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HIGHER-ORDER CAUCHY NUMBERS AND POLYNOMIALS

DAE SAN KIM AND TAEKYUN KIM

ABSTRACT. Recently, Komatsu introduced the concept of poly-Cauchy num-
bers and polynomials which generalize Cauchy numbers and polynomials. In
this paper, we consider the new concept of higher-order Cauchy numbers
and polynomials which generalize Cauchy numbers and polynomials in dif-
ferent direction and investigate some properties of those new class of numbers
and polynomials. From our investigation, we derive some identities involving
higher-order Cauchy numbers and polynomials, which generalize some rela-
tions between two kinds of Cauchy polynomials and some identities for Cauchy
numbers and Stirling numbers.

1. INTRODUCTION

In the book of Comtet[I], two kinds of Cauchy numbers are introduced: The
first kind is given by

1
Chn :/ (x)pdx, (n € Z>o) (1.1)
0
and the second kind is given by
1
Cn :/ (=z)pdz, (n € Z>o), (1.2)
0

where (z), =z(z —1)...(x —n+1).

In [2,6,7], Komatsu introduced two kinds of poly-Cauchy numbers: The poly-

Cauchy numbers of the first kind (C,(zk) as a generalization of the Cauchy numbers
are given by

c® = / / 2103 -+~ T )nderdes - - - dig, (1.3)

and the poly Cauchy numbers of the second kind CH are given by

/ / —T1Za - T )pdry - - - dxg, (0 € Z>o,k € N). (1.4)
The (signed) Stirling number of the first kind is defined by

(@) =Y _Si(n,D)a!, (n € Zxo). (1.5)

From (L3)), we have
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The Stirling number of the second kind is defined by the generating function to
be

oo !
(e = 1) =S S, n)%, (see[3,4,9]). (1.7)
l=n ’

From (LT and (3], we note that

Z Sy (n,m) +1 =" > m ;2? (see [1,10]), (1.8)

m=0

where [m are the (unsigned) Stirling number of the first kind, arising as coefficients
of the rising factorial

(™) =z(x+1)---(z+n-1) Z { ] 2™, (see [1,8,10]).

m=0

An explicit formula for <C$, ) is given by

c® — (1) zn: [:1] ((_i (n>0, k>1),

— m+ 1)k’
and
. n 1
C® = (—1)n M >0 k>1 4,5,6]).
n ( )%m(m"'l)k’(n_ ’ = )7(866[57])
The poly-Cauchy polynomials of the first kind C”(z) are defined by
(C(k) / / T1Xg - T — 2)mdxy -+ - dag (1.9)

and are expressed explicitly in terms of Stirling numbers of the first kind:

Cc®(z) = Zn: { } ) mz< )ﬁ (see [4,5,7]). (1.10)

m=0

The poly-Cauchy polynomials of the second kind @5{“) (z) are defined by

e (5 / / T+ 2)day - - day, (1.11)

and are expressed explicitly in terms of Stirling numbers of the second kind:
CP(z) = gy (M) 22 2,6,7)). 1.12
0= 3 || () e G 6T

For a € N, as is well known, the Bernoulli polynomials of order a are defined by
the generating function to be

t @ - t t . [e'e] . m
(et_1> et:(et_1> X e (et_1)et:ZB’(l)(x)H' (1.13)

n=0

a—times
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When z = 0, BY*) = B{*(0) are the Bernoulli numbers of order a. (see [3,4,9]).
In this paper, we consider the new concept of higher-order Cauchy numbers and
polynomials which generalize Cauchy numbers and polynomials and investigate
some properties of those new class of numbers and polynomials. From our investi-
gation, we derive some identities involving higher-order Cauchy numbers and poly-
nomials, which generalize some relations between two kinds of Cauchy polynomials
and some identities for Cauchy numbers and Stirling numbers.

Finally, we introduce some identities of higher-order Cauchy polynomials arising
from umbral calculus.

2. HIGHER-ORDER CAUCHY POLYNOMIALS

For k € N, let us consider the Cauchy numbers of the first kind of order k as
follows:

1 1
0 0

where n € Z>g and k € N.
Then, from (21]), we can derive the generating function of i as follows:

tn 1 1. >
k)_':/ / Z(‘T1+ +Ik)t"d:c1...d:vk
n 0 0 ne0 n
1 1
:/ / (1+t)wl+"'wkd$1...dxk
0 0

It is easy to show that

(1+67\ .
<m) =(1+1) (2.3)

Thus, by [2.3), we get

! t
/0 (417 de = o (2.4)

From ([22) and ([24), we have
ZCW / / 1+ t)™ 5 dyy - - day,

<10g(1 + t))
It is known that

(m) (1+1)" ZB(k D ( E’ (see [1]). (2.6)

