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In Komatsu’s work (2013), the concept of poly-Cauchy numbers is introduced as an analogue of that of poly-Bernoulli numbers.
Both numbers are extensions of classical Cauchy numbers and Bernoulli numbers, respectively.There are several generalizations of
poly-Cauchy numbers, including poly-Cauchy numbers with a q parameter and shifted poly-Cauchy numbers. In this paper, we give
a further generalization of poly-Cauchy numbers and investigate several arithmetical properties. We also give the corresponding
generalized poly-Bernoulli numbers so that both numbers have some relations.

1. Introduction

Let 𝑛 ≥ 0, 𝑘 ≥ 1 be integers. Poly-Cauchy numbers of the first
kind 𝑐(𝑘)𝑛 are defined by

𝑐
(𝑘)

𝑛 = ∫

1

0

⋅ ⋅ ⋅ ∫

1

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

(𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘) (𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘 − 1) ⋅ ⋅ ⋅

(𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘 − 𝑛 + 1) 𝑑𝑥1𝑑𝑥2 ⋅ ⋅ ⋅ 𝑑𝑥𝑘

(1)

[1]. The concept of poly-Cauchy numbers is a generalization
of that of the classical Cauchy numbers 𝑐𝑛 = 𝑐

(1)
𝑛 defined by

𝑐𝑛 = ∫

1

0

𝑥 (𝑥 − 1) ⋅ ⋅ ⋅ (𝑥 − 𝑛 + 1) 𝑑𝑥 (2)

(see, e.g., [2, 3]). The generating function of poly-Cauchy
numbers ([1], Theorem 2) is given by

Lif𝑘 (ln (1 + 𝑥)) =
∞

∑

𝑛=0

𝑐
(𝑘)

𝑛

𝑥
𝑛

𝑛!

, (3)

where

Lif𝑘 (𝑧) =
∞

∑

𝑚=0

𝑧
𝑚

𝑚!(𝑚 + 1)
𝑘

(4)

is the 𝑘th polylogarithm factorial function. An explicit for-
mula for 𝑐(𝑘)𝑛 ([1], Theorem 1) is given by

𝑐
(𝑘)

𝑛 =

𝑛

∑

𝑚=0

[

𝑛

𝑚
]

(−1)
𝑛−𝑚

(𝑚 + 1)
𝑘

(𝑛 ≥ 0, 𝑘 ≥ 1) , (5)

where [ 𝑛𝑚 ] are the (unsigned) Stirling numbers of the first
kind, arising as coefficients of the rising factorial

𝑥 (𝑥 + 1) ⋅ ⋅ ⋅ (𝑥 + 𝑛 − 1) =

𝑛

∑

𝑚=0

[

𝑛

𝑚
]𝑥
𝑚 (6)

(see, e.g., [4]). See ([5], A224094–A224101) for the sequences
arising from poly-Cauchy numbers.

The concept of poly-Cauchy numbers is an analogue of
that of poly-Bernoulli numbers 𝐵(𝑘)𝑛 [6] defined by

Li𝑘 (1 − 𝑒
−𝑥
)

1 − 𝑒
−𝑥

=

∞

∑

𝑛=0

𝐵
(𝑘)

𝑛

𝑥
𝑛

𝑛!

, (7)

where

Li𝑘 (𝑧) =
∞

∑

𝑚=1

𝑧
𝑚

𝑚
𝑘

(8)
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is the 𝑘th polylogarithm function. When 𝑘 = 1, 𝐵𝑛 = 𝐵
(1)
𝑛 is

the classical Bernoulli number with𝐵(1)1 = 1/2, defined by the
generating function

𝑥𝑒
𝑥

𝑒
𝑥
− 1

=

∞

∑

𝑛=0

𝐵𝑛

𝑥
𝑛

𝑛!

. (9)

An explicit formula for 𝐵(𝑘)𝑛 ([6], Theorem 1) is given by

𝐵
(𝑘)

𝑛 = (−1)
𝑛
𝑛

∑

𝑚=0

{

𝑛

𝑚
}

(−1)
𝑚
𝑚!

(𝑚 + 1)
𝑘

(𝑛 ≥ 0, 𝑘 ≥ 1) , (10)

where { 𝑛𝑚 } are the Stirling numbers of the second kind,
determined by

{

𝑛

𝑚
} =

1

𝑚!

𝑚

∑

𝑗=0

(−1)
𝑗
(

𝑚

𝑗
) (𝑚 − 𝑗)

𝑛
(11)

(see, e.g., [4]).
There are some kinds of generalizations of poly-Cauchy

numbers. One is the poly-Cauchy number with a 𝑞 parame-
ter 𝑐(𝑘)𝑛,𝑞 [7] defined by

𝑐
(𝑘)

𝑛,𝑞 = ∫

1

0

. . . ∫

1

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

(𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘) (𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘 − 𝑞) ⋅ ⋅ ⋅

(𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘 − (𝑛 − 1) 𝑞) 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑘.

(12)

Another is the shifted poly-Cauchy number 𝑐(𝑘)𝑛,𝑎 [8] defined by

𝑐
(𝑘)

𝑛,𝑎 = ∫

1

0

. . . ∫

1

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

(𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘)
𝑎
(𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘 − 1) ⋅ ⋅ ⋅

(𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘 − (𝑛 − 1)) 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑘.

(13)

Notice that 𝑐(𝑘)𝑛,𝑎 can be expressed as

𝑐
(𝑘)

𝑛,𝑎 =

𝑛

∑

𝑚=0

[

𝑛

𝑚
]

(−1)
𝑛−𝑚

(𝑚 + 𝑎)
𝑘
. (14)

For example, if 𝑛 = 5 and 𝑎 = 3, then

𝑐
(𝑘)

5 =

24

2
𝑘
−

50

3
𝑘
+

35

4
𝑘
−

10

5
𝑘
+

1

6
𝑘
,

𝑐
(𝑘)

5,3 =
24

4
𝑘
−

50

5
𝑘
+

35

6
𝑘
−

10

7
𝑘
+

1

8
𝑘
.

(15)

Therefore, such numbers are shifted from the original poly-
Cauchy numbers. Remember that the Hurwitz zeta function
𝜁(𝑠, 𝑞) = ∑

∞

𝑛=0 1/(𝑞 + 𝑛)
𝑠 is a generalization of the famous

Riemann zeta function 𝜁(𝑠) = ∑∞𝑛=1 1/𝑛
𝑠 since 𝜁(𝑠) = 𝜁(𝑠, 1).

