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Abstract Let p be an odd prime and let a,m ∈ Z with a > 0 and p ∤ m. In this paper we determine
∑pa−1

k=0

( 2k
k+d

)

/mk mod p2 for d = 0, 1; for example,

pa−1
∑

k=0

(2k
k

)

mk
≡

(

m2 − 4m

pa

)

+

(

m2 − 4m

pa−1

)

u
p−(m2−4m

p
)
(mod p2),

where (−) is the Jacobi symbol and {un}n>0 is the Lucas sequence given by u0 = 0, u1 = 1 and un+1 =

(m− 2)un − un−1 (n = 1, 2, 3, . . .). As an application, we determine
∑

0<k<pa, k≡r (mod p−1) Ck modulo p2 for

any integer r, where Ck denotes the Catalan number
(2k
k

)

/(k + 1). We also pose some related conjectures.
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1 Introduction

The well-known Catalan numbers are given by

Ck =
1

k + 1

(

2k

k

)

=

(

2k

k

)

−
(

2k

k + 1

)

, k ∈ N = {0, 1, 2, . . .}.

They have lots of combinatorial interpretations, see, e.g., [6, pp. 219–229].

Let p be a prime. In 2006, Pan and Sun [4] obtained some congruences involving Catalan numbers;

for example, (1.16) in [4] yields
p−1
∑

k=1

Ck ≡ 3

2

((

p

3

)

− 1

)

(mod p),

where (·) is the Jacobi symbol. In a recent paper Sun and Tauraso [12] investigated
∑pa

−1
k=0

(

2k
k+d

)

/mk

and
∑p−1

k=1

(

2k
k+d

)

/(kmk−1) modulo p via Lucas sequences, where d is an integer among 0, . . . , pa and m is

an integer not divisible by p. By Sun and Tauraso [13, Corollary 1.1], for any a ∈ Z+ = {1, 2, 3, . . .} we

have
pa

−1
∑

k=0

(

2k

k

)

≡
(

pa

3

)

(mod p2) (1.1)
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and
pa

−1
∑

k=0

(

2k

k + 1

)

≡
(

pa − 1

3

)

− pδp,3 (mod p2), (1.2)

where the Kronecker symbol δm,n takes 1 or 0 according as m = n or not.

Let A ∈ Z and B ∈ Z \ {0}. The Lucas sequences un = un(A,B) (n ∈ N) and vn = vn(A,B) (n ∈ N)

are defined as follows:

u0 = 0, u1 = 1, and un+1 = Aun −Bun−1, n = 1, 2, 3, . . . ,

and

v0 = 2, v1 = A, and vn+1 = Avn −Bvn−1, n = 1, 2, 3, . . . .

The characteristic equation x2 −Ax +B = 0 has two roots

α =
A+

√
∆

2
and β =

A−
√
∆

2
,

where ∆ = A2 − 4B. By induction, one can easily get the following well-known formulae:

(α− β)un = αn − βn and vn = αn + βn.

In the case α = β (i.e., ∆ = 0), clearly un = n(A/2)n−1 for all n ∈ Z+. If p is an odd prime not

dividing B, then it is known that p | up−(∆
p
) (see, e.g., [10]), and we call the integer up−(∆

p
)/p a Lucas

quotient. There are many congruences for some special Lucas quotients such as Fibonacci quotients and

Pell quotients (cf. [7] and [9]).

In this paper we establish the following general theorem which includes some previous congruences as

special cases and relates binomial coefficients to Lucas quotients.

Theorem 1.1. Let p be an odd prime and a ∈ Z+. Let m be any integer not divisible by p and set

∆ = m(m− 4). Then we have

pa
−1

∑

k=0

(

2k
k

)

mk
≡

(

∆

pa

)

+

(

∆

pa−1

)

up−(∆
p
)(m− 2, 1) (mod p2) (1.3)

and

pa
−1

∑

k=0

(

2k
k+1

)

mk
≡ 1−mp−1 +

(

m

2
− 1

)((

∆

pa

)

− 1 +

(

∆

pa−1

)

up−(∆
p
)(m− 2, 1)

)

(mod p2). (1.4)

Consequently,

pa
−1

∑

k=1

(

2k+1
k

)

mk
+mp−1 − 1 ≡ m

2

((

∆

pa

)

− 1 +

(

∆

pa−1

)

up−(∆
p
)(m− 2, 1)

)

(mod p2) (1.5)

and
pa

−1
∑

k=1

Ck

mk
≡ mp−1 − 1− m− 4

2

((

∆

pa

)

− 1 +

(

∆

pa−1

)

up−(∆
p
)(m− 2, 1)

)

(mod p2). (1.6)

Here is a consequence of Theorem 1.1.

Corollary 1.1. Let p be an odd prime and a ∈ Z+. Then

pa
−1

∑

k=0

(

2k
k

)

2k
≡ (−1)

pa−1
2 (mod p2) and

pa
−1

∑

k=1

(

2k
k+1

)

2k
≡ 1− 2p−1 (mod p2).

Also,
pa

−1
∑

k=1

(

2k
k+1

)

4k
≡ pδa,1 − 4p−1 (mod p2) and

pa
−1

∑

k=1

Ck

4k
≡ 2p − 2 (mod p2).
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If p 6= 3, then

pa
−1

∑

k=0

(

2k
k

)

3k
≡

(

pa

3

)

(mod p2) and

pa
−1

∑

k=1

Ck

3k
≡ 3p−1 − 1 +

(p
a

3 )− 1

2
(mod p2).

