and cubes.

Instead of (2.1)-(2.3), we may put

(2.29) y = cosheé¢ = cosi¢
(2.30) P =2y, q=1

so that

(2.31) d = 2s8inh¢ = -2isinid

and hence derive a set of parallel results for hyperbolic functions.

Apart from the Carlitz [3] reference quoted earlier, other sources of
information regarding the relationships among Tschebyscheff polynomials and
Fibonacci-type sequences are, say, Buschman [1] and Gould [4]

3., COMBINATORIAL FUNCTIONS

From (1.1), we have, using the combinatorial function Ln(x) used in
Riordan [8],
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/3]

3.1) u (1,-%) = Z (“ : k) L@ .
k=0

Then, by the second half of the expression (2.14) [5],

7] 7]
(3.2) W (2,b; 1,%) = b Z (n - 11{ - k) x5 + ax
k=0 k=0

bLn—2 (x) + aan_3 (x)

a+g”-a-g"|,

{a+g)™1-a-g)
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n-2-k Xk
k

n-1 (

= b +ax
2ng2 2 2
1
where, forbrevity, g = (1 + 4x)2,
More particularly, notice that
(3.3) Wn(l, 1;1,-x) = un(l, -X)

affords an alternative expression for the known recurrence relation [8]

(3.4) Ln_l(x) = Ln-Z(X) + XLn—3(X) [LO =1, L1 = 1+X]
while
(3'5) Wzn(z: 1; 1;_X) = Vzn(ls _X)

is an alternative expression for the combinatorial function [8]

(3.6) M () = L, (®+xLy o0 (@>1).

n

Of course,

(3.7 L

n-1 2
g
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(3.8) M 1) = L, .

4, OTHER FUNCTIONS

Besides these combinatorial functions and Tschebyscheff functions
(themselves involving trigonometrical and hyperbolic functions), other func-
tions are related to the Fibonacci~type recurrences, In this respect, a recent
article by Byrd [2] is worth emphasizing, particularly as, it seems, his work
offers possibilities for generalization, In this article, Byrd considers the
expansion of analytical functions in a certain set of polynomials which can be
associated with Fibonacci numbers, Bessel functions and modified Bessel
functions are involved in the process.

Throughout, we have assumed that p2 # 4q. The degenerate case p2
= 4q has been discussed by Carlitz [3], who relates it to the Eulerian poly-
nomial, and, briefly, by the author [5]
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