In this paper, we give a further generalization of poly-
Cauchy numbers, including both kinds of generalizations,
and show several combinatorial and characteristic properties.
We also give the corresponding poly-Bernoulli numbers so
that both numbers have some relations.

2. Definitions and Basic Properties

Let 𝑛 ≥ 0, 𝑘 ≥ 1 be integers, and let 𝑎, 𝑞 and 𝑙1, . . . , 𝑙𝑘 be
nonzero real numbers. For simplicity, we write 𝐿 = (𝑙1, . . . , 𝑙𝑘)
and ℓ = 𝑙1 ⋅ ⋅ ⋅ 𝑙𝑘. Define 𝑐

(𝑘)

𝑛,𝑎,𝑞,𝐿
by

𝑐
(𝑘)

𝑛,𝑎,𝑞,𝐿 = ∫

𝑙
1

0

. . . ∫

𝑙
𝑘

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

(𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘)
𝑎
(𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘 − 𝑞) ⋅ ⋅ ⋅

(𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘 − (𝑛 − 1) 𝑞) 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑘.

(16)

Then, 𝑐(𝑘)
𝑛,𝑎,𝑞,𝐿

can be expressed in terms of the Stirling numbers
of the first kind [ 𝑛𝑚 ].

Theorem 1. Let 𝑎 be a positive real number. Then,

𝑐
(𝑘)

𝑛,𝑎,𝑞,𝐿 =

𝑛

∑

𝑚=0

[

𝑛

𝑚
]

(−𝑞)
𝑛−𝑚
ℓ
𝑚+𝑎

(𝑚 + 𝑎)
𝑘

(𝑛 ≥ 0, 𝑘 ≥ 1) . (17)

Remark 2. If 𝑎 = ℓ = 1, then 𝑐(𝑘)
𝑛,1,𝑞,(1,...,1)

= 𝑐
(𝑘)
𝑛,𝑞 is the

poly-Cauchy number with a 𝑞 parameter ([7], Theorem 1). If
𝑞 = ℓ = 1, then 𝑐(𝑘)

𝑛,𝑎,1,(1,...,1)
= 𝑐
(𝑘)
𝑛,𝑎 is the shifted poly-Cauchy

number ([8], Theorem 2).

Proof. By

𝑥 (𝑥 − 1) ⋅ ⋅ ⋅ (𝑥 − 𝑛 + 1) =

𝑛

∑

𝑚=0

[

𝑛

𝑚
] (−1)

𝑛−𝑚
𝑥
𝑚
, (18)

we have

𝑐
(𝑘)

𝑛,𝑎,𝑞,𝐿 = ∫

𝑙
1

0

. . . ∫

𝑙
𝑘

0

𝑛

∑

𝑚=0

[

𝑛

𝑚
] (−1)

𝑛−𝑚

× (𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘)
𝑚+𝑎−1

𝑞
𝑛−𝑚
𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑘

=

𝑛

∑

𝑚=0

[

𝑛

𝑚
]

(−𝑞)
𝑛−𝑚
ℓ
𝑚+𝑎

(𝑚 + 𝑎)
𝑘
.

(19)

For an integer 𝑘 and a positive real number 𝑎, define the
extended polylogarithm factorial function Lif𝑘(𝑧; 𝑎) by

Lif𝑘 (𝑧; 𝑎) =
∞

∑

𝑚=0

𝑧
𝑚

𝑚!(𝑚 + 𝑎)
𝑘

(20)

[8]. When 𝑎 = 1, Lif𝑘(𝑧; 1) = Lif𝑘(𝑧) is the polylogarithm
factorial function [1]. The generating function of the number
𝑐
(𝑘)

𝑛,𝑎,𝑞,𝐿
(𝑞 ̸= 0) is given by using the extended polylogarithm

factorial function Lif𝑘(𝑎; 𝑧).

Theorem 3. One has

ℓ
𝑎 Lif 𝑘 (

ℓ ln (1 + 𝑞𝑥)
𝑞

; 𝑎) =

∞

∑

𝑛=0

𝑐
(𝑘)

𝑛,𝑎,𝑞,𝐿

𝑥
𝑛

𝑛!

. (21)
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Remark 4. If 𝑎 = ℓ = 1, then Theorem 3 is reduced to
Theorem 2 in [7]. If 𝑞 = ℓ = 1, then Theorem 3 is reduced
toTheorem 3 in [8].

Proof. Since

(ln(1 + 𝑥))𝑚

𝑚!

= (−1)
𝑚
∞

∑

𝑛=𝑚

[

𝑛

𝑚
]

(−𝑥)
𝑛

𝑛!

, (22)

byTheorem 1 we have

∞

∑

𝑛=0

𝑐
(𝑘)

𝑛,𝑎,𝑞,𝐿

𝑥
𝑛

𝑛!

=

∞

∑

𝑛=0

𝑛

∑

𝑚=0

[

𝑛

𝑚
]

(−𝑞)
𝑛−𝑚
ℓ
𝑚+𝑎

(𝑚 + 𝑎)
𝑘

𝑥
𝑛

𝑛!

= ℓ
𝑎
∞

∑

𝑚=0

(−𝑞)
−𝑚
ℓ
𝑚

(𝑚 + 𝑎)
𝑘

∞

∑

𝑛=𝑚

[

𝑛

𝑚
]

(−𝑞𝑥)
𝑛

𝑛!

= ℓ
𝑎
∞

∑

𝑚=0

(−𝑞)
−𝑚
ℓ
𝑚

(𝑚 + 𝑎)
𝑘
(−1)
𝑚 (ln(1 + 𝑞𝑥))

𝑚

𝑚!

= ℓ
𝑎
∞

∑

𝑚=0

1

𝑚!(𝑚 + 𝑎)
𝑘
(

ℓ ln(1 + 𝑞𝑥)
𝑞

)

𝑚

= ℓ
𝑎Lif𝑘 (

ℓ ln (1 + 𝑞𝑥)
𝑞

; 𝑎) .

(23)

The generating function of the number 𝑐(𝑘)
𝑛,𝑎,𝑞,𝐿

can be
written in the form of iterated integrals.