When p 6= 5, we have

pa
−1

∑

k=0

(−1)k
(

2k

k

)

≡
(

pa

5

)

(1− 2Fp−( p

5 )
) (mod p2),

pa
−1

∑

k=0

(−1)kCk ≡ 5

2

((

pa

5

)

− 1

)

− 5

(

pa

5

)

Fp−( p

5 )
(mod p2),

pa
−1

∑

k=0

(

2k
k

)

5k
≡

(

pa

5

)

(1 + 2Fp−( p

5 )
) (mod p2),

pa
−1

∑

k=1

Ck

5k
≡ 1− (p

a

5 )

2
−
(

pa

5

)

Fp−( p

5 )
(mod p2),

where {Fn}n>0 is the well-known Fibonacci sequence defined by

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1, n = 1, 2, 3, . . . .

Remark 1.1. (i) There is a closed formula for the sum
∑n

k=0

(

2k
k

)

/4k. In fact,
(

2k
k

)

= (−4)k
(

−

1
2

k

)

for

k ∈ N and hence

n
∑

k=0

(

2k
k

)

4k
= (−1)n

n
∑

k=0

( −1

n− k

)(− 1
2

k

)

= (−1)n
(− 3

2

n

)

=
2n+ 1

4n

(

2n

n

)

by the Chu-Vandermonde identity

n
∑

k=0

(

x

k

)(

y

n− k

)

=

(

x+ y

n

)

(see, e.g., [2, p. 169]).

(ii) In [12], the authors conjectured that if p 6= 2, 5 is a prime and a ∈ Z+ then

pa
−1

∑

k=0

(−1)k
(

2k

k

)

≡
(

pa

5

)

(1− 2Fpa
−(pa

5 )) (mod p3).

(Note that Fpa
−( pa

5 ) ≡ Fp−( p

5 )
(mod p2) by Lemma 2.3.) This seems difficult. Those primes p > 5

satisfying p2 | Fp−( p

5 )
are called Wall-Sun-Sun primes (cf. [1, p. 32]). Up to now none of this kind

of primes has been found though it is conjectured that there should be infinitely many Wall-Sun-Sun

primes.

By Corollary 1.1, if p is an odd prime then

p−1
∑

k=0

(

2k
k

)

2k
≡ (−1)

p−1
2 (mod p2).

This seems to be a new characterization of odd primes and we have verified our following conjecture for

n < 104 via Mathematica.

Conjecture 1.1. If an odd integer n > 1 satisfies the congruence

n−1
∑

k=0

(

2k
k

)

2k
≡ (−1)

n−1
2 (mod n2),
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then n must be a prime.

As an application of Theorem 1.1, we will determine the sums

∑

0<k<pa

k≡r (mod p−1)

(

2k

k

)

,
∑

0<k<pa

k≡r (mod p−1)

(

2k

k + 1

)

,
∑

0<k<pa

k≡r (mod p−1)

Ck

modulo p2 for any prime p and integers a > 0 and r. By (1.1) and (1.2), for d = 0, 1 we have

pa
−1

∑

k=0

(

2k

k + d

)

≡
(

pa − d

3

)

− pδd,1δp,3 (mod p2).

Thus the task for p = 2 is easy; for example,

∑

0<k<2a

k≡r (mod 2−1)

Ck =

2a−1
∑

k=1

Ck =

2a−1
∑

k=1

(

2k

k

)

−
2a−1
∑

k=1

(

2k

k + 1

)

≡
(

2a

3

)

− 1−
(

2a − 1

3

)

≡
{

1 (mod 22) if 2 ∤ a,

0 (mod 22) if 2 | a.

So we will only handle the main case p 6= 2.

Theorem 1.2. Let p be an odd prime and a ∈ Z+.

(i) If a is odd and r ∈ {1, . . . , p− 1}, then
∑

0<k<pa

k≡r (mod p−1)

(

2k

k + d

)

≡
(

2r

r + d

)

(mod p2) for d = 0, 1, (1.7)

and also
∑

0<k<pa

k≡r (mod p−1)

Ck ≡ Cr (mod p2). (1.8)

(ii) Suppose that a is even. Then, for r = 1, . . . , p we have

∑

0<k<pa

k≡r (mod p−1)

(

2k

k

)

≡ 4r
(

1 +
p

2
+ r(2p−1 − 1)

)

− pRp(r) (mod p2), (1.9)

where

Rp(r) =















p−1
2 −r
∑

s=0

(

2r+2s
r+s

)

(2s+ 1)
(

2s
s

) if 0 < r 6
p−1
2 ,

0 otherwise .

Also, if r ∈ {1, . . . , p− 1} then

∑

0<k<pa

k≡r (mod p−1)

(

2k

k + 1

)

≡ 4r
(

1 +
p

2
+ (r + 2)(2p−1 − 1)

)

+ p

(

Rp(r) −
Rp(r + 1)

2

)

(mod p2) (1.10)

and
∑

0<k<pa

k≡r (mod p−1)

Ck ≡ 4r(2 − 2p)− p

(

2Rp(r) −
Rp(r + 1)

2

)

(mod p2). (1.11)

In particular,
∑

0<k<pa

k≡r (mod p−1)

Ck ≡ 4r(2 − 2p) (mod p2) for r =
p+ 1

2
, . . . , p− 1. (1.12)
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Remark 1.2. If p is an odd prime and a ∈ Z+ is even, then by (1.11) we have
∑

0<k<pa

k≡r (mod p−1)

Ck ≡ 0 (mod p) for all r ∈ Z.

The author would like to see any combinatorial interpretation for this.

Corollary 1.2. Let p be an odd prime and a ∈ Z+. Then

∑

0<k<pa

k≡0 (mod p−1)

Ck ≡
{

−2p− 1 (mod p2) if 2 ∤ a,

2− 2p (mod p2) if 2 | a;
(1.13)

∑

0<k<pa

k≡1 (mod p−1)

Ck ≡
{

1 (mod p2) if 2 ∤ a,

4(2− 2p) + 2p (mod p2) if 2 | a;
(1.14)

and
∑

0<k<pa

k≡
p−1
2

(mod p−1)

Ck ≡
{

(−1)
p−1
2 2(2p − p− 1) (mod p2) if 2 ∤ a,

2− 2p + (−1)(p+1)/22p (mod p2) if 2 | a.
(1.15)

Now we pose some new conjectures.