Therefore, by (23] and ([Z8]), we obtain the following theorem.
Theorem 2.1. Forn >0, we have

07(116) _ B7(ln—k+1) (1)
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From (1)), we have

e ;7:—/012<z>t"dx_/01(1+t)mdx_ m. 2.7)

Thus, by (Z3) and (1), we get

Z;chgmm_;( 3 <ll,--n-,lk>cll"'clk> = (2.8)

it tlg=n
From (Z1]), we note that

1 1
0 0

n 1 1
=Zsl<n,1>/ [ e e
_Z 2, S D(zl lk)/ /Ilfxlf- capday - day

1=0l1+--+lp=l

l 1
PP (l ~,zk)sl(”’”al+1>--~<lk+1>'

1=0 Lyl =l
Therefore, by ([2.8]) and ([2.9]), we obtain the following theorem.

Theorem 2.2. Forn >0, we have

(k) _ n
Cn - Z (llv . 7lk) Cl1 Clk

I =n

" l 1
:Z Z (lla"'7lk)81(n,l)(ll+1)"'(lk+1).

(2.9)

From (Z3]), we can derive the following equations.

o t_ 1\n |
n§70:0n L o (et -t § Saln+ k)t

n=0

—Z o(n +k, k) (2.10)
So(n+k, k) t"
fz¥

B n=0 (":k) n! ,

and

o0

ZC(’“); (el —1)" ZC i Sg(m,n)%
n=0 =
= Z (Z O(k)SQ (m n)) %m'

Therefore, by (210) and (2.11I), we obtam the following theorem.

(2.11)
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Theorem 2.3. For m € Z>o, k € N, we have

k m
Sa(m + k, k) = (mn“: > S O Sy (m, )

n=0
m+k\ —
— (n—k+1)
( o ) nE:O B, (1)Sa(m,n).

Now, we consider the higher-order Cauchy polynomials of the first kind as follows:

1 1
]i}) x):/ -../ ($1+.-.+xk_x)ndx1...dxk_ (212)
0 0
Then, by (]ZM)7 we get
n 1 1
szk) (I) Z Sl 7’L l / / xr1+ 22+ 1) — ;p)ldxl coodxy
=0 0 0

l 1 1
l . )
Sl E <]) l .7/ .../ ($1+"'+Ik)JdI1"'d$k
0 0

Z S (] ) ()smoa sy

(2.13)

From (2Z12)), we can derive the generating function of ) (x) as follows:

o0

4 1 1 o
Tr+-+ T — T,
Z (k) !:/ / Z< ! n k >t dxy...dzy
/ / (1 + )t Foe=2de, . day, (2.14)

(m) L+~

It is known that

t : (n—k+1) "
(1og( )> (141)” ZB (+1) : (2.15)

1+4¢ =

By (214) and @2.I3), we get
O (2) = B "D (1 — ).

Therefore, by (2I3) and ([2I5), we obtain the following theorem.

Theorem 2.4. Forn € Z>q, k € N, we have
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By [@2I4), we see that

o0 t_ 1\n t k
> o e (S
n! t

n=0
R nlk! ¢
=e ;Sg(n—i—k,k)mm
o o)\ [ Saln k) £ (2.16)
(£ (£ 25)
z {zo(gz)smw )t
and
ZC ZCW )ZSg(m,n)%
- (2.17)

m

t
= E {E C® (z ngn)}—|.
m!
Therefore, by (216) and ([2I7), we obtain the following theorem.

Theorem 2.5. For m € Z>o, k € N, we have

i 7(:2 So(n + k, k)(—2)™" zic,(lk)(:v)SQ(m,n).

=0 (") "=

We now define the Cauchy numbers of the second kind of order k as follows:

1 1
Ak>:/0 /0 (—(z1 4 -+ xp))ndzy . .. dug. (2.18)

From (ZI8), we can derive the generating function of C as follows:

o o 1 1 _ . —
ZCS@)_:/ / Z( wl xk)t"d:ﬂl...dwk
n=0 n! 0 0 n=o n
1 1
:/ / (14t)" =" %dyy ... dxy, (2.19)
0 0
k

t
B ((1+t)log(1+t)>
Thus, by Z19), we get

Zc(k)e_]. 6_1
tet

(5 )(

=0
i{i L) (s, (k+m,k>}§!,

n=0 m:O

(2.20)

M

Sa(k + m,k)k!tm
(k 4+ m)!