Corollary 5. Let 𝑎 and 𝑞 be real numbers with 𝑎 > 0 and 𝑞 ̸= 0.
For 𝑘 = 1, one has

(

ℓ𝑞

ln (1 + 𝑞𝑥)
)

𝑎

∫

𝑥

0

(

ln(1 + 𝑞𝑥)
𝑞

)

𝑎−1

(1 + 𝑞𝑥)
ℓ/𝑞−1

𝑑𝑥

=

∞

∑

𝑛=0

𝑐
(1)

𝑛,𝑎,𝑞,𝐿

𝑥
𝑛

𝑛!

.

(24)

For 𝑘 > 1, one has

(

ℓ𝑞

ln (1 + 𝑞𝑥)
)

∫

𝑥

0

𝑞

(1 + 𝑞𝑥) ln (1 + 𝑞𝑥)
∫

𝑥

0

⋅ ⋅ ⋅

𝑞

(1 + 𝑞𝑥) ln (1 + 𝑞𝑥)
∫

𝑥

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

(

ln (1 + 𝑞𝑥)
𝑞

)

𝑎−1

(1 + 𝑞𝑥)
ℓ/𝑞−1

𝑑𝑥 ⋅ ⋅ ⋅ 𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

=

∞

∑

𝑛=0

𝑐
(𝑘)

𝑛,𝑎,𝑞,𝐿

𝑥
𝑛

𝑛!

.

(25)

Remark 6. If 𝑎 = ℓ = 1, then Corollary 5 is reduced to
Corollary 1 in [7]. If 𝑞 = ℓ = 1, then Corollary 5 is reduced to
Corollary 1 in [8].

Proof. For 𝑘 = 1,

Lif1 (𝑧; 𝑎) =
∞

∑

𝑚=0

𝑧
𝑚

𝑚! (𝑚 + 𝑎)

=

1

𝑧
𝑎

∞

∑

𝑚=0

𝑧
𝑚+𝑎

𝑚! (𝑚 + 𝑎)

=

1

𝑧
𝑎
∫

𝑧

0

∞

∑

𝑚=0

𝑧
𝑚+𝑎−1

𝑚!

=

1

𝑧
𝑎
∫

𝑧

0

𝑧
𝑎−1
𝑒
𝑧
𝑑𝑧

=

1

𝑧
𝑎
((−1)

𝑎
(𝑎 − 1)!

+𝑒
𝑧
𝑎−1

∑

𝑖=0

(−1)
𝑖 (𝑎 − 1)!

(𝑎 − 𝑖 − 1)!

𝑧
𝑎−𝑖−1

) .

(26)

Note that the last equation holds only if 𝑎 is an integer. For
𝑘 > 1, we have

Lif𝑘 (𝑧; 𝑎) =
1

𝑧
𝑎

∞

∑

𝑚=0

𝑧
𝑚+𝑎

𝑚!(𝑚 + 𝑎)
𝑘

=

1

𝑧
𝑎
∫

𝑧

0

∞

∑

𝑚=0

𝑧
𝑚+𝑎−1

𝑚!(𝑚 + 𝑎)
𝑘−1
𝑑𝑧

=

1

𝑧
𝑎
∫

𝑧

0

𝑧
𝑎−1Lif𝑘−1 (𝑧; 𝑎) 𝑑𝑧.

(27)

Hence,

Lif𝑘 (𝑧; 𝑎) =
1

𝑧
𝑎
∫

𝑧

0

1

𝑧

∫

𝑧

0

⋅ ⋅ ⋅

1

𝑧

∫

𝑧

0

1

𝑧

∫

𝑧

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

𝑧
𝑎−1
𝑒
𝑧
𝑑𝑧 ⋅ ⋅ ⋅ 𝑑𝑧⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

. (28)

Putting 𝑧 = ℓ ln(1 + 𝑞𝑥)/𝑞 and multiplying by ℓ𝑎, we get the
result.

3. Poly-Cauchy Numbers of the Second Kind

In [1], the concept of poly-Cauchy numbers of the second
kind is also introduced. The poly-Cauchy numbers of the
second kind 𝑐(𝑘)𝑛 are defined by

𝑐
(𝑘)

𝑛 = ∫

1

0

⋅ ⋅ ⋅ ∫

1

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

(−𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘) (−𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘 − 1) ⋅ ⋅ ⋅

(−𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘 − 𝑛 + 1) 𝑑𝑥1𝑑𝑥2 ⋅ ⋅ ⋅ 𝑑𝑥𝑘,

(29)

and the generating function is given by

Lif𝑘 (− ln (1 + 𝑥)) =
∞

∑

𝑛=0

𝑐
(𝑘)

𝑛

𝑥
𝑛

𝑛!

. (30)

Then, the poly-Cauchy numbers of the second kind 𝑐(𝑘)𝑛
can also be expressed in terms of the Stirling numbers of
the first kind ([1], Theorem 4). See ([5], A219247, A224102–
A224107, A224109) for the sequences arising from poly-
Cauchy numbers of the second kind.

Proposition 7. One has

𝑐
(𝑘)

𝑛 = (−1)
𝑛
𝑛

∑

𝑚=0

[

𝑛

𝑚
]

1

(𝑚 + 1)
𝑘
. (31)
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Let 𝑎 be a positive real number. Similar to generalized
poly-Cauchy numbers of the first kind 𝑐(𝑘)

𝑛,𝑎,𝑞,𝐿
, define the poly-

Cauchy numbers of the second kind 𝑐(𝑘)
𝑛,𝑎,𝑞,𝐿

(𝑛 ≥ 0, 𝑘 ≥ 1) by

𝑐
(𝑘)

𝑛,𝑎,𝑞,𝐿 = (−1)
𝑎−1
∫

𝑙
1

0

⋅ ⋅ ⋅ ∫

𝑙
𝑘

0

(−𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘)
𝑎
(−𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘 − 𝑞) ⋅ ⋅ ⋅

(−𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘−(𝑛 − 1) 𝑞)𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑘.

(32)

Then, similar to Theorem 1, 𝑐(𝑘)
𝑛,𝑎,𝑞,𝐿

can also be expressed in
terms of the Stirling numbers of the first kind [ 𝑛𝑚 ].

Theorem 8. One has

𝑐
(𝑘)

𝑛,𝑎,𝑞,𝐿 = (−1)
𝑛
𝑛

∑

𝑚=0

[

𝑛

𝑚
]

𝑞
𝑛−𝑚
ℓ
𝑚+𝑎

(𝑚 + 𝑎)
𝑘

(𝑛 ≥ 0, 𝑘 ≥ 1) . (33)

Theorem 9. The generating function of the number 𝑐(𝑘)
𝑛,𝑎,𝑞,𝐿

is
given by

ℓ
𝑎 Lif 𝑘 (−

ℓ ln (1 + 𝑞𝑥)
𝑞

; 𝑎) =

∞

∑

𝑚=0

𝑐
(𝑘)

𝑛,𝑎,𝑞,𝐿

𝑥
𝑛

𝑛!

