

Integral Representations of Catalan and Related Numbers

K.A.Penson J.-M. Sixdeniers

Université Pierre et Marie Curie Laboratoire de Physique Théorique des Liquides Tour 16, 5^{ième} étage, 4, place Jussieu, 75252 Paris Cedex 05, France

Email addresses: penson@lptl.jussieu.fr and sixdeniers@lptl.jussieu.fr

Abstract

We derive integral representations for the Catalan numbers C(n), shifted Catalan numbers C(n+p), and the numbers $n! \cdot C(n)$ and $C(n) \cdot B(n)$, where B(n) are the Bell numbers, for $n = 0, 1 \dots$ Our method is to use inverse Mellin transform. All these numbers are power moments of positive functions, and their representations turn out to be unique.

The Catalan numbers C(n), n = 0, 1, 2, ..., defined by

$$C(n) = \frac{\binom{2n}{n}}{n+1} \qquad , \tag{1}$$

are among the most ubiquitous sequences in enumerative combinatorics. Stanley [13] cites no less than 66 different combinatorial settings where these numbers appear. The first few Catalan numbers are

for n = 0...9. A plethora of information about the C(n)'s can be found in [11], under sequence no. A000108. In this note we derive an integral representation of C(n) as the *n*-th power moment of a certain non-negative function $W_C(x)$ on the positive half-axis. We also study the ramifications of this representation for other integer sequences involving C(n).

To this end we seek a function $W_C(x)$ such that

$$\int_0^\infty x^n W_C(x) dx = C(n) \tag{2}$$

$$= \frac{4^{n}\Gamma(n+1/2)}{\sqrt{\pi}\Gamma(n+2)} , \qquad n = 0, 1, \dots$$
 (3)

Replacing n by a complex variable s-1, we rewrite Eq.(3) as

$$\int_0^\infty x^{s-1} W_C(x) dx = \frac{4^{s-1} \Gamma(s-1/2)}{\sqrt{\pi} \Gamma(s+1)} , \quad \text{Re } s > 1 ,$$
 (4)

which implies that

$$W_C(x) = \mathcal{M}^{-1} \left[\frac{4^{s-1} \Gamma(s-1/2)}{\sqrt{\pi} \Gamma(s+1)}; x \right], \tag{5}$$

where $\mathcal{M}^{-1}[f^*(s);x] = f(x)$ is the inverse Mellin transform [12], with $f^*(s) = \mathcal{M}[f(x);s] = \int_0^\infty x^{s-1}f(x)dx$ the Mellin transform of f(x). We note the following property of \mathcal{M} [12]:

$$\mathcal{M}\left[x^{b}f(ax^{h});s\right] = \frac{1}{h}a^{-\frac{s+b}{h}}f^{*}\left(\frac{s+b}{h}\right), \qquad b \in R, \quad h > 0,$$

$$(6)$$

which, when specialized to $a = \frac{1}{4}$, $b = -\frac{1}{2}$ and h = 1, implies that

$$\mathcal{M}\left[x^{-\frac{1}{2}}f\left(\frac{x}{4}\right);s\right] = 4^{s}f^{*}(s-1/2)/2$$
 (7)

Adopting the standard notation $(y)_{+}^{\alpha} = y^{\alpha}$ if y > 0, $(y)_{+}^{\alpha} = 0$ otherwise, and using the formula 2.2(1), p.151 of [5]:

$$\mathcal{M}\left[(1-x)_{+}^{\alpha-1};s\right] = \Gamma(\alpha)\frac{\Gamma(s)}{\Gamma(\alpha+s)} , \qquad \alpha > 0, \quad s > 0,$$
 (8)

we can apply Eq.(7) with $f(x) = (1-x)_{+}^{\alpha-1}$ and $\alpha = \frac{3}{2}$. This yields

$$W_C(x) = \frac{x^{-\frac{1}{2}}}{\pi} \left(1 - \frac{x}{4} \right)_+^{\frac{1}{2}}.$$
 (9)

The function $W_C(x)$ is displayed on Fig.(1). The desired integral representation of C(n) is then

$$C(n) = \int_0^4 x^n \left(\frac{\sqrt{\frac{4-x}{x}}}{2\pi}\right) dx \qquad . \tag{10}$$

This is the solution of the Hausdorff moment problem on [0,4], which is always unique [1], and so the representation of Eq.(10) is also unique.