Conjecture 1.2. Let p be any prime and let r be an integer. For a ∈ N define

Sr(p
a) =

∑

0<k<pa

k≡r (mod p−1)

Ck.

Then, for any a ∈ N we have

Sr(p
a+2) ≡ Sr(p

a) (mod p(1+δp,2)(a+1)).

Furthermore,
Sr(p

a+2)− Sr(p
a)

p(1+δp,2)(a+1)
+ p(δpa,2 + δpa,3) (mod p2)

does not depend on a ∈ Z+.

Conjecture 1.3. Let p be a prime, and let d ∈ {0, . . . , p} and r ∈ Z. For a ∈ N define

T (d)
r (pa) =

∑

0<k<pa

k≡r (mod p−1)

(

2k

k + d

)

.

Then, for any a ∈ N we have

T (d)
r (pa+2) ≡ T (d)

r (pa) (mod pa);

furthermore

T
(d)
r (pa+2)− T

(d)
r (pa)

pa
(mod p)

does not depend on a ∈ Z+. If a ∈ N and d < p = 2, then

T (d)
r (2a+2) ≡ T (d)

r (2a) (mod 22a+2+δd,0(1−δa,0)).

If a ∈ Z+, d ∈ {0, 1} and p = 3, then

T (d)
r (3a+2) ≡ T (d)

r (3a) (mod 3a+1+δd,1(1−δa,1)).

Given a positive integer h, two kinds of Catalan numbers of order h are defined as follows:

C
(h)
k =

1

hk + 1

(

(h+ 1)k

k

)

=

(

(h+ 1)k

k

)

− h

(

(h+ 1)k

k − 1

)

, k ∈ N
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and

C̄
(h)
k =

h

k + 1

(

(h+ 1)k

k

)

= h

(

(h+ 1)k

k

)

−
(

(h+ 1)k

k + 1

)

, k ∈ N.

In [15] and [11], the authors gave various congruences involving higher-order Catalan numbers. In par-

ticular, Sun [11] proved that for any prime p > 3 and a ∈ Z+ with 6 | a we have the congruence

∑

0<k<pa

k≡r (mod p−1)

(

3k

k + d

)

≡ 2d+3−2r33r−2 (mod p),

for all d ∈ {0,±1} and r ∈ Z; consequently,

∑

0<k<pa

k≡r (mod p−1)

C
(2)
k ≡

∑

0<k<pa

k≡r (mod p−1)

C̄
(2)
k ≡ 0 (mod p),

for any r ∈ Z.

Here is our conjecture involving Catalan numbers of order 2.

Conjecture 1.4. Let p be any prime, and set

C(pa) =
∑

0<k<pa

k≡0 (mod p−1)

C
(2)
k and C̄(pa) =

∑

0<k<pa

k≡0 (mod p−1)

C̄
(2)
k for a ∈ Z+.

Then we have

C(pa) ≡























































0 (mod p) if a ≡ 0 (mod 6),

δp,2 (mod p) if a ≡ 1 (mod 6),

− (p3 ) + 1

2
(mod p) if a ≡ 2 (mod 6),

(p3 )− 1

2
+ δp,2 (mod p) if a ≡ 3 (mod 6),

1− (p3 )

2
(mod p) if a ≡ 4 (mod 6),

δp,2 − 1 (mod p) if a ≡ 5 (mod 6);

and

C̄(pa) ≡



































0 (mod p) if a ≡ 0 (mod 6),

−2 + δp,2 (mod p) if a ≡ ±1 (mod 6),

−1− 2

(

p

3

)

(mod p) if a ≡ ±2 (mod 6),

2

(

p

3

)

− 1 + δp,2 (mod p) if a ≡ 3 (mod 6).

We will prove Theorem 1.1 and Corollary 1.1 in Section 2, and show Theorem 1.2 and Corollary 1.2

in Section 3.

2 Proof of Theorem 1.1

Lemma 2.1. Let p be a prime and let a,m ∈ Z with a > 0 and p ∤ m. Then

pa
−1

∑

k=1

(

2k
k+1

)

mk
+ (mp−1 − 1) ≡ m− 2

2

pa
−1

∑

k=1

(

2k
k

)

mk
+ pδp,2 (mod p2). (2.1)

Proof. Observe that

pa
−1

∑

k=0

(

2k
k

)

+
(

2k
k+1

)

mk
=
1

2

pa
−1

∑

k=0

(

2(k+1)
k+1

)

mk
=

1

2

pa

∑

k=1

(

2k
k

)

mk−1
=

1

2

( pa
−1

∑

k=0

(

2k
k

)

mk−1
−m+

(

2pa

pa

)

mpa
−1

)
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=
m

2

pa
−1

∑

k=0

(

2k
k

)

mk
− m

2
+

(

2pa
−1

pa
−1

)

mpa
−1

.

Clearly we have

(

2pa − 1

pa − 1

)

=

pa
−1

∏

k=1

(1 +
pa

k
) ≡ 1 +

1

2

pa
−1

∑

k=1

(

pa

k
+

pa

pa − k

)

≡ 1 + pδp,2 (mod p2).

(See also [13, Lemma 2.2].) Note that

1

mpa
−1

≡ 1

mp−1
≡ 2−mp−1 (mod p2)

since mp(p−1) ≡ 1 (mod p2) and (mp−1−1)2 ≡ 0 (mod p2) by Euler’s theorem and Fermat’s little theorem.

