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HIGHER-ORDER CAUCHY OF THE FIRST KIND AND

POLY-CAUCHY OF THE FIRST KIND MIXED TYPE

POLYNOMIALS

DAE SAN KIM AND TAEKYUN KIM

Abstract. In this paper, we study higher-order Cauchy of the first kind and
poly-Cauchy of the first kind mixed type polynomials with viewpoint of umbral
calculus and give some interesting identities and formulae of those polynomials
which are derived from umbral calculus.

1. Introduction

The polylogarithm factorial function is defined by

Lifk(t) =

∞
∑

n=0

tn

n!(n+ 1)k
, (k ∈ Z) (see [13, 14, 15]). (1.1)

The poly-Cauchy polynomials of the first kind (of index k) are defined by the
generating function to be

Lifk(log(1 + t))

(1 + t)x
=

∞
∑

n=0

C(k)
n (x)

tn

n!
, (see [13, 14, 15]). (1.2)

When x = 0, C
(k)
n = C

(k)
n (0) are called the poly-Cauchy numbers.

In particular, for k = 1, we note that

Lif1(log(1 + t)) =
t

log(1 + t)
=

∞
∑

n=0

Cn

tn

n!
, (see [13, 14]). (1.3)

where Cn = C
(1)
n (0) are called the Cauchy numbers of the first kind. The Cauchy

numbers of the first kind with order r are defined by the generating function to be

(

t

log(1 + t)

)r

=

∞
∑

n=0

C
(r)
n

tn

n!
, (see [13, 14, 15]). (1.4)

Note that C
(1)
n = Cn. Let us consider higher-order Cauchy of the first kind and

poly-Cauchy of the first kind mixed type polynomials as follows:

(

t

log(1 + t)

)r
Lifk(log(1 + t))

(1 + t)x
=

∞
∑

n=0

A(r,k)
n (x)

tn

n!
, (1.5)

where r, k ∈ Z. When x = 0, A
(r,k)
n = A

(r,k)
n (0) are called higher-order Cauchy of

the first kind and poly-Cauchy of the first kind mixed type numbers.
For λ 6= 1 ∈ C, the Frobenius-Euler polynomials of order α are defined by the

generating function to be
1
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(

1− λ

et − λ

)α

ext =

∞
∑

n=0

H(α)
n (x|λ)

tn

n!
, (see [9-12]). (1.6)

As is well known, the Bernoulli polynomials of order α are given by

(

t

et − 1

)α

ext =
∞
∑

n=0

B(α)
n (x)

tn

n!
, (see [1-8]). (1.7)

When x = 0, B
(α)
n = B

(α)
n (0) are called the Bernoulli numbers of order α. The

Stirling number of the first kind is defined by

(x)n = x(x − 1) · · · (x− n+ 1) =
n
∑

l=0

S1(n, l)x
l, (see [16]). (1.8)

For m ∈ Z≥0, the generating function of the Stirling number of the first kind is
given by

(log(1 + t))m = m!
∞
∑

l=m

S1(l,m)
tl

l!
=

∞
∑

l=0

m!S1(l +m,m)

(l +m)!
tl+m. (1.9)

Let C be the complex number field and let F be the set of all formal power series
in the variable t:

F =

{

f(t) =
∞
∑

k=0

ak
tk

k!

∣

∣

∣

∣

∣

ak ∈ C

}

. (1.10)

Let P = C[x] and let P∗ be the vector space of all linear functionals on P.
〈L | p(x)〉 is the action of the linear functional L on the polynomial p(x) with
〈L+M | p(x)〉 = 〈L | p(x)〉 + 〈M | p(x)〉, and 〈cL | p(x)〉 = c 〈L | p(x)〉, where c

is a complex constant in C. For f(t) ∈ F , let us define the linear functional on P

by setting

〈f(t)|xn〉 = ak, (n ≥ 0), (see [1,7,16]). (1.11)

From (1.10) and (1.11), we note that

〈

tk|xn
〉

= n!δn,k, (n, k ≥ 0), (1.12)

where δn,k is the Kronecker symbol. (see [16, 17]).