By the same token we can find the solution of

$$\int_0^\infty x^n W_{C,p}(x) dx = C(n+p), \qquad n = 0, 1, 2 \dots, \qquad p = 1, 2, \dots,$$
(11)

i.e. the unique representation of the shifted Catalan numbers C(n+p), as the Hausdorff moments of

$$W_{C,p}(x) = \frac{x^{p-\frac{1}{2}}}{\pi} \left(1 - \frac{x}{4}\right)_{+}^{\frac{1}{2}}.$$
 (12)

The Mellin convolution property for products of Mellin transforms, in its simplest incarnation, states ([12], [5]) that if $\mathcal{M}[W_{1,2}(x); s] = \rho_{1,2}(s)$ then

$$\mathcal{M}^{-1}[\rho_1(s)\rho_2(s);x] = W_{12}(x) \equiv \int_0^\infty \frac{1}{t} W_1\left(\frac{x}{t}\right) W_2(t) dt \qquad (13)$$

Observe that $W_{1,2}(x) > 0$ implies $W_{12}(x) > 0$.

Figure 1: The function $W_C(x)$, s. Eq.(9). This function diverges at x = 0.

As an application of Eq.(13) we look for an integral representation of the sequence $n! \cdot C(n)$ whose initial terms are 1, 1, 4, 30, 336, 5040, 95040, 2162160, 57657600, 1764322560, for n = 0...9; compare [11], no. A001761. Using Eq.(9) and performing the Mellin convolution in Eq.(13) with $W_1(x) = e^{-x}$ and $W_2(x) = W_C(x)$, one ends up with the following Stieltjes moment problem:

$$\int_0^\infty x^n W_{1C}(x) dx = n! \cdot C(n) = \frac{(2n)!}{(n+1)!} \quad , \quad n = 0, 1, \dots,$$
 (14)

with the solution

$$W_{1C}(x) = \frac{1}{2\pi\sqrt{x}} \int_{\frac{x}{4}}^{\infty} e^{-t} \frac{\sqrt{4t-x}}{t} dt$$
 (15)

$$= -\frac{1}{2} + \frac{1}{\sqrt{\pi x}}e^{-\frac{x}{4}} + \frac{1}{2}\operatorname{erf}\left(\frac{\sqrt{x}}{2}\right) , \qquad (16)$$

where $\operatorname{erf}(y)$ is the error function. The function $W_{1C}(x)$ is shown in Fig.(2). As $W_{1C}(x) > 0$, the (sufficient) Carleman condition $(\sum_{n=1}^{\infty} (\frac{(2n)!}{(n+1)!})^{-\frac{1}{2n}} = \infty)$ (cf. Ref.[1]) indicates that the solution $W_{1C}(x)$ of Eq.(16) is also unique. Similar results are obtained by using $W_{C,p}(x)$ instead of $W_{C}(x)$ in Eq.(13).

Another use of Eq.(13) is illustrated by considering the sequence $C(n) \cdot B(n)$, where B(n) are the Bell numbers (see [11], no. A000110, and [2]). The initial terms of this sequence are 1, 1, 4, 25, 210, 2184, 26796, 376233, 5920200, 102816714, for n = 0...9. For this last sequence see [11], no. A064299. The weight function whose n-th moment is equal to B(n) is

$$W_B(x) = \frac{1}{e} \sum_{k=1}^{\infty} \frac{\delta(x-k)}{k!} \qquad , \tag{17}$$

which is a consequence of Dobiński formula, $B(n) = \frac{1}{e} \sum_{k=1}^{\infty} \frac{k^n}{k!}$, see [2]. In Eq.(17), $\delta(y)$ is Dirac's delta function. By Mellin convolution of $W_B(x)$ with $W_C(x)$ one obtains

$$W_{BC}(x) = \frac{1}{2\pi e} \sum_{k=1}^{\infty} \frac{1}{k \, k!} \sqrt{\frac{4k - x}{x}} H\left(4 - \frac{x}{k}\right) \qquad , \tag{18}$$

Figure 2: The function $W_{1C}(x)$, s. Eq.(16). This function diverges at x=0.

which, via Carleman's criterion, is the only positive function such that its n-th moment is equal to $C(n) \cdot B(n)$. In Eq.(18) H(y) is the Heaviside function. The function $W_{BC}(x)$ is displayed on Fig.(3).

Figure 3: The function $W_{BC}(x)$, s. Eq.(18). This function diverges at x=0.