, (34)

where

Lif 𝑘 (𝑧; 𝑎) =
∞

∑

𝑚=0

𝑧
𝑚

𝑚!(𝑚 + 𝑎)
𝑘
. (35)

Remark 10. If 𝑎 = ℓ = 1, then Theorem 8 is reduced to
Theorem 3 in [7] and Theorem 9 is reduced to Theorem 4 in
[7]. If 𝑞 = ℓ = 1, then Theorem 8 is reduced to Theorem 5 in
[8] andTheorem 9 is reduced toTheorem 6 in [8].

The generating function of the number 𝑐(𝑘)
𝑛,𝑎,𝑞,𝐿

can be
written in the form of iterated integrals.

Corollary 11. Let 𝑎 be a positive real number. For 𝑘 = 1, one
has

(

ℓ𝑞

ln(1 + 𝑞𝑥)
)

𝑎

∫

𝑥

0

(

ln(1 + 𝑞𝑥)
𝑞

)

𝑎−1

(1 + 𝑞𝑥)
−ℓ/𝑞−1

𝑑𝑥

=

∞

∑

𝑛=0

𝑐
(1)

𝑛,𝑎,𝑞,𝐿

𝑥
𝑛

𝑛!

.

(36)

For 𝑘 > 1, one has

(

ℓ𝑞

ln (1 + 𝑞𝑥)
)

∫

𝑥

0

𝑞

(1 + 𝑞𝑥) ln (1 + 𝑞𝑥)
∫

𝑥

0

⋅ ⋅ ⋅

𝑞

(1 + 𝑞𝑥) ln (1 + 𝑞𝑥)
∫

𝑥

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

(

ln (1 + 𝑞𝑥)
𝑞

)

𝑎−1

(1 + 𝑞𝑥)
−ℓ/𝑞−1

𝑑𝑥 ⋅ ⋅ ⋅ 𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

=

∞

∑

𝑛=0

𝑐
(𝑘)

𝑛,𝑎,𝑞,𝐿

𝑥
𝑛

𝑛!

.

(37)

Remark 12. When 𝑎 = 𝑞 = 𝑘 = ℓ = 1 in the first identity, we
have the generating function of the classical Cauchy numbers
of the second kind:

𝑥

(1 + 𝑥) ln (1 + 𝑥)
=

∞

∑

𝑛=0

𝑐𝑛

𝑥
𝑛

𝑛!

. (38)

In addition, there are relations between both kinds of
poly-Cauchy numbers if 𝑞 = 1. For simplicity, wewrite 𝑐(𝑘)

𝑛,𝑎,𝐿
=

𝑐
(𝑘)

𝑛,𝑎,1,𝐿
and 𝑐(𝑘)
𝑛,𝑎,𝐿

= 𝑐
(𝑘)

𝑛,𝑎,1,𝐿
.

Theorem 13. Let 𝑘 be an integer and 𝑎 a positive real number.
For 𝑛 ≥ 1, one has

(−1)
𝑛
𝑐
(𝑘)

𝑛,𝑎,𝐿

𝑛!

=

𝑛

∑

𝑚=1

(

𝑛 − 1

𝑚 − 1
)

𝑐
(𝑘)

𝑚,𝑎,𝐿

𝑚!

,

(−1)
𝑛
𝑐
(𝑘)

𝑛,𝑎,𝐿

𝑛!

=

𝑛

∑

𝑚=1

(

𝑛 − 1

𝑚 − 1
)

𝑐
(𝑘)

𝑚,𝑎,𝐿

𝑚!

.

(39)

Remark 14. If 𝑎 = ℓ = 1, then Theorem 13 is reduced to
Theorem 7 in [1].

Proof. We will prove the second identity. The first one is
proved similarly and omitted. By using the identity (see, e.g.,
[4], Chapter 6)

(−1)
𝑖

𝑛!

[

𝑛

𝑖
] =

𝑛

∑

𝑚=1

(−1)
𝑚

𝑚!

(

𝑛 − 1

𝑚 − 1
)[

𝑚

𝑖
] (40)

andTheorems 1 and 8, we have

RHS =
𝑛

∑

𝑚=1

(

𝑛 − 1

𝑚 − 1
)

1

𝑚!

×

𝑚

∑

𝑖=1

[

𝑚

𝑖
]

(−1)
𝑚−𝑖
ℓ
𝑖+𝑎

(𝑖 + 𝑎)
𝑘

=

𝑛

∑

𝑖=1

(−1)
𝑖
ℓ
𝑖

(𝑖 + 𝑎)
𝑘

𝑛

∑

𝑚=𝑖

(−1)
𝑚

𝑚!

(

𝑛 − 1

𝑚 − 1
)[

𝑚

𝑖
]

=

𝑛

∑

𝑖=1

(−1)
𝑖
ℓ
𝑖+𝑎

(𝑖 + 𝑎)
𝑘

(−1)
𝑖

𝑛!

[

𝑛

𝑖
] = LHS.

(41)

4. Some Expressions of Poly-Cauchy Numbers
with Negative Indices

It is known that poly-Bernoulli numbers satisfy the duality
theorem 𝐵

(−𝑘)
𝑛 = 𝐵

(−𝑛)

𝑘
for 𝑛, 𝑘 ≥ 0 ([6], Theorem 2) because

of the symmetric formula
∞

∑

𝑛=0

∞

∑

𝑘=0

𝐵
(−𝑘)

𝑛

𝑥
𝑛

𝑛!

𝑦
𝑘

𝑘!

=

𝑒
𝑥+𝑦

𝑒
𝑥
+ 𝑒
𝑦
− 𝑒
𝑥+𝑦
. (42)

However, the corresponding duality theorem does not hold
for poly-Cauchy numbers for any real number 𝑎, by the
following results.
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Proposition 15. Suppose that ℓ = 1. Then, for nonnegative
integers 𝑛 and 𝑘 and a real number 𝑎 ̸= 0, one has

∞

∑

𝑛=0

∞

∑

𝑘=0

𝑐
(−𝑘)

𝑛,𝑎,𝑞,𝐿

𝑥
𝑛

𝑛!