3
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and

iamwfi@(mig( -

m m)! o m 2\, n!

m=0 mOOZO . n=m (221)
_ A(k) v
- > (;_:O Ck Sg(ﬂ,?ﬂ)) —

Therefore, by ([2:20) and ([Z.21]), we obtain the following theorem.

Theorem 2.6. Forn >0, k € N, we have

3 (,frl)sg(k+m,k = 3" EWSy(m, ).
m=0 m m=0

We also consider the higher-order Cauchy polynomials of the second kind as
follows:

~
Il
o

1 1
:/ / (,T - ($1 +"'+£Ck))nd$1...dxk. (2.22)
0 0
By (222)), we get

R n 1 1

Of(lk)(x)zzsl(n)l)/ / (—(Il+--~+3:k)+3:)ldx1...da:k
0 0
1

[
NE

Sl(n,l). <l 2 / / xy + -+ xg)iday ... day,
Sl(n’l)(i)xl_i(_l)i 2 <Jla Z 7jk> (j1+1)'%'(jk+1)

Jit k=t

Ji,

JIM

~
Il
o

MN

K3

~ 1
=)

T i 1
~-,Jk)(>51<" Nl ey Ve
(2.23)

M= 1D

=0 j1+--jr=1

~
Il
=]

Let us consider the generating function of the higher-order Cauchy polynomials of
the second kind as follow:

g )

/ / (1+t)™ 57262y . day, (2.24)

(m> (1+1)"

It is not difficult to show that
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© m " k .
;C,(lk)(:v)ﬁ ((1 +1) 1og(1—|—t)> (1+1)

oo t"
=Y B @ - k1)
n=0

(2.25)
n!’
Therefore, by ([2:23) and ([2.25), we obtain the following theorem.
Theorem 2.7. Forn >0, k € N, we have

C¥)(z) = B D (2 — k+1)

Therefore, by (2:26) and ([2.27), we obtain the following theorem.

Theorem 2.8. For m € Z>o, k € N, we have

i C¥) ()8 (m,n) = i Sy(n+ k, k) ) (x — k)™
n=0

n=0 (n:k)

Now, we observe that
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(k) _
(_) Cr / / (.%‘1-1— T x)d 2y ... di
1 1 _
/ /( (w1 +- —i—:vk)—i—ac—i—n 1)cl:101...dgc;C
0 0
1 1 _
/ /( (z1 +- +$k)+x><" 1>dx1...d3:k

Msims

S (e [ [ Y
:mzn:o(” ;)1%) Zn:( - >1A<k>()
- " (2.28)

Therefore, by (2.28), we obtain the following theorem.

Theorem 2.9. Forn,k € N, we have

R oY (S =TI}

n!

By the same method of (31), we get

A (k)
(—1)"Cn / / —(@+ +$k)+x)dac1...dxk
1 — —
:/ / <x1+ ThT =T 1>d:51...d£vk
0 0 n
1

(e (e

Therefore, by (2.29), we obtain the following theorem.
Theorem 2.10. For n,k € N, we have

n@%’“z ~ n—1 C'y(,f):zr
(=1) n!()zz<n—m> m'()

m=1

3. SHEFFER SEQUENCES ASSOCIATED WITH HIGHER-ORDER CAUCHY NUMBERS
AND POLYNOMIALS

Let P be the algebra of polynomials in a single variable z over C and let P* be
the vector space of all linear functionals on P. The action of the linear functional
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L on the polynomial p(z) is denoted by < L|p(z) >, and the vector space structure
on P* is defined by

(L + Mlp(z)) = (L|p(z)) + (M|p(x)), and (cL|p(z)) = c(L|p(x)),

where ¢ is any complex constant. Let F denote the algebra of formal power series
in a single variable t:

k=0
The formal power series f(t) defines the linear functional on P by setting
(f()]2™) = a, for all n > 0, (see [5,9]). (3.2)

By BI) and B2]), we easily get

{t*12™) = !, k, for all n k>0, (see [5,9]),
where 6, ; is the Kronecker’s symbol.

Let fr(t) = Ek>O<L|xk>%. By B3), we get (fr(t)|z™) = (L|z™). So, the map
L+ fr(t) is a vector space isomorphism from P* onto F. Henceforth, F is thought
of as both the algebra of formal power series and the space of linear functionals. We
call F the umbral algebra. The umbral calculus is the study of umbral algebra. The
order o(f(t)) of the non-zero power series f(t) is the smallest integer k for which
the coefficient of t* does not vanish. (see [3,5,9]). If o(f(t)) = 1 (respectively,
o(f(t)) = 0), then f(t) is called a delta (repectively, an invertible) series. For
o(f(t)) = 1 and o(g(t)) = 0, there exists a unique sequence Sy, (x) of polynomials
such that (g(¢)f(#)*|Sn(x)) = n!d, x, where n,k > 0. The sequence S, (z) is called
the Sheffer sequence for (g(t), f(t)), which is denoted by Sy, (x) ~ (g(t), f(t)) (see
[3,5,9]). For f(t) € F and p(z) € P, we have