Let fL(t) =
∑∞

k=0
〈L|xk〉

k! tk. Then by (1.12), we get 〈fL(t)|x
n〉 = 〈L|xn〉. So,

L = fL(t). The map L 7→ fL(t) is a vector space isomorphism from P∗ onto F .
Henceforth, F denotes both the algebra of formal power series in t and the vector
space of all linear functionals on P, and so an element f(t) of F will be thought of
as both a formal power series and a linear functional. We call F the umbral algebra
and the umbral calculus is the study of umbral algebra. (see [16]). The order o(f(t))
of a power series f(t)(6= 0) is the smallest integer k for which the coefficient of tk

does not vanish. If o(f(t)) = 1, then f(t) is called a delta series; if o(f(t)) = 0,
then g(t) is said to be an invertible seires. For f(t), g(t) ∈ F , let us assume that
f(t) is a delta series and g(t) is an invertible series. Then there exists a unique
sequence Sn(x) (deg Sn(x) = n) such that

〈

g(t)f(t)k|Sn(x)
〉

= n!δn,k for n, k ≥ 0.
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The sequence Sn(x) is called the Sheffer sequence for (g(t), f(t)) which is denoted
by Sn(x) ∼ (g(t), f(t)). Let f(t), g(t) ∈ F and p(x) ∈ P. Then we see that

〈f(t)g(t)|p(x)〉 = 〈f(t)|g(t)p(x)〉 = 〈g(t)|f(t)p(x)〉 , (1.13)

and

f(t) =
∞
∑

k=0

〈

f(t)|xk
〉 tk

k!
, p(x) =

∞
∑

k=0

〈

tk|p(x)
〉 xk

k!
, (see[16]). (1.14)

From (1.14), we note that

tkp(x) = p(k)(x) =
dkp(x)

dxk
, and eytp(x) = p(x+ y). (1.15)

For Sn(x) ∼ (g(t), f(t)), the generating function of Sn(x) is given by

1

g(f̄(t))
exf̄(t) =

∞
∑

n=0

Sn(x)
tn

n!
, for all x ∈ C, (1.16)

where f̄(t) is the compositional inverse of f(t) with f̄(f(t)) = t.

From (1.5), we observe that A
(r,k)
n (x) is the Sheffer sequence for the pair

((

tet

et−1

)r
1

Lifk(−t) , e
−t − 1

)

. That is,

A(r,k)
n (x) ∼

((

tet

et − 1

)r
1

Lifk(−t)
, e−t − 1

)

. (1.17)

In [13], Komatsu considered the numbers A
(r,k)
n , which were denoted by T

(k)
r−1(n).

Let Sn(x) ∼ (g(t), f(t)). Then we have

f(t)Sn(x) = nSn−1(x), (n ≥ 0), Sn(x) =

n
∑

j=0

1

j!
〈g(f̄(t))−1f̄(t)j

∣

∣ xn〉xj , (1.18)

Sn(x+ y) =

n
∑

j=0

(

n

j

)

Sj(x)Pn−j(y), where pn(x) = g(t)Sn(x), (1.19)

and

Sn+1(x) =

(

x−
g′(t)

g(t)

)

1

f ′(t)
Sn(x), (see [16]). (1.20)

The transfer formula for pn(x) ∼ (1, f(t)), qn(x) ∼ (1, g(t)) is given by

qn(x) = x

(

f(t)

g(t)

)n

x−1pn(x), (n ≥ 0) (see [16]). (1.21)

For Sn(x) ∼ (g(t), f(t)), rn(x) ∼ (h(t), l(t)), we have

Sn(x) =

n
∑

m=0

Cn,mrm(x), (n ≥ 0), (1.22)

where
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Cn,m =
1

m!

〈

h(f̄(t))

g(f̄(t))
l(f̄(t))m

∣

∣

∣

∣

xn

〉

, (see [16]). (1.23)

In this paper, we study higher-order Cauchy of the first kind and poly-Cauchy
of the first kind mixed type polynomials with viewpoint of umbral calculus. The
purpose of this paper is to give some interesting identities and formulae of those
polynomials which are derived from umbral calculus.

2. Poly-Cauchy polynomials and Higher-order Cauchy polynomials

By (1.17), we see that

(

tet

et − 1

)r
1

Lifk(−t)
A(r,k)

n (x) ∼ (e−t − 1), (2.1)

and

(−1)nx(n) =

n
∑

m=0

(−1)mS1(n,m)xm ∼ (1, e−t − 1), (2.2)

where x(n) = x(x + 1) · · · (x+ n− 1).
Thus, from (2.1) and (2.2), we have

(

tet

et − 1

)r
1

Lifk(−t)
A(r,k)

n (x) = (−1)nx(n) =
n
∑

m=0

(−1)mS1(n,m)xm. (2.3)

By (2.3), we get

A(r,k)
n (x) =

(

et − 1

tet

)r

Lifk(−t)(−1)nx(n)

=

n
∑

m=0

(−1)mS1(n,m)

(

et − 1

tet

)r

Lifk(−t)xm

=

n
∑

m=0

(−1)mS1(n,m)

m
∑

l=0

(−1)l(m)l
l!(l + 1)k

(

e−t − 1

−t

)r

xm−l.