Therefore

pa
−1

∑

k=1

(

2k
k+1

)

mk
≡
(

m

2
− 1

) pa
−1

∑

k=1

(

2k
k

)

mk
+ 1−mp−1 + pδp,2(2 −mp−1)

≡m− 2

2

pa
−1

∑

k=1

(

2k
k

)

mk
+ 1−mp−1 + pδp,2 (mod p2).

This concludes the proof.

Lemma 2.2. Let p be any prime and a ∈ Z+. Let m be an integer not divisible by p. Then

mp−1

2

pa
−1

∑

k=0

(

2k
k

)

mk
+

upa(m− 2, 1)

2
≡ upa(m,m) (mod p2). (2.2)

Proof. By [12, Theorem 2.1],

pa
−1

∑

k=0

(

2k

k

)

mpa
−1−k =

pa
−1

∑

k=0

(

2pa

k

)

upa
−k(m− 2, 1).

For k ∈ {1, . . . , pa − 1}, clearly
(

2pa − 1

k − 1

)

=
∏

0<j<k

2pa − j

j
≡

∏

0<j<k

pa − j

j
=

(

pa − 1

k − 1

)

(mod p)

and hence
1

2

(

2pa

k

)

=
pa

k

(

2pa − 1

k − 1

)

≡ pa

k

(

pa − 1

k − 1

)

=

(

pa

k

)

(mod p2).

Therefore

mpa
−1

2

pa
−1

∑

k=0

(

2k
k

)

mk
+

upa(m− 2, 1)

2
=
1

2

pa
−1

∑

k=1

(

2pa

k

)

upa
−k(m− 2, 1) + upa(m− 2, 1)

≡
pa

∑

k=1

(

pa

k

)

upa
−k(m− 2, 1) + upa(m− 2, 1)

≡
pa

∑

j=0

(

pa

j

)

uj(m− 2, 1) (mod p2).

If ∆ = (m− 2)2 − 4 = m2 − 4m 6= 0, then

pa

∑

j=0

(

pa

j

)

uj(m− 2, 1) =

pa

∑

j=0

(

pa

j

)

1√
∆

((

m− 2 +
√
∆

2

)j

−
(

m− 2−
√
∆

2

)j)



2480 SUN ZhiWei Sci China Math September 2010 Vol. 53 No. 9

=
1√
∆

((

m+
√
∆

2

)pa

−
(

m−
√
∆

2

)pa
)

= upa(m,m).

In the case ∆ = 0 (i.e., m = 4), we have

pa

∑

j=0

(

pa

j

)

uj(2, 1) =

pa

∑

j=0

(

pa

j

)

j = pa
pa

∑

j=1

(

pa − 1

j − 1

)

= pa2p
a
−1 = upa(4, 4).

In view of the above, it suffices to show that

mpa
−1 −mp−1

2
≡ 0 (mod p2). (2.3)

This follows from Euler’s theorem when p 6= 2. If p = 2, then (2.3) holds since 2 ∤ m and mp = m2 ≡
1 (mod 23). We are done.

Now we need a lemma on Lucas sequences.

Lemma 2.3. Let p be a prime, and let a ∈ Z+ and A,B ∈ Z. Then

vpa(A,B) ≡ vpa−1 (A,B) (mod pa). (2.4)

If p 6= 2, then

upa(A,B) ≡
(

∆

p

)

upa−1(A,B) (mod pa), (2.5)

where ∆ = A2 − 4B. When p ∤ 2B∆, we have

upa
−( ∆

pa
)(A,B) ≡



























B
(( ∆

pa−1 )−( ∆
pa

))/2
(

∆

p

)

upa−1
−( ∆

pa−1 )(A,B) (mod pa),

B((∆
p
)−( ∆

pa
))/2

(

∆

pa−1

)

up−(∆
p
)(A,B) (mod p2),

0 (mod p),

(2.6)

and

vpa
−( ∆

pa
)(A,B) ≡















B
(( ∆

pa−1 )−( ∆
pa

))/2
vpa−1

−( ∆

pa−1 )(A,B) (mod pa),

B((∆
p
)−( ∆

pa
))/2vp−(∆

p
)(A,B) (mod p2),

2B(1−( ∆
pa

))/2 (mod p).

(2.7)

Proof. For convenience we let un = un(A,B) and vn = vn(A,B) for all n ∈ N. We split our proof into

several steps.

(i) By a known result of Jänichen [3] (see also [5] and [14]), if
∏m

j=1(x− αj) ∈ Z[x] then

αpa

1 + · · ·+ αpa

m ≡ αpa−1

1 + · · ·+ αpa−1

m (mod pa).

Thus

vpa = αpa

+ βpa ≡ αpa−1

+ βpa−1

= vpa−1 (mod pa),

where α and β are the two roots of the equation x2 −Ax+B = 0 in the complex field.

(ii) Now we prove that pa | upa under the condition p | ∆.

If ∆ = 0 (i.e., α = β), then A is even and un = n(A/2)n−1 for all n ∈ Z+, in particular upa ≡
0 (mod pa).

Assume ∆ 6= 0. If p 6= 2, then

up ≡ up

(

A,
A2

4

)

= p

(

A

2

)p−1

≡ 0 (mod p).

When p = 2, we have 2 | A since p | ∆, hence u2 = A ≡ 0 (mod 2). So we always have p | up. Observe

that

upa+1 =
αpa+1 − βpa+1

α− β
=

αpa − βpa

α− β

p−1
∑

k=0

(αpa

)k(βpa

)p−1−k = upa

p−1
∑

k=0

(αkβp−1−k)p
a
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and
p−1
∑

k=0

(αkβp−1−k)p
a ≡

( p−1
∑

k=0

αkβp−1−k

)pa

≡
(

αp − βp

α− β

)pa

= upa

p ≡ 0 (mod p).

Thus, if pa | upa then pa+1 | upa+1 . This concludes our induction proof of the desired congruence

upa ≡ 0 (mod pa).