𝑦
𝑘

𝑘!

= 𝑒
𝑎𝑦
(1 + 𝑞𝑥)

𝑒
𝑦
/𝑞
,

∞

∑

𝑛=0

∞

∑

𝑘=0

𝑐
(−𝑘)

𝑛,𝑎,𝑞,𝐿

𝑥
𝑛

𝑛!

𝑦
𝑘

𝑘!

=

𝑒
𝑎𝑦

(1 + 𝑞𝑥)
𝑒𝑦/𝑞
.

(43)

Remark 16. If 𝑎 = ℓ = 1, then Proposition 15 is reduced to
Proposition 1 in [7]. If 𝑞 = ℓ = 1, then Proposition 15 is
reduced to Proposition 3 in [8].

Proof. We will prove the first identity. The second identity is
proved similarly. ByTheorem 3, we have

∞

∑

𝑛=0

∞

∑

𝑘=0

𝑐
(−𝑘)

𝑛,𝑎,𝑞,𝐿

𝑥
𝑛

𝑛!

𝑦
𝑘

𝑘!

=

∞

∑

𝑘=0

(

∞

∑

𝑛=0

𝑐
(−𝑘)

𝑛,𝑎,𝑞,𝐿

𝑥
𝑛

𝑛!

)

𝑦
𝑘

𝑘!

=

∞

∑

𝑘=0

ℓ
𝑎
∞

∑

𝑚=0

(𝑚 + 𝑎)
𝑘

𝑚!

(

ℓ ln(1 + 𝑞𝑥)
𝑞

)

𝑚
𝑦
𝑘

𝑘!

=

∞

∑

𝑚=0

1

𝑚!

(

ln(1 + 𝑞𝑥)
𝑞

)

𝑚 ∞

∑

𝑘=0

((𝑚 + 𝑎) 𝑦)
𝑘

𝑘!

=

∞

∑

𝑚=0

1

𝑚!

(

ln(1 + 𝑞𝑥)
𝑞

)

𝑚

𝑒
(𝑚+𝑎)𝑦

= 𝑒
𝑎𝑦
∞

∑

𝑚=0

1

𝑚!

(

𝑒
𝑦

𝑞

ln (1 + 𝑞𝑥))
𝑚

= 𝑒
𝑎𝑦
(1 + 𝑞𝑥)

𝑒
𝑦
/𝑞
.

(44)

By using Proposition 15, we have explicit expressions of
poly-Cauchy numbers with negative indices. For simplicity,
we write 𝑐(−𝑘)𝑛,𝑎,𝑞 = 𝑐

(−𝑘)

𝑛,𝑎,𝑞,𝐿
and 𝑐(−𝑘)𝑛,𝑎,𝑞 = 𝑐

(−𝑘)

𝑛,𝑎,𝑞,𝐿
if ℓ = 1.

Theorem 17. For nonnegative integers 𝑛, 𝑘, and a real number
𝑎 ̸= 0, one has

𝑐
(−𝑘)

𝑛,𝑎,𝑞 =

𝑘

∑

𝑖=0

𝑖

∑

𝑗=0

𝑛

∑

𝜆=0

𝜆

∑

]=0

𝑗! (

𝑘

𝑖
) {

𝑖

𝑗
}(

𝑛

𝜆
) [

𝑛 − 𝜆

𝑗
]

× [

𝜆

]
] 𝑎
𝑘−𝑖
(−𝑞)
𝑛−𝑗−]

,

𝑐
(−𝑘)

𝑛,𝑎,𝑞 =

𝑘

∑

𝑖=0

𝑖

∑

𝑗=0

𝑛

∑

𝜆=0

𝜆

∑

]=0

(−1)
𝑛
𝑗! (

𝑘

𝑖
) {

𝑖

𝑗
}(

𝑛

𝜆
)

× [

𝑛 − 𝜆

𝑗
] [

𝜆

]
] 𝑎
𝑘−𝑖
𝑞
𝑛−𝑗−]

.

(45)

Remark 18. If 𝑎 = 𝑞 = 1, by

𝑘

∑

𝑖=0

(

𝑘

𝑖
){

𝑖

𝑗
} = {

𝑘 + 1

𝑗 + 1
} (46)

[4], the above identities become

𝑐
(−𝑘)

𝑛,1,1 = 𝑐
(−𝑘)

𝑛

=

𝑘

∑

𝑗=0

(−1)
𝑛+𝑗
𝑗!

× ([

𝑛

𝑗
] − 𝑛 [

𝑛 − 1

𝑗
]){

𝑘 + 1

𝑗 + 1
} ,

𝑐
(−𝑘)

𝑛,1,1 = 𝑐
(−𝑘)

𝑛 =

𝑘

∑

𝑗=0

(−1)
𝑛
𝑗! [

𝑛 + 1

𝑗 + 1
]{

𝑘 + 1

𝑗 + 1
} .

(47)

Proof. By Proposition 15 together with

(𝑒
𝑦
− 1)
𝑗

𝑗!

=

∞

∑

𝑘=𝑗

{

𝑘

𝑗
}

𝑦
𝑘

𝑘!

,

(− ln (1 + 𝑥))𝑗

𝑗!

=

∞

∑

𝑛=𝑗

[

𝑛

𝑗
]

(−𝑥)
𝑛

𝑛!

(48)

[4], we have

∞

∑

𝑛=0

∞

∑

𝑘=0

𝑐
(−𝑘)

𝑛,𝑎,𝑞

𝑥
𝑛

𝑛!

𝑦
𝑘

𝑘!

= ((1 + 𝑞𝑥)
1/𝑞
)

𝑒
𝑦
−1

(1 + 𝑞𝑥)
1/𝑞
𝑒
𝑎𝑦

= exp ((𝑒𝑦 − 1) (ln (1 + 𝑞𝑥))1/𝑞)

× (1 + 𝑞𝑥)
1/𝑞
𝑒
𝑎𝑦

=

∞

∑

𝑗=0

𝑗!

𝑞
𝑗

(𝑒
𝑦
− 1)
𝑗

𝑗!

(ln (1 + 𝑞𝑥))𝑗

𝑗!

× (1 + 𝑞𝑥)
1/𝑞
𝑒
𝑎𝑦

=

∞

∑

𝑗=0

(−1)
𝑗 𝑗!