(2.4)

It is well known that

(et − 1)m =

∞
∑

l=0

S2(l +m,m)
m!

(l +m)!
tl+m, (2.5)

where S2(n,m) is the Stirling number of the second kind.
From (2.4) and (2.5), we have
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A(r,k)
n (x) =

n
∑

m=0

m
∑

l=0

m−l
∑

a=0

(

m

l

)(

m−l

a

)

(

a+r
r

)

(l + 1)k
S1(n,m)S2(a+ r, r)(−x)m−l−a

=
n
∑

m=0







m
∑

l=0

m−l
∑

j=0

(

m

l

)(

m−l

j

)

(

m−l−j+r
r

)

(l + 1)k
S1(n,m)S2(m− l − j + r, r)







(−x)j

=
n
∑

j=0







n
∑

m=j

m−j
∑

l=0

(

m

l

)(

m−l

j

)

(

m−l−j+r
r

)

(l + 1)k
S1(n,m)S2(m− l − j + r, r)







(−x)j

(2.6)

where r ∈ Z≥0 = N ∪ {0}.
Therefore, by (2.6), we obtain the following theorem.

Theorem 2.1. For n, r ≥ 0, we have

A(r,k)
n (x) =

∑

0≤j≤n







n
∑

m=j

m−j
∑

l=0

(

m
l

)(

m−l
j

)

(

m−l−j+r

r

)

(l + 1)k
S1(n,m)S2(m− l − j + r, r)







(−x)j .

From (1.17) and (1.18), we have

A(r,k)
n (x)

=

n
∑

j=0

1

j!

〈(

t

log(1 + t)

)r

Lifk(log(1 + t))(− log(1 + t))j
∣

∣

∣

∣

xn

〉

xj

=

n
∑

j=0

n−j
∑

l=0

(−1)j
(

n

l + j

)

S1(l + j, j)

〈

Lifk(log(1 + t))

(

t

log(1 + t)

)r ∣

∣

∣

∣

xn−l−j

〉

xj

=
n
∑

j=0

n−j
∑

l=0

(−1)j
(

n

l + j

)

S1(l + j, j)

n−l−j
∑

a=0

B(a−r+1)
a (1)

(

n− l − j

a

)

×
〈

Lifk(log(1 + t)) | xn−l−j−a
〉

xj

=
n
∑

j=0

{

n−j
∑

l=0

n−l−j
∑

a=0

(−1)j
(

n

l + j

)(

n− l − j

a

)

S1(l + j, j)B(a−r+1)
a (1)C

(k)
n−j−l−a

}

xj .

(2.7)

Therefore, by (2.7), we obtain the following theorem.

Theorem 2.2. For r, k ∈ Z, and n ∈ Z≥0, we have

A(r,k)
n (x)

=
n
∑

j=0

{

n−j
∑

l=0

n−l−j
∑

a=0

(−1)j
(

n

l+ j

)(

n− l − j

a

)

S1(l + j, j)B(a−r+1)
a (1)C

(k)
n−j−l−a

}

xj .

As is knwon, the Narumi polynomials of order r are given by N
(r)
n (x) ∼

((

et−1
t

)r

, (et − 1)
)

. Thus, we note that
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(

t

log(1 + t)

)−r

(1 + t)x =

∞
∑

n=0

N (r)
n (x)

tn

n!
. (2.8)

Indeed, we see that N
(r)
n (x) = B

(n+r+1)
n (x + 1).

From (2.7) and (2.8), we can derive the following equation:

A(r,k)
n (x) =

n
∑

j=0

{

n−j
∑

l=0

n−l−j
∑

a=0

(−1)j
(

n

l + j

)(

n− l − j

a

)

S1(l + j, j)N (−r)
a C

(k)
n−j−l−a

}

xj ,

(2.9)

where N
(r)
a = N

(r)
a (0) are called the Narumi numbers of order r.