(iii) Suppose p 6= 2. Now we show that upa ≡ ( ∆
pa ) (mod p). By part (ii), this holds when p | ∆. In the

case p ∤ ∆, since

∆upa = (α− β)2upa = (α− β)(αpa − βpa

) ≡ (α− β)p
a+1 = ∆(pa+1)/2 (mod p),

we have

upa ≡ ∆(pa
−1)/2 ≡

(

∆

p

)

∑a−1
i=0 pi

=

(

∆

p

)a

=

(

∆

pa

)

(mod p).

(iv) Assume that p 6= 2. By part (ii), (2.5) holds when p | ∆. Suppose p ∤ ∆. In view of part (iii),

upa +

(

∆

p

)

upa−1 ≡ 2

(

∆

pa

)

6≡ 0 (mod p).

For any n ∈ N, we have

v2n −∆u2
n = (αn + βn)2 − (αn − βn)2 = 4(αβ)n = 4Bn.

Thus

∆(u2
pa − u2

pa−1) = v2pa − 4Bpa − (v2pa−1 − 4Bpa−1

)

and hence

∆

(

upa +

(

∆

p

)

upa−1

)(

upa −
(

∆

p

)

upa−1

)

=(vpa + vpa−1 )(vpa − vpa−1)− 4(Bpa −Bpa−1

)

≡0 (mod pa) (by (2.4) and Euler’s theorem).

So (2.5) follows, for, ∆(upa + (∆p )upa−1) is relatively prime to p.

(v) By induction, for ε ∈ {±1} and n ∈ Z+ we have

Aun + εvn = 2B(1−ε)/2un+ε and Avn + ε∆un = 2B(1−ε)/2vn+ε. (2.8)

Therefore, if p ∤ 2B∆ then

upa
−( ∆

pa
) =

Aupa − ( ∆
pa )vpa

2B(1+( ∆
pa

))/2
≡

A(∆p )upa−1 − ( ∆
pa )vpa−1

2B(1+( ∆
pa

))/2
≡

(

∆

p

)

B
(( ∆

pa−1 −( ∆
pa

))/2
upa−1

−( ∆

pa−1 ) (mod pa)

and

vpa
−( ∆

pa
) =

Avpa − ( ∆
pa )∆upa

2B(1+( ∆
pa

))/2
≡

Avpa−1 − ( ∆
pa−1 )∆upa−1

2B(1+( ∆
pa

))/2
= B

(( ∆

pa−1 −( ∆
pa

))/2
vpa−1

−( ∆

pa−1 ) (mod pa).

Note that up0
−( ∆

p0
) = u0 = 0 and vp0

−( ∆
p0

) = v0 = 2. So both (2.6) and (2.7) hold when p ∤ 2B∆.

So far we have completed the proof of Lemma 2.3. 2

Using Lemma 2.3 we can deduce the following result.

Lemma 2.4. Let p be an odd prime, and let a,m ∈ Z with a > 0 and p ∤ m. Set ∆ = m2 − 4m. Then

2upa(m,m)− upa(m− 2, 1) ≡
(

∆

pa

)

mp−1 + upa
−( ∆

pa
)(m− 2, 1) (mod p2). (2.9)

Proof. By Lemma 2,3,

2upa(m,m)− upa(m− 2, 1) ≡
(

∆

pa−1

)

(2up(m,m)− up(m− 2, 1)) (mod p2)
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and

upa
−( ∆

pa
)(m− 2, 1) ≡

(

∆

pa−1

)

up−(∆
p
)(m− 2, 1) (mod p2).

So, it suffices to prove (2.9) in the case a = 1.

Let α and β be the two roots of the equation x2 −mx+m = 0. Clearly (α− 1)+ (β− 1) = m− 2 and

(α− 1)(β − 1) = 1. Recall that ∆ = m2 − 4m = (m− 2)2 − 4. If ∆ 6= 0, then α 6= β and hence

un(m− 2, 1) =
(α − 1)n − (β − 1)n

(α− 1)− (β − 1)
=

(α
2

m )n − (β
2

m )n

α− β
=

αn − βn

α− β
· α

n + βn

mn
=

un(m,m)vn(m,m)

mn

for all n ∈ N. In the case ∆ = 0 (i.e., m = 4), as

un(2, 1) = n, un(4, 4) = n2n−1 and vn(4, 4) = 2n+1,

we also have

un(m− 2, 1) = n =
n2n−12n+1

4n
=

un(m,m)vn(m,m)

mn
.

So, for any n ∈ N we always have

un(m− 2, 1) =
un(m,m)vn(m,m)

mn
. (2.10)

Note that vp(m,m) ≡ vp0(m,m) = m (mod p) by (2.4). In view of (2.10) and Lemma 2.3,

2up(m,m)− up(m− 2, 1) =
up(m,m)

mp
(mp − vp(m,m)) + up(m,m)

≡
(∆p )

m
(mp − vp(m,m)) + up(m,m)

≡
(

∆

p

)

mp−1 + up(m,m)−
(

∆

p

)

vp(m,m)

m
(mod p2).

Thus, by the above, it suffices to prove the congruence

up−(∆
p
)(m,m)

vp−(∆
p
)(m,m)

mp−(∆
p
)

≡ up(m,m)−
(

∆

p

)

vp(m,m)

m
(mod p2). (2.11)

Clearly, up−(∆
p
)(m,m) ≡ 0 (mod p) by Lemma 2.3. If p | ∆ then

vp−(∆
p
)(m,m) = vp(m,m) ≡ m ≡ mp = mp−(∆

p
) (mod p)

and hence (2.11) holds.