The last sequence that will concern us here is $(n!)^2C(n)=\frac{(2n)!}{n+1}$. Its initial terms are

1, 1, 8, 180, 8064, 604800, 68428800, 10897286400, 2324754432000

for n = 0...9; compare [11], no. A060593. Proceeding as in Eqs.(3) and (4), we are looking for $W_3(x)$ satisfying

$$\int_0^\infty x^{s-1} W_3(x) dx = \frac{4^{s-1} \Gamma(s-1/2) \Gamma^2(s)}{\sqrt{\pi} \Gamma(s+1)} , \quad \text{Re } s > 1 .$$
 (19)

It appears that when studying Eq.(19) it is possible to avoid using $W_C(x)$. As the first step we observe from

Figure 4: The function $W_3(x)$, s. Eq. (24). This function diverges at x=0.

Eq.(6) that

$$\mathcal{M}^{-1}\left[\Gamma\left(s-\frac{1}{2}\right);x\right] = \frac{e^{-x}}{\sqrt{x}} \tag{20}$$

In addition, the following relation holds

$$\mathcal{M}^{-1}\left[\frac{\Gamma^2(s)}{\Gamma(s+1)};x\right] = -Ei(-x) \qquad , \tag{21}$$

which is the formula 8.1(1), p.182 of [5]. In Eq.(21) Ei(y) is the exponential integral function. Combining Eqs.(20) and (21) in the Mellin convolution we obtain

$$\mathcal{M}^{-1}\left[\frac{\Gamma(s-1/2)\Gamma^{2}(s)}{\Gamma(s+1)};x\right] = -\frac{1}{\sqrt{x}}\int_{0}^{\infty}t^{-\frac{1}{2}}t^{-\frac{x}{t}}Ei(-t)dt$$
 (22)

$$= 2\sqrt{\frac{\pi}{x}}e^{-2\sqrt{x}} + 4\sqrt{\pi}Ei(-2\sqrt{x}) \qquad , \quad x > 0 \quad .$$
 (23)

In writing Eq.(23) we have used the formula 2.5.4.2, p.72 of [6]. Finally, we use Eq.(6) again (with $a = \frac{1}{4}$, b = 0 and h = 1) and from Eq.(19) we get the solution

$$W_3(x) = \frac{1}{\sqrt{x}}e^{-\sqrt{x}} + Ei(-\sqrt{x})$$
 , (24)

which is plotted in Fig. (4). As $W_3(x) > 0$, by Carleman's criterion the solution is again unique.

Remark: E. P.Wigner [14] has demonstrated that Eq.(10), under a suitable parametrization, describes the distribution function of eigenvalues of an ensemble of random, symmetric, real matrices.

Integral representations of other combinatorial numbers can be found in [3]. For further applications of Mellin convolution formula Eq.(13), one may consult [5], [10], [7], [8], [4] and [9].

References

[1] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, (Oliver and Boyd, London, 1965)

- [2] L. Comtet, Advanced Combinatorics, (D. Reidel, Boston, 1984)
- [3] G. P. Egorychev, Integral Representation and the Computation of Combinatorial Sums, Translations of Mathematical Monographs, Vol. 59, (American Mathematical Society, Rhode Island, 1984)
- [4] J. R. Klauder, K. A. Penson and J. M. Sixdeniers, Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems, Phys. Rev. A64, 013817 (2001)
- [5] O. I. Marichev, Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables, (Ellis Horwood Ltd, Chichester, 1983)
- [6] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, vol. 2: Special Functions, (Gordon and Breach, New York, 1998)
- [7] J. M. Sixdeniers and K. A. Penson, On the completeness of coherent states generated by binomial distribution, J. Phys. A33, 2907 (2000)
- [8] J. M. Sixdeniers and K. A. Penson, On the completeness of photon-added coherent states, J. Phys. A34, 2859 (2001)
- [9] J. M. Sixdeniers, K. A. Penson and J. R. Klauder, Tricomi coherent states, Int. J. Mod. Phys. B 15, 4231 (2001)
- [10] J. M. Sixdeniers, K. A. Penson and A. I. Solomon, Mittag-Leffler coherent states, J. Phys. A32, 7543 (1999)
- [11] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, published electronically at: http://www.research.att.com/~/njas/sequences/
- [12] I. N. Sneddon, The Use of Integral Transforms, (McGraw-Hill, New York, 1974)
- [13] R. P. Stanley, Enumerative Combinatorics, Vol. 2, (Cambridge University Press, 1999)
- [14] E. P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann.Math.62, 548 (1955)

(Concerned with sequences A000108, A000110, A001761, A060593, A064299.)

Received Sep 7, 2001; revised version received Oct 29, 2001. Published in Journal of Integer Sequences, Feb 7, 2002.

Return to Journal of Integer Sequences home page.