The Bernoulli polynomials of the second kind are defined by the generating
function to be

t

log(1 + t)
(1 + t)x =

∞
∑

n=0

bn(x)
tn

n!
, (see [16]). (2.10)

From (2.7) and (2.10), we note that

A(r,k)
n (x) =

n
∑

j=0

{

n−j
∑

l=0

n−l−j
∑

a=0

∑

a1+···+ar=a

(−1)j
(

n

l + j

)(

n− l − j

a

)(

a

a1, · · · , ar

)

×S1(l + j, j) (Πr
i=1bai

)C
(k)
n−l−j−a

}

xj .

(2.11)

From (1.17),(1.19) and (2.3), we note that

A(r,k)
n (x+ y) =

n
∑

j=0

(−1)n−j

(

n

j

)

A
(r,k)
j (x)y(n−j), (2.12)

and, by (1.15) and (1.18), we get

nA
(r,k)
n−1 (x) = (e−t − 1)A(r,k)

n (x) = A(r,k)
n (x− 1)−A(r,k)

n (x). (2.13)

By (1.17) and (1.20), we get

A
(r,k)
n+1 (x) =

(

g′(t)

g(t)
− x

)

etA(r,k)
n (x)

= et
g′(t)

g(t)
A(r,k)

n (x) − xA(r,k)
n (x+ 1)

= r
et − 1− t

t2
tet

et − 1
A(r,k)

n (x) + et
Lif ′

k(−t)

Lifk(−t)
A(r,k)

n (x)− xA(r,k)
n (x+ 1).

(2.14)

From (2.3), we note that

A(r,k)
n (x) =

n
∑

m=0

(−1)mS1(n,m)

(

et − 1

tet

)r

Lifk(−t)xm, (2.15)
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1

Lifk(−t)
A(r,k)

n (x) =
n
∑

m=0

(−1)mS1(n,m)

(

et − 1

tet

)r

xm. (2.16)

By (2.15), we get

r

(

et − 1− t

t2

)(

tet

et − 1

)

A(r,k)
n (x)

= r

n
∑

m=0

(−1)mS1(n,m)
et − 1− t

t2

(

tet

et − 1

)1−r

Lifk(−t)xm

= r

n
∑

m=0

(−1)mS1(n,m)

m
∑

l=0

(−1)l(m)l
l!(l+ 1)k

(

tet

et − 1

)1−r m−l
∑

a=0

taxm−l

(a+ 2)!

= r

n
∑

m=0

(−1)mS1(n,m)

m
∑

l=0

(−1)l(m)l
l!(l+ 1)k

m−l
∑

a=0

(m− l)a
(a+ 2)!

(

−t

e−t − 1

)1−r

xm−l−a

= r

n
∑

m=0

m
∑

l=0

m−l
∑

a=0

(−1)a
(

m

l

)(

m−l

a

)

(a+ 2)(a+ 1)(l + 1)k
S1(n,m)B

(1−r)
m−l−a(−x),

(2.17)

and

et
Lif ′

k(−t)

Lifk(−t)
A(r,k)

n (x) = etLif ′
k(−t)

(

1

Lifk(−t)
A(r,k)

n (x)

)

= etLif ′
k(−t)

n
∑

m=0

(−1)mS1(n,m)

(

et − 1

tet

)r

xm

=

n
∑

m=0

(−1)mS1(n,m)et
(

et − 1

tet

)r m
∑

a=0

(−1)a

a!(a+ 2)k
taxm

=

n
∑

m=0

(−1)mS1(n,m)

m
∑

a=0

(−1)a

a!(a+ 2)k
(m)ae

t

(

−t

e−t − 1

)−r

xm−a

=
n
∑

m=0

m
∑

a=0

(

m

a

)

S1(n,m)

(a+ 2)k
B

(−r)
m−a(−x− 1).

(2.18)

Therefore, by (2.14), (2.17) and (2.18), we obtain the following theorem.

Theorem 2.3. For r, k ∈ Z, and n ≥ 0, we have

A
(r,k)
n+1 (x) = −xA(r,k)

n (x + 1) + r

n
∑

m=0

m
∑

l=0

m−l
∑

a=0

(−1)a
(

m
l

)(

m−l
a

)

(a+ 2)(a+ 1)(l + 1)k

× S1(n,m)B
(1−r)
m−l−a(−x) +

n
∑

m=0

m
∑

a=0

(

m

a

)

S1(n,m)

(a+ 2)k
B

(−r)
m−a(−x− 1).
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By (1.12), we easily see that

A(r,k)
n (y) =

〈

∞
∑

l=0

A
(r,k)
l (y)

tl

l!