𝑞
𝑗
𝑒
𝑎𝑦
∞

∑

𝑘=𝑗

{

𝑘

𝑗
}

𝑦
𝑘

𝑘!

(1 + 𝑞𝑥)
1/𝑞

×

∞

∑

𝑛=𝑗

[

𝑛

𝑗
]

(−𝑞𝑥)
𝑛

𝑛!

.

(49)
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Since

𝑒
𝑎𝑦
∞

∑

𝑘=𝑗

{

𝑘

𝑗
}

𝑦
𝑘

𝑘!

=

∞

∑

𝑙=0

(𝑎𝑦)
𝑙

𝑙!

∞

∑

𝑘=𝑗

{

𝑘

𝑗
}

𝑦
𝑘

𝑘!

=

∞

∑

𝑘=0

(

𝑘

∑

𝑖=0

𝑎
𝑘−𝑖

(𝑘 − 𝑖)!

{

𝑖

𝑗
}

1

𝑖!

) 𝑦
𝑘

=

∞

∑

𝑘=0

(

𝑘

∑

𝑖=0

(

𝑘

𝑖
){

𝑖

𝑗
} 𝑎
𝑘−𝑖
)

𝑦
𝑘

𝑘!

,

(1 + 𝑞𝑥)
1/𝑞
∞

∑

𝑛=𝑗

[

𝑛

𝑗
]

(−𝑞𝑥)
𝑛

𝑛!

=

∞

∑

𝑙=0

(

1

𝑞

𝑙

) (𝑞𝑥)
𝑙
∞

∑

𝑛=𝑗

[

𝑛

𝑗
]

(−𝑞𝑥)
𝑛

𝑛!

=

∞

∑

𝑙=0

(−1)
𝑙
𝑙

∑

]=0

[

𝑙

]
](−

1

𝑞

)

]
(𝑞𝑥)
𝑙

𝑙!

×

∞

∑

𝑛=𝑗

[

𝑛

𝑗
]

(−𝑞𝑥)
𝑛

𝑛!

=

∞

∑

𝑙=0

𝑙

∑

]=0

[

𝑙

]
] (−𝑞)

𝑙−] 𝑥
𝑙

𝑙!

∞

∑

𝑛=0

[

𝑛

𝑗
]

(−𝑞𝑥)
𝑛

𝑛!

=

∞

∑

𝑛=0

𝑛

∑

𝜆=0

𝜆

∑

]=0

[

𝜆

]
]

(−𝑞)
𝜆−]

𝜆!

[

𝑛 − 𝜆

𝑗
]

(−𝑞)
𝑛−𝜆

(𝑛 − 𝜆)!

𝑥
𝑛

=

∞

∑

𝑛=0

𝑛

∑

𝜆=0

(

𝑛

𝜆
)[

𝑛 − 𝜆

𝑗
]

𝜆

∑

]=0

[

𝜆

]
] (−𝑞)

𝑛−] 𝑥
𝑛

𝑛!

,

(50)

we obtain

∞

∑

𝑛=0

∞

∑

𝑘=0

𝑐
(−𝑘)

𝑛,𝑎,𝑞

𝑥
𝑛

𝑛!

𝑦
𝑘

𝑘!

=

∞

∑

𝑛=0

∞

∑

𝑘=0

𝑘

∑

𝑖=0

𝑖

∑

𝑗=0

(−1)
𝑗
𝑗!

𝑞
𝑗

(

𝑘

𝑖
){

𝑖

𝑗
} 𝑎
𝑘−𝑖

×

𝑛

∑

𝜆=0

(

𝑛

𝜆
)[

𝑛 − 𝜆

𝑗
]

𝜆

∑

]=0

[

𝜆

]
] (−𝑞)

𝑛−] 𝑥
𝑛

𝑛!

𝑦
𝑘

𝑘!

=

∞

∑

𝑛=0

∞

∑

𝑘=0

𝑘

∑

𝑖=0

𝑖

∑

𝑗=0

𝑛

∑

𝜆=0

𝜆

∑

]=0

𝑗! (

𝑘

𝑖
) {

𝑖

𝑗
}

× (

𝑛

𝜆
)[

𝑛 − 𝜆

𝑗
] [

𝜆

]
] 𝑎
𝑘−𝑖

× (−𝑞)
𝑛−𝑗−] 𝑥

𝑛

𝑛!

𝑦
𝑘

𝑘!

.

(51)

Similarly, by

(1 + 𝑞𝑥)
−1/𝑞
∞

∑

𝑛=𝑗

[

𝑛

𝑗
]

(−𝑞𝑥)
𝑛

𝑛!

=

∞

∑

𝑙=0

(−1)
𝑙
𝑙

∑

]=0

[

𝑙

]
](

1

𝑞

)

]
(𝑞𝑥)
𝑙

𝑙!

×

∞

∑

𝑛=𝑗

[

𝑛

𝑗
]

(−𝑞𝑥)
𝑛

𝑛!

=

∞

∑

𝑙=0

𝑙

∑

]=0

[

𝑙

]
] 𝑞
𝑙−]
(−1)
𝑙 𝑥
𝑙

𝑙!

∞

∑

𝑛=0

[

𝑛

𝑗
]

(−𝑞𝑥)
𝑛

𝑛!

=

∞

∑

𝑛=0

𝑛

∑

𝜆=0

𝜆

∑

]=0

[

𝜆

]
]

𝑞
𝜆−]
(−1)
𝜆

𝜆!

× [

𝑛 − 𝜆

𝑗
]

(−𝑞)
𝑛−𝜆

(𝑛 − 𝜆)!

𝑥
𝑛

=

∞

∑

𝑛=0

(−1)
𝑛
𝑛

∑

𝜆=0

(

𝑛

𝜆
)[

𝑛 − 𝜆

𝑗
]

𝜆

∑

]=0

[

𝜆

]
] 𝑞
𝑛−] 𝑥
𝑛

𝑛!

,

(52)

we get

∞

∑

𝑛=0

∞

∑

𝑘=0

𝑐
(−𝑘)

𝑛,𝑎,𝑞

𝑥
𝑛

𝑛!

𝑦
𝑘

𝑘!

= (1 + 𝑞𝑥)
−𝑒
𝑦
/𝑞
𝑒
𝑎𝑦

= exp ((𝑒𝑦 − 1) (ln (1 + 𝑞𝑥))−1/𝑞)

× (1 + 𝑞𝑥)
−1/𝑞
𝑒
𝑎𝑦

=

∞

∑

𝑗=0

𝑗!