Now assume that p ∤ ∆. Obviously,

vp−(∆
p
)(m,m)

mp−(∆
p
)

≡ 2m(1−(∆
p
))/2

m1−(∆
p
)

= 2m((∆
p
)−1)/2 (mod p)

by (2.7), and

up−(∆
p
)(m,m) =

mup(m,m)− (∆p )vp(m,m)

2m(1+(∆
p
))/2

by (2.8). Therefore the left-hand side of (2.11) is congruent to

mup(m,m)− (∆p )vp(m,m)

m
= up(m,m)−

(

∆

p

)

vp(m,m)

m

modulo p2. So (2.11) is valid and we are done. 2
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Proof of Theorem 1.1. Clearly (1.3) plus or minus (1.4) yields (1.5) or (1.6). Also, (1.4) follows from

(1.3) by Lemma 2.1. So, it suffices to prove (1.3).

Combining Lemmas 2.2–2.4, we get

mp−1

pa
−1

∑

k=0

(

2k
k

)

mk
≡ 2upa(m,m)− upa(m− 2, 1)

≡
(

∆

pa

)

mp−1 + upa
−( ∆

pa
)(m− 2, 1)

≡
(

∆

pa−1

)

mp−1

((

∆

p

)

+ up−(∆
p
)(m− 2, 1)

)

(mod p2).

Therefore (1.3) holds. This concludes the proof. 2

Proof of Corollary 1.1. By induction, u2n(0, 1) = 0 and un(2, 1) = n for all n ∈ N. Note also that

(−1)n−1un(1, 1) = un(−1, 1) =

(

n

3

)

and (−1)n−1un(−3, 1) = un(3, 1) = F2n = FnLn,

where Ln = vn(1,−1). By [7, Corollary 1] (or the proof of Corollary 1.3 of [12]), if p 6= 2, 5 then

Lp−( p

5 )
≡ 2(p5 ) (mod p2).

In view of the above, we can easily deduce the congruences in Corollary 1.1 by applying Theorem 1.1.

3 Proof of Theorem 1.2

Lemma 3.1. Let p be an odd prime and let k ∈ Z. Then

p−1
∑

m=1

mpk ≡
{

p− 1 (mod p2) if p− 1 | k,
0 (mod p2) otherwise.

Proof. For b, c ∈ Z clearly (b + cp)p ≡ bp (mod p2). If p − 1 | k, then mpk ≡ 1 (mod p2) by Euler’s

theorem, and hence
∑p−1

m=1 m
pk ≡ p− 1 (mod p2).

Now suppose that p− 1 ∤ k and let g be a primitive root modulo p. Then

gpk
p−1
∑

m=1

mpk =

p−1
∑

m=1

(gm)pk ≡
p−1
∑

r=1

rpk (mod p2)

and hence

(gpk − 1)

p−1
∑

m=1

mpk ≡ 0 (mod p2).

Since gpk − 1 is not divisible by p, we must have

p−1
∑

m=1

mpk ≡ 0 (mod p2).

This concludes the proof. 2

Lemma 3.2. Let p be an odd prime and let a ∈ Z+. Then, for any r ∈ Z, we have

∑

0<k<pa

k≡r (mod p−1)

(

2k

k + 1

)

≡ 1

2

∑

0<k<pa

k≡r+1 (mod p−1)

(

2k

k

)

−
∑

0<k<pa

k≡r (mod p−1)

(

2k

k

)

(mod p2)

and
∑

0<k<pa

k≡r (mod p−1)

Ck ≡ 2
∑

0<k<pa

k≡r (mod p−1)

(

2k

k

)

− 1

2

∑

0<k<pa

k≡r+1 (mod p−1)

(

2k

k

)

(mod p2).
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Proof. For k ∈ N we have
(

2k

k + 1

)

+

(

2k

k

)

=

(

2k + 1

k + 1

)

=
1

2

(

2(k + 1)

k + 1

)

.

Thus

∑

06k<pa

k≡r (mod p−1)

(

2k

k + 1

)

+
∑

06k<pa

k≡r (mod p−1)

(

2k

k

)

=
1

2

∑

06k<pa

k≡r (mod p−1)

(

2(k + 1)

k + 1

)

=
1

2

∑

16k6pa

k≡r+1 (mod p−1)

(

2k

k

)

=
1

2

∑

0<k<pa

k≡r+1 (mod p−1)

(

2k

k

)

+R (mod p2),

where

R =







1

2

(

2pa

pa

)

=

(

2pa − 1

pa − 1

)

≡ 1 (mod p2) if p− 1 | r,

0 otherwise.

Therefore the first congruence in Lemma 3.2 holds. This implies the second congruence in Lemma 3.2.

We are done. 2

Lemma 3.3. Let m,n ∈ N. Then

n
∑

k=0

(

m

k

)

(−4)k
(

2(n− k)

n− k

)

= 4n
n
∏

k=1

(

1− 2m+ 1

2k

)

.

Proof. For any k ∈ N, clearly
(

2k

k

)

= (−4)k
(− 1

2

k

)

.

So we have

n
∑

k=0

(

m

k

)

(−4)k
(

2(n− k)

n− k

)

= (−4)n
n
∑

k=0

(

m

k

)( − 1
2

n− k

)

= (−4)n
(

m− 1
2

n

)

= (−2)n
n
∏

k=1

2m− 2k + 1

k
.

Therefore the desired congruence holds. 2

Lemma 3.4. Let p be an odd prime and let r ∈ {1, . . . , p−1
2 }. Then

p−1
2

∑

j=r

( p−1
2

j

)

(−4)j
(

2(p− 1 + r − j)

p− 1 + r − j

)

≡ −p

p−1
2 −r
∑

s=0

(

2r+2s
r+s

)

(2s+ 1)
(

2s
s

) (mod p2).

Proof. If r 6 j 6 p−1
2 , then 0 6 j − r < p−1

2 . When s ∈ N and s < p−1
2 , clearly

(

2(p− 1− s)

p− 1− s

)

=
∏

0<t<p−s

p− 1− s+ t

t
=

p

s+ 1

∏

0<t6s

p+ t− s− 1

t

∏

s+1<t<p−s

p+ t− s− 1

t

≡ p

s+ 1
(−1)s

∏

0<t6s

s− t+ 1

t
× (p− 2(s+ 1))!