∣

∣

∣

∣

∣

xn

〉

=

〈(

t

log(1 + t)

)r

Lifk(log(1 + t))(1 + t)−y

∣

∣

∣

∣

xn

〉

=

〈(

t

log(1 + t)

)r

Lifk(log(1 + t))(1 + t)−y

∣

∣

∣

∣

xxn−1

〉

=

〈

∂t

{(

t

log(1 + t)

)r

Lifk(log(1 + t))(1 + t)−y

}
∣

∣

∣

∣

xn−1

〉

=

〈

∂t

((

t

log(1 + t)

)r)

Lifk(log(1 + t))(1 + t)−y

∣

∣

∣

∣

xn−1

〉

+

〈(

t

log(1 + t)

)r

(∂tLifk(log(1 + t)))(1 + t)−y

∣

∣

∣

∣

xn−1

〉

+

〈(

t

log(1 + t)

)r

Lifk(log(1 + t))(∂t(1 + t)−y)

∣

∣

∣

∣

xn−1

〉

= −yA
(r,k)
n−1 (y + 1) +

〈(

∂t

(

t

log(1 + t)

)r)

Lifk(log(1 + t))(1 + t)−y

∣

∣

∣

∣

xn−1

〉

+

〈(

t

log(1 + t)

)r

(∂tLifk(log(1 + t)))(1 + t)−y

∣

∣

∣

∣

xn−1

〉

.

(2.19)

Now, we observe that

〈(

∂t

(

t

log(1 + t)

)r)

Lifk(log(1 + t))(1 + t)−y

∣

∣

∣

∣

xn−1

〉

= r

n−1
∑

l=0

l
∑

a=0

(−1)n−a (n− 1− l)!(l − a)!

l − a+ 2

(

n− 1

l

)(

l

a

)

A(r+1,k)
a (y)

+ r

n−1
∑

l=0

(−1)n−1−l(n− 1− l)!

(

n− 1

l

)

A
(r,k)
l (y),

(2.20)

and

〈(

t

log(1 + t)

)r

(∂tLifk(log(1 + t))(1 + t)−y|xn−1

〉

=
1

n
(A(r+1,k−1)

n (y + 1)−A(r+1,k)
n (y + 1)).

(2.21)

Therefore, by (2.19),(2.20) and (2.21), we obtain the following theorem.
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Theorem 2.4. For r, k ∈ Z and n ≥ 0, we have

A(r,k)
n (x) = −xA

(r,k)
n−1 (x+ 1) + r

n−1
∑

l=0

l
∑

a=0

(−1)n−a (n− 1− l)!(l − a)!

l − a+ 2

(

n− 1

l

)

×

(

l

a

)

A(r+1,k)
n (x) + r

n−1
∑

l=0

(−1)n−l−1(n− l − 1)!

(

n− 1

l

)

A
(r,k)
l (x)

+
1

n
(A(r+1,k−1)

n (x + 1)−A(r+1,k)
n (x+ 1)).

Here we compute
〈(

t
log(1+t)

)r

Lifk(log(1 + t))(log(1 + t))m|xn
〉

in two different
ways.

On the one hand, we have

〈(

t

log(1 + t)

)r

Lifk(log(1 + t))(log(1 + t))m|xn

〉

=
n−m
∑

l=0

m!

(l +m)!
S1(l +m,m)(n)l+m

〈(

t

log(1 + t)

)r

Lifk(log(1 + t))|xn−l−m

〉

=

n−m
∑

l=0

m!

(

n

l +m

)

S1(l +m,m)A
(r,k)
n−l−m

=
n−m
∑

l=0

m!

(

n

l

)

S1(n− l,m)A
(r,k)
l .

(2.22)

On the other hand, we get

〈(

t

log(1 + t)

)r

Lifk(log(1 + t))(log(1 + t))m|xn

〉

=

〈(

t

log(1 + t)

)r

Lifk(log(1 + t))(log(1 + t))m|xxn−1

〉

=

〈

∂t

{(

t

log(1 + t)

)r

Lifk(log(1 + t))(log(1 + t))m
}

|xn−1

〉

=

〈(

∂t

(

t

log(1 + t)

)r)

Lifk(log(1 + t))(log(1 + t))m|xn−1

〉

+

〈(

t

log(1 + t)

)r

(∂tLifk(log(1 + t))) (log(1 + t))m|xn−1

〉

+

〈(

t

log(1 + t)

)r

Lifk(log(1 + t)) (∂t(log(1 + t))m) |xn−1

〉

.