𝑞
𝑗

(𝑒
𝑦
− 1)
𝑗

𝑗!

(− ln(1 + 𝑞𝑥))𝑗

𝑗!

× (1 + 𝑞𝑥)
−1/𝑞
𝑒
𝑎𝑦

=

∞

∑

𝑗=0

𝑗!

𝑞
𝑗
𝑒
𝑎𝑦
∞

∑

𝑘=𝑗

{

𝑘

𝑗
}

𝑦
𝑘

𝑘!

(1 + 𝑞𝑥)
−1/𝑞

×

∞

∑

𝑛=𝑗

[

𝑛

𝑗
]

(−𝑞𝑥)
𝑛

𝑛!

=

∞

∑

𝑗=0

𝑗!

𝑞
𝑗

∞

∑

𝑘=0

(

𝑘

∑

𝑖=0

(

𝑘

𝑖
){

𝑖

𝑗
} 𝑎
𝑘−𝑖
)

𝑦
𝑘

𝑘!
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×

∞

∑

𝑛=0

(−1)
𝑛
𝑛

∑

𝜆=0

(

𝑛

𝜆
)[

𝑛 − 𝜆

𝑗
]

𝜆

∑

]=0

[

𝜆

]
] 𝑞
𝑛−] 𝑥
𝑛

𝑛!

=

∞

∑

𝑛=0

∞

∑

𝑘=0

𝑘

∑

𝑖=0

𝑖

∑

𝑗=0

𝑛

∑

𝜆=0

𝜆

∑

]=0

(−1)
𝑛
𝑗!

× (

𝑘

𝑖
) {

𝑖

𝑗
}(

𝑛

𝜆
) [

𝑛 − 𝜆

𝑗
]

× [

𝜆

]
] 𝑎
𝑘−𝑖
𝑞
𝑛−𝑗−] 𝑥

𝑛

𝑛!

𝑦
𝑘

𝑘!

.

(53)

5. Poly-Bernoulli Numbers Corresponding to
Poly-Cauchy Numbers

In this section, we will consider the corresponding general-
ized poly-Bernoulli numbers to the generalized poly-Cauchy
numbers discussed in the previous sections. Let 𝑘 be an
integer and 𝑎 a positive real number. An explicit form of poly-
Bernoulli number 𝐵(𝑘)𝑛 is given by

𝐵
(𝑘)

𝑛 =

𝑛

∑

𝑚=0

{

𝑛

𝑚
}

(−1)
𝑛−𝑚
𝑚!

(𝑚 + 1)
𝑘

(54)

([6], Theorem 1). In ([1], Theorem 8), one expression of 𝐵(𝑘)𝑛
in terms of poly-Cauchy numbers 𝑐(𝑘)𝑛 is given.

Proposition 19. One has

𝐵
(𝑘)

𝑛 =

𝑛

∑

𝑙=1

𝑛

∑

𝑚=1

𝑚!{

𝑛

𝑚
}{

𝑚 − 1

𝑙 − 1
} 𝑐
(𝑘)

𝑙
(𝑛 ≥ 1) . (55)

On the contrary, in ([9], Theorem 2.2), one expression of
𝑐
(𝑘)
𝑛 in terms of 𝐵(𝑘)𝑛 is given.

Proposition 20. One has

𝑐
(𝑘)

𝑛 =

𝑛

∑

𝑙=1

𝑛

∑

𝑚=1

(−1)
𝑛−𝑚

𝑚!

[

𝑛

𝑚
][

𝑚

𝑙
] 𝐵
(𝑘)

𝑙
(𝑛 ≥ 1) . (56)

As a counterpart of a generalized poly-Cauchy number,
we will define a generalized poly-Bernoulli number 𝐵(𝑘)

𝑛,𝑎,𝐿
by

ℓ
𝑎−1Li𝑘 (ℓ (1 − 𝑒

−𝑡
) ; 𝑎 − 1)

1 − 𝑒
−𝑡

=

∞

∑

𝑛=0

𝐵
(𝑘)

𝑛,𝑎,𝐿

𝑡
𝑛

𝑛!

, (57)

where Li𝑘(𝑧; 𝑎) is the generalized polylogarithm function
defined by

Li𝑘 (𝑧; 𝑎) =
∞

∑

𝑚=0

𝑧
𝑚

(𝑚 + 𝑎)
𝑘
, (58)

so that Li𝑘(𝑧; 0) = Li𝑘(𝑧).
Then, 𝐵(𝑘)

𝑛,𝑎,𝐿
can be expressed explicitly in terms of the

Stirling numbers of the second kind. Note that 𝐵(𝑘)
𝑛,1,(1,...,1)

=

𝐵
(𝑘)
𝑛 .

Proposition 21. One has

𝐵
(𝑘)

𝑛,𝑎,𝐿 =

𝑛

∑

𝑚=0

{

𝑛

𝑚
}

(−1)
𝑛−𝑚
𝑚!ℓ
𝑚+𝑎

(𝑚 + 𝑎)
𝑘

(𝑛 ≥ 0) . (59)

Proof. By

(𝑒
𝑡
− 1)

𝑚

𝑚!

=

∞

∑

𝑛=𝑚

{

𝑛

𝑚
}

𝑡
𝑛

𝑛!

, (60)

we have

∞

∑

𝑛=0

𝐵
(𝑘)

𝑛,𝑎,𝐿

𝑡
𝑛

𝑛!

=

ℓ
𝑎

ℓ (1 − 𝑒
−𝑡
)

∞

∑

𝑚=1

(ℓ(1 − 𝑒
−𝑡
))

𝑚

(𝑚 + 𝑎 − 1)
𝑘

= ℓ
𝑎
∞

∑

𝑚=0

(ℓ(1 − 𝑒
−𝑡
))

𝑚

(𝑚 + 𝑎)
𝑘

= ℓ
𝑎
∞

∑

𝑚=0

(−ℓ)
𝑚
𝑚!

(𝑚 + 𝑎)
𝑘

∞

∑

𝑛=𝑚

{

𝑛

𝑚
}

(−𝑡)
𝑛

𝑛!

=

∞

∑

𝑛=0

(

𝑛

∑

𝑚=0

{

𝑛

𝑚
}

(−1)
𝑛−𝑚
𝑚!ℓ
𝑚+𝑎

(𝑚 + 𝑎)
𝑘

)

𝑡
𝑛

𝑛!

.