(p− 1− s)!/(s+ 1)!

≡ p

s+ 1
(−1)s

(s+ 1)!
∏2s+1

k=s+1(p− k)
≡ p(−1)ss!

(−1)s+1
∏2s+1

k=s+1 k
= − p

(2s+ 1)
(

2s
s

) (mod p2).

Therefore

∑

r6j6 p−1
2

(p−1
2

j

)

(−4)j
(

2(p− 1 + r − j)

p− 1 + r − j

)
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≡ −p
∑

r6j6p−1
2

(

−

1
2
j

)

(−4)j

(2(j − r) + 1)
(

2(j−r)
j−r

)
= −p

∑

r6j6p−1
2

(

2j
j

)

(2(r − j) + 1)
(

2(j−r)
j−r

)
(mod p2)

and hence the desired result follows. 2

Lemma 3.5. Let p be an odd prime and let a ∈ Z+ be even. Let m be an integer not divisible by p

and set ∆ = m(m− 4). Then

pa
−1

∑

k=0

(

2k
k

)

mk
≡ ∆

p−1
2

p−1
∑

k=0

(

2k
k

)

mk
+

δm −∆p−1

2
(mod p2),

where δm takes 0 or 1 according as m ≡ 4 (mod p) or not.

Proof. By Theorem 1.1,
∑p−1

k=0

(

2k
k

)

/mk ≡ (∆p ) (mod p) and

pa
−1

∑

k=0

(

2k
k

)

mk
≡

(

∆

pa−1

) p−1
∑

k=0

(

2k
k

)

mk
=

(

∆

p

)( p−1
∑

k=0

(

2k
k

)

mk
−
(

∆

p

))

+

(

∆

p

)2

≡ ∆
p−1
2

p−1
∑

k=0

(

2k
k

)

mk
−
(

∆

p

)(

∆
p−1
2 −

(

∆

p

))

(mod p2).

Since

∆p−1 − δm =

(

∆
p−1
2 +

(

∆

p

))(

∆
p−1
2 −

(

∆

p

))

≡ 2

(

∆

p

)(

∆
p−1
2 −

(

∆

p

))

(mod p2),

the desired congruence follows from the above. 2

Proof of Theorem 1.2. Let d ∈ {0, 1}. In view of Lemma 3.1, we have

(p− 1)
∑

0<k<pa

k≡r (mod p−1)

(

2k

k + d

)

≡
pa

−1
∑

k=1

(

2k

k + d

) p−1
∑

m=1

mp(r−k) =

p−1
∑

m=1

mpr

pa
−1

∑

k=1

(

2k
k+d

)

mpk
(mod p2)

and hence
∑

0<k<pa

k≡r (mod p−1)

(

2k

k + d

)

mod p2

only depends on the parity of a by Theorem 1.1.

(i) If a is odd and r ∈ {1, . . . , p− 1}, then by the above we have

∑

0<k<pa

k≡r (mod p−1)

(

2k

k + d

)

≡
∑

0<k<p

k≡r (mod p−1)

(

2k

k + d

)

=

(

2r

r + d

)

(mod p2)

for d = 0, 1, therefore both (1.7) and (1.8) are valid.

(ii) Now we handle the case 2 | a. By Lemma 3.2 it suffices to prove (1.9) for any given r ∈ {1, . . . , p}.
In light of Lemmas 3.1 and 3.5,

(p− 1)
∑

06k<pa

k≡r (mod p−1)

(

2k

k

)

≡
pa

−1
∑

k=0

(

2k

k

) p−1
∑

m=1

mp(r−k) =

p−1
∑

m=1

mpr

pa
−1

∑

k=0

(

2k
k

)

mpk

≡
p−1
∑

m=1

mpr(mp(mp − 4))
p−1
2

p−1
∑

k=0

(

2k
k

)

mpk

+

p−1
∑

m=1

mpr δm − (mp(mp − 4))p−1

2
(mod p2),



2486 SUN ZhiWei Sci China Math September 2010 Vol. 53 No. 9

where δm is as in Lemma 3.5. (Note that δmp = δm since mp ≡ m (mod p).)

Observe that

p−1
∑

m=1

mpr(mp(mp − 4))
p−1
2

p−1
∑

k=0

(

2k
k

)

mpk

=

p−1
∑

k=0

(

2k

k

) p−1
∑

m=1

mp( p−1
2 +r−k)

p−1
2

∑

j=0

(p−1
2

j

)

(−4)jmp( p−1
2 −j)

≡
p−1
2

∑

j=0

(p−1
2

j

)

(−4)j
p−1
∑

k=0

(

2k

k

) p−1
∑

m=1

mp(r−j−k) (mod p2).

So, with the help of Lemma 3.1 we have

1

p− 1

p−1
∑

m=1

mpr(mp(mp − 4))
p−1
2

p−1
∑

k=0

(

2k
k

)

mpk

≡
p−1
2

∑

j=0

(p−1
2

j

)

(−4)j
p−1
∑

k=0
p−1|k+j−r

(

2k

k

)

≡
r

∑

j=0

(p−1
2

j

)

(−4)j
(

2(r − j)

r − j

)

+ δr,p−1

(p−1
2

0

)

(−4)0 + δr,p

(p−1
2

1

)

(−4)

+ δr,p

(p−1
2

0

)((

2× 1

1

)

−
(

2p

p

))

+
∑

r6j6 p−1
2

(p−1
2

j

)

(−4)j
(

2(p− 1 + r − j)

p− 1 + r − j

)

(mod p2).

Note that
(

2

1

)

−
(

2p

p

)

≡ 2− 2

(

2p− 1

p− 1

)

≡ 0 (mod p2).