(2.23)

Now, we observe that
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〈(

∂t

(

t

log(1 + t)

)r)

Lifk(log(1 + t))(log(1 + t))m|xn−1

〉

= r

n−1−m
∑

l=0

m!

(

n− 1

l

)

S1(n− l − 1,m)A
(r,k)
l (1)

+ r

n−1−m
∑

l=0

l
∑

a=0

(−1)l−a+1m!(l − a)!

l − a+ 2

(

n− 1

l

)(

l

a

)

S1(n− 1− l,m)A(r+1,k)
a (1),

(2.24)

〈(

t

log(1 + t)

)r

(∂tLifk(log(1 + t))(log(1 + t))m) |xn−1

〉

=
n−m
∑

l=0

(m− 1)!

(

n− 1

l

)

S1(n− l − 1,m− 1){A
(r,k−1)
l (1)−A

(r,k)
l (1)},

(2.25)

and

〈(

t

log(1 + t)

)r

Lifk(log(1 + t)) (∂t(log(1 + t))m) |xn−1

〉

= m!

n−m
∑

l=0

(

n− 1

l

)

S1(n− l − 1,m− 1)A
(r,k)
l (1),

(2.26)

where n− 1 ≥ m ≥ 1.
From (2.23),(2.24),(2.25) and (2.26), we have

〈(

t

log(1 + t)

)r

Lifk(log(1 + t))(log(1 + t))m|xn

〉

= r

n−1−m
∑

l=0

l
∑

a=0

(−1)l−a+1m!(l − a)!

l− a+ 2

(

n− 1

l

)(

l

a

)

S1(n− 1− l,m)A(r+1,k)
a (1)

+ r

n−1−m
∑

l=0

m!

(

n− 1

l

)

S1(n− l − 1,m)A
(r,k)
l (1) +

n−m
∑

l=0

(m− 1)!

(

n− 1

l

)

× S1(n− l − 1,m− 1)A
(r,k−1)
l (1)−

n−m
∑

l=0

(m− 1)!

(

m− 1

l

)

S1(n− l − 1,m− 1)

×A
(r,k)
l (1) +m!

n−m
∑

l=0

(

n− 1

l

)

S1(n− l − 1,m− 1)A
(r,k)
l (1).

(2.27)

Therefore, by (2.22) and (2.27), we obtain the following theorem.
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Theorem 2.5. For n− 1 ≥ m ≥ 1, we have

n−m
∑

l=0

(

n

l

)

S1(n− l,m)A
(r,k)
l

= r

n−1−m
∑

l=0

l
∑

a=0

(−1)l−a+1 (l − a)!

(l − a+ 2)

(

n− 1

l

)(

l

a

)

S1(n− 1− l,m)A(r+1,k)
a (1)

+ r

n−1−m
∑

l=0

(

n− 1

l

)

S1(n− l− 1,m)A
(r,k)
l (1) +

1

m

n−m
∑

l=0

(

n− 1

l

)

× S1(n− l − 1,m− 1)A
(r,k)
l (1) +

(

1−
1

m

) n−m
∑

l=0

(

n− 1

l

)

S1(n− l − 1,m− 1)

×A
(r,k)
l (1).

Remark 1. It is known that

d

dx
Sn(x) =

n−1
∑

l=0

(

n

l

)

〈

f̄(t)
∣

∣ xn−l
〉

Sl(x), (see[16]), (2.28)

where Sn(x) ∼ (g(t), f(t)).
From (1.17) and (2.28), we have

d

dx
A(r,k)

n (x) =

n−1
∑

l=0

(

n

l

)

〈

− log(1 + t) | xn−l
〉

A
(r,k)
l (x)

= −

n−1
∑

l=0

(

n

l

)

〈

∞
∑

m=0

(−1)m

m+ 1
tm+1

∣

∣

∣

∣

∣

xn−l

〉

A
(r,k)
l (x)

= −

n−1
∑

l=0

(

n

l

) ∞
∑

m=0

(−1)m

m+ 1

〈

tm+1
∣

∣ xn−l
〉

A
(r,k)
l (x)

= (−1)n+1n!

n−1
∑

l=0

(−1)l+1

(n− l)l!
A

(r,k)
l (x).