(61)

Comparing the coefficients on both sides, we get the result.

For simplicity, we write 𝑐(𝑘)
𝑛,𝑎,𝐿

= 𝑐
(𝑘)

𝑛,𝑎,1,𝐿
and 𝑐(𝑘)
𝑛,𝑎,𝐿

= 𝑐
(𝑘)

𝑛,𝑎,1,𝐿
.

If 𝑎 = ℓ = 1, then our results below are reduced to those
previous ones.

Theorem 22. For 𝑛 ≥ 0, one has

𝐵
(𝑘)

𝑛,𝑎,𝐿 =

𝑛

∑

𝑗=1

𝑛

∑

𝑚=1

𝑚!{

𝑛

𝑚
}{

𝑚 − 1

𝑗 − 1
} 𝑐
(𝑘)

𝑗,𝑎,𝐿,

𝑐
(𝑘)

𝑛,𝑎,𝐿 =

𝑛

∑

𝑗=1

𝑛

∑

𝑚=1

(−1)
𝑛−𝑚

𝑚!

[

𝑛

𝑚
][

𝑚

𝑗
]𝐵
(𝑘)

𝑗,𝑎,𝐿.

(62)

Proof. For the first identity,

RHS =
𝑛

∑

𝑗=1

𝑛

∑

𝑚=𝑗

𝑚!{

𝑛

𝑚
}{

𝑚 − 1

𝑗 − 1
}

×

𝑗

∑

𝑖=0

[

𝑗

𝑖
]

(−1)
𝑗−𝑖
ℓ
𝑖+𝑎

(𝑖 + 𝑎)
𝑘

=

𝑛

∑

𝑖=1

(−1)
𝑖
ℓ
𝑖+𝑎

(𝑖 + 𝑎)
𝑘

×

𝑛

∑

𝑗=𝑖

𝑛

∑

𝑚=𝑗

𝑚!{

𝑛

𝑚
}{

𝑚 − 1

𝑗 − 1
} (−1)

𝑗
[

𝑗

𝑖
]

=

𝑛

∑

𝑖=1

(−1)
𝑖
ℓ
𝑖+𝑎

(𝑖 + 𝑎)
𝑘

𝑛

∑

𝑚=𝑖

𝑚!{

𝑛

𝑚
}
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×

𝑚

∑

𝑗=𝑖

(−1)
𝑗
{

𝑚 − 1

𝑗 − 1
} [

𝑗

𝑖
]

=

𝑛

∑

𝑖=1

(−1)
𝑖
ℓ
𝑖+𝑎

(𝑖 + 𝑎)
𝑘

𝑛

∑

𝑚=𝑖

𝑚!{

𝑛

𝑚
} (−1)

𝑚
(

𝑚 − 1

𝑖 − 1
)

=

𝑛

∑

𝑖=1

(−1)
𝑖
ℓ
𝑖+𝑎

(𝑖 + 𝑎)
𝑘
(−1)
𝑛
𝑖! {

𝑛

𝑖
} = LHS.

(63)

For the second identity,

RHS =
𝑛

∑

𝑗=1

𝑛

∑

𝑚=1

(−1)
𝑛−𝑚

𝑚!

[

𝑛

𝑚
][

𝑚

𝑗
]

×

𝑗

∑

𝑖=0

{

𝑗

𝑖
}

(−1)
𝑗−𝑖
𝑖!ℓ
𝑖+𝑎

(𝑖 + 𝑎)
𝑘

=

𝑛

∑

𝑚=1

(−1)
𝑛−𝑚

𝑚!

[

𝑛

𝑚
]

×

𝑛

∑

𝑗=0

[

𝑚

𝑗
]

𝑗

∑

𝑖=0

{

𝑗

𝑖
}

(−1)
𝑗−𝑖
𝑖!ℓ
𝑖+𝑎

(𝑖 + 𝑎)
𝑘

=

𝑛

∑

𝑚=1

(−1)
𝑛−𝑚

𝑚!

[

𝑛

𝑚
]

×

𝑛

∑

𝑖=0

(−1)
𝑖
𝑖!ℓ
𝑖+𝑎

(𝑖 + 𝑎)
𝑘

𝑛

∑

𝑗=𝑖

(−1)
𝑗
[

𝑚

𝑗
]{

𝑗

𝑖
}

=

𝑛

∑

𝑚=0

(−1)
𝑛−𝑚

𝑚!

[

𝑛

𝑚
]

×

(−1)
𝑚
𝑚!ℓ
𝑚+𝑎

(𝑚 + 𝑎)
𝑘
(−1)
𝑚

=

𝑛

∑

𝑚=0

[

𝑛

𝑚
]

(−1)
𝑛−𝑚
ℓ
𝑚+𝑎

(𝑚 + 𝑎)
𝑘

= LHS.

(64)

Note that [𝑚0 ] = 0 (𝑚 ≥ 1) and [𝑚𝑗 ] = 0 (𝑗 > 𝑚), and

𝑚

∑

𝑗=𝑖

(−1)
𝑚−𝑗

[

𝑚

𝑗
]{

𝑗

𝑖
} = {

1 (𝑖 = 𝑚);

0 (𝑖 ̸=𝑚).

(65)

Similarly, concerning

𝑐
(𝑘)

𝑛,𝑎,𝐿 = (−1)
𝑛
𝑛

∑

𝑚=0

[

𝑛

𝑚
]

ℓ
𝑚+𝑎

(𝑚 + 𝑎)
𝑘

(𝑛 ≥ 0) (66)

as a generalization of poly-Cauchy numbers of the second
kind 𝑐(𝑘)𝑛 , we have the following.

Theorem 23. One has

𝐵
(𝑘)

𝑛,𝑎,𝐿 = (−1)
𝑛
𝑛

∑

𝑗=1

𝑛

∑

𝑚=1

𝑚!{

𝑛

𝑚
}{

𝑚

𝑗
} 𝑐
(𝑘)

𝑗,𝑎,𝐿,

𝑐
(𝑘)

𝑛,𝑎,𝐿 = (−1)
𝑛
𝑛

∑

𝑗=1

𝑛

∑

𝑚=1

1

𝑚!

[

𝑛

𝑚
][

𝑚

𝑗
]𝐵
(𝑘)

𝑗,𝑎,𝐿.

(67)

Remark 24. If 𝑎 = ℓ = 1, these results are reduced to the
identities in Theorems 3.2 and 3.1 in [9], respectively.
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