By Lemma 3.3,

r
∑

j=0

(p−1
2

j

)

(−4)r
(

2(r − j)

r − j

)

= 4r
∏

0<k6r

(

1− p

2k

)

≡















4r(1− pHr/2) (mod p2) if 1 6 r < p− 1,

4r (mod p2) if r = p− 1,

4r(1− pHp−1/2)/2 ≡ 4r/2 (mod p2) if r = p,

where Hr denotes the harmonic sum
∑

0<k6r
1
k and we note that

Hp−1 =
1

2

p−1
∑

k=1

(

1

k
+

1

p− k

)

=
1

2

p−1
∑

k=1

p

k(p− k)
≡ 0 (mod p).

Combining the above and Lemma 3.4, we get

1

p− 1

p−1
∑

m=1

mpr(mp(mp − 4))
p−1
2

p−1
∑

k=0

(

2k
k+d

)

mpk

≡ −pRp(r) +















4r(1− pHr/2) (mod p2) if 1 6 r < p− 1,

4r + 1 (mod p2) if r = p− 1,

4r/2− 2p+ 2 (mod p2) if r = p.
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Note also that

1

p− 1

p−1
∑

m=1

mpr(δm − (mp(mp − 4))p−1)

≡ 1

p− 1

p−1
∑

m=1

mpr − 4pr

p− 1
−

p−1
∑

k=0

(

p− 1

k

)

(−4)k
1

p− 1

p−1
∑

m=1

mp(p−1−k+r)

≡ δr,p−1 + (p+ 1)4pr −
(

p− 1

r

)

(−4)r − δr,p

(

p− 1

1

)

(−4)− δr,p−1

(

p− 1

0

)

≡ 4pr + p4r + 4(p− 1)δr,p −















4r(1− pHr) (mod p2) if 1 6 r < p− 1,

4r (mod p2) if r = p− 1,

0 (mod p2) if r = p.

So, from the above, we finally obtain

∑

06k<pa

k≡r (mod p−1)

(

2k

k

)

≡ (p+ 1)4r + 4pr

2
− pRp(r) + δr,p−1 (mod p2).

Hence
∑

0<k<pa

k≡r (mod p−1)

(

2k

k

)

≡ (p+ 1)4r + 4pr

2
− pRp(r) (mod p2),

which is equivalent to (1.9) since

4pr − 4r = 4r((1 + (2p−1 − 1))2r − 1) ≡ 4r × 2r(2p−1 − 1) (mod p2).

So far we have completed the proof of Theorem 1.2. 2

Proof of Corollary 1.2. Recall that Hp−1 ≡ 0 (mod p). As observed by Eisenstein,

2p − 2

p
=

p−1
∑

k=1

1

p

(

p

k

)

=

p−1
∑

k=1

1

k

(

p− 1

k − 1

)

≡
p−1
∑

k=1

(−1)k−1

k
≡

p−1
∑

k=1

(−1)k−1 − 1

k
=

p−1
2

∑

j=1

−2

2j
= −H p−1

2
(mod p).

It is easy to see that

Cp−1 =
1

p− 1

(

2p− 2

p− 2

)

=
1

2p− 1

p−1
∏

k=1

(

1 +
p

k

)

≡ −(1 + 2p)(1 + pHp−1) ≡ −1− 2p (mod p2)

and

C p−1
2

=
2

p+ 1

(

p− 1
p−1
2

)

=
2

p+ 1
(−1)

p−1
2

p−1
2
∏

k=1

(

1− p

k

)

≡2(1− p)(−1)
p−1
2 (1− pH p−1

2
) ≡ 2(−1)

p−1
2 (1− p− pH p−1

2
)

≡2(−1)
p−1
2 (2p − p− 1) (mod p2).

So, by Theorem 1.2(i), (1.13)–(1.15) hold in the case 2 ∤ a.

From now on we assume that a is even.

Applying (1.12) with r = p− 1 we immediately get (1.13). As

Rp

(

p− 1

2

)

=

(

p− 1
p−1
2

)

≡ (−1)
p−1
2 (mod p)

and Rp(
p+1
2 ) = 0, by (1.11) we have

∑

0<k<pa

k≡
p−1
2

(mod p−1)

Ck ≡ 4
p−1
2 (2− 2p)− p2(−1)

p−1
2 ≡ 2− 2p + (−1)

p+1
2 2p (mod p2).
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This proves (1.15).

To obtain (1.14) we need to compute Rp(1) and Rp(2) modulo p. Observe that

Rp(1) =

p−1
2 −1
∑

s=0

2
(

2s+1
s

)

(2s+ 1)
(

2s
s

) =

p−3
2

∑

s=0

2

s+ 1
= 2H p−1

2
≡ 2× 2− 2p

p
(mod p).

When p > 5, we have

Rp(2) =

p−1
2 −2
∑

s=0

2
(

2s+3
s+1

)

(2s+ 1)
(

2s
s

) =

p−5
2

∑

s=0

4(2s+ 3)

(s+ 1)(s+ 2)

=4

p−5
2

∑

s=0

(

1

s+ 1
+

1

s+ 2

)

= 4(H p−3
2

+H p−1
2

− 1)

=8H p−1
2

− 4

(

2

p− 1
+ 1

)

≡ 8× 2− 2p

p
+ 4 (mod p).

In the case p = 3, as R3(2) = 0 we also have Rp(2) ≡ 8(2 − 2p)/p + 4 (mod p). Applying (1.11) with

r = 1, we obtain

∑

0<k<pa

k≡1 (mod p−1)

Ck ≡ 4(2− 2p)− p

(

2Rp(1)−
Rp(2)

2

)

≡ 4(2− 2p)− p(−2) (mod p2).

So (1.14) follows.

The proof of Corollary 1.2 is now complete. 2
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