(2.29)

For A
(r,k)
n (x) ∼

((

tet

et−1

)r
1

Lifk(−t) , e
−t − 1

)

and B
(s)
n (x) ∼

((

et−1
t

)s

, t
)

,

(s ≥ 0), let us assume that

A(r,k)
n (x) =

n
∑

m=0

Cn,mB(s)
m (x). (2.30)

Then, by (1.23), we get
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Cn,m =
1

m!

〈

(

t

(1 + t) log(1 + t)

)r+s

(1 + t)rLifk(log(1 + t))(− log(1 + t))m|xn

〉

=
(−1)m

m!

〈

(

t

log(1 + t)

)r+s

Lifk(log(1 + t))(1 + t)−s|(log(1 + t))mxn

〉

= (−1)m
n−m
∑

l=0

(

n

l +m

)

S1(l +m,m)

×

〈

(

t

log(1 + t)

)r+s

Lifk(log(1 + t))(1 + t)−s|xn−l−m

〉

= (−1)m
n−m
∑

l=0

(

n

l +m

)

S1(l +m,m)A
(r+s,k)
n−l−m(s)

= (−1)m
n−m
∑

l=0

(

n

l

)

S1(n− l,m)A
(r+s,k)
l (s).

(2.31)

Therefore, by (2.30) and (2.31), we obtain the following theorem.

Theorem 2.6. For n, s ≥ 0, we have

A(r,k)
n (x) =

n
∑

m=0

{

(−1)m
n−m
∑

l=0

(

n

l

)

S1(n− l,m)A
(r+s,k)
l (s)

}

B(s)
m (x).

Let us consider the following two Sheffer sequences:

A(r,k)
n (x) ∼

((

tet

et − 1

)r
1

Lifk(−t)
, e−t − 1

)

, (2.32)

and

H(s)
n (x|λ) ∼

((

et − λ

1− λ

)s

, t

)

, (s ≥ 0). (2.33)

Suppose that

A(r,k)
n (x) =

n
∑

m=0

Cn,mH(s)
m (x|λ) (s ≥ 0). (2.34)

By (1.23), we get
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Cn,m

=
(−1)m

m!(1 − λ)s

×

〈(

t

log(1 + t)

)r

Lifk(log(1 + t))(1 + t)−s(1− λ(1 + t))s|(log(1 + t))mxn

〉

=
(−1)m

(1 − λ)s

n−m
∑

l=0

s
∑

a=0

(−λ)a
(

n

l +m

)(

s

a

)

S1(l +m,m)A
(r,k)
n−l−m(s− a)

=
(−1)m

(1 − λ)s

n−m
∑

l=0

s
∑

a=0

(−λ)a
(

n

l

)(

s

a

)

S1(n− l,m)A
(r,k)
l (s− a).

(2.35)

Therefore, by (2.34) and (2.35), we obtain the following theorem.

Theorem 2.7. For n, s ≥ 0, r, k ∈ Z, we have

A(r,k)
n (x) =

1

(1− λ)s

n
∑

m=0

{

(−1)m
n−m
∑

l=0

s
∑

a=0

(−λ)a
(

n

l

)(

s

a

)

S1(n− l,m)A
(r,k)
l (s− a)

}

×H(s)
m (x|λ).

Finally, we consider

A(r,k)
n (x) ∼

((

tet

et − 1

)r
1

Lifk(−t)
, e−t − 1

)

, (2.36)

and

x(n) ∼ (1, e−t − 1). (2.37)

Let us assume that

A(r,k)
n (x) =

n
∑

m=0

Cn,mx(m). (2.38)

Then, by (1.23), we get

Cn,m =
(−1)m

m!

〈(

t

log(1 + t)

)r

Lifk(log(1 + t))|tmxn

〉

= (−1)m
(n)m
m!

〈(

t

log(1 + t)

)r

Lifk(log(1 + t))|xn−m

〉

= (−1)m
(

n

m

)

A
(r,k)
n−m.

(2.39)

Therefore, by (2.38) and (2.39), we obtain the following theorem.

Theorem 2.8. For n ≥ 0, r, k ∈ Z, we have

A(r,k)
n (x) =

n
∑

m=0

(−1)m
(

n

m

)

A
(r,k)
n−mx(m),
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where x(m) = x(x + 1) · · · (x +m− 1).
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