(e Ip(x)) = p(y), (FW)g®)lp(x)) = (g fO)p(x)) = (f(B)lg®)p(x)),  (3.3)

and
S wy L ok o
1) = SOl o ) = S b)) Sy (see 159, (3.4
k=0 k=0
From (34), we note that
({t*p(a)) = p™(0), (1p™ (2)) =p™(0), (3.5)
where p(®)(0) denotes the k-th derivative of p(x) at « = 0. Thus, by B.3), we get
k
thp(z) = p™(z) = ddl;(:), for all k>0, (see[4,5,9]). (3.6)
Let Sy (x) ~ (g(t), f(t)). Then we have
;eyﬂt) = i Sk(y)ﬁ, for all y € C, (3.7)
o7 2 oKW

where f(t) is the compositional inverse of f(t) with f(f(t)) = f(f(t)) =t.
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For Sp(x) ~ (9(t), f(t)), an(z) ~ (h(t),1(?)), let
Sn(x) =3 Cprar(®), (3.8)
k=0
then we have

L @) e (sec
O = Tyt (O "), (see [2,5,9) (39)

From (ZTI4), 225) and [B.7), we note that

CP (z) ~ <<1 _te_t>k et~ 1) , (3.10)
CF) () ~ <(efe_t1>k et — 1) : (3.11)

For S, (x) ~ (g(t), f(t)), as is well known, we have

and

f(#)Sn(z) = nSp_1(x), (see [3,5,9)]). (3.12)
By 310), (3I1) and (B12), we get

nCW. () = (et = 1)CW (z) = CW) (z — 1) — CW (), (3.13)
and
nC® () = (¢! = 1)CP (z) = CW (z + 1) — OV (a). (3.14)

Therefore, by (BI3) and (B.I4), we obtain the following lemma.

Lemma 3.1. Forn € Z>o, k € N, we have

~ ~

G (@) = O (@ = 1) = CP (@), nCY, (@) = O (x +1) - CP (@),

From &I0), we have

b * (k) —t n,.(n) —t
( ) Cy(z) ~ (L,e " = 1), (=1)"z'™ ~ (1,e7" = 1), (3.15)

1—et

where 2 = z(z +1)---(z +n —1).
Thus, by (B3], we get
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_iNk n
e = (A=) s

=0

t
n l
=> > (k%!m)!(z)msz(k +m, k)Si(n, )(=1)FHHmglmm o (3.17)

; (l) k—m_ m
- m)SQ(k+l—m ,k)S1(n, 1) (—1) ™.

By (II), we get

te! \" A(k) t t
< ) Cy(x) ~ (1,e" = 1), (x)n ~ (1,€" = 1). (3.18)

et —1

Thus, from BIT), we have

a9 = (%) = (S51) Ssime

=0

o o0 k' . n

=k Z mSg(k+m,k)t ;Sl(n,l)xl
n l

— fkt;zo k+ So(k +m, k)S1(n,1)(1) ™™

Wy (3.19)
— Z (5;1)) So(k +m,k)Si(n, e Fal=m™

=0 m=0 m

n l 1
=y > ((71;)) o (k + m, k)Si(n, 1) (z — k)=

=0 m=0 m

n l
:Z (o) Sy(k 41 —m, k)Sy(n,1)(x — k)™,

= ("% )

Therefore, by (B.I7) and [B.I9)), we obtain the following theorem.

I
S

Theorem 3.2. Forn € Z>q, k € N, we have

n l 1
P =3 Y stk L m S D1

and

For 69(a) ~ () et 1) B0 ~ ((£2) ). (a e )

let us assume that
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CH(2) =Y Com B (). (3.20)
m=0
Then, by (38), (3.9) and B20), we get

1
T oml

1
T oml

;Q
3
|

((1 +1) 1(t>g(1 + t))k <1Og(1t+ t))a (log(1 +1)™z")

t k+a
(mss) (00" loa(a+ )

= nin (irm_o (I +m,m)( <—t )km (14 )]z
B (I+m)! ’ (1+t)log(1+¢)

—~

|
§|N
30
-
~
L3
£}
|
2
Qa
=
+
£

(3.21)
Therefore, by ([3:20) and [B.21]), we obtain the following theorem.

Theorem 3.3. Forn >0, k € N, we have

OF @) = 3 {im @ S1(n—1,m)C"+ () } s

m=0 =0
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