(L) Journal of Integer Sequences, Vol. 4 (2001),
% g Article 01.2.5
(1)

Integral Representations of Catalan and Related
Numbers

K.A Penson
J.-M. Sixdeniers

Université Pierre et Marie Curie
Laboratoire de Physique Théorique des Liquides
Tour 16, 5™ étage, 4, place Jussieu, 75252 Paris Cedex 05, France

Email addresses: penson@Iptl.jussien.fr and sixdeniers@lptl.jussien.fr

Abstract

We derive integral representations for the Catalan numbers C(n), shifted Catalan numbers C(n + p),
and the numbers n!- C(n) and C(n) - B(n), where B(n) are the Bell numbers, forn = 0,1.... Our method
is to use inverse Mellin transform. All these numbers are power moments of positive functions, and their

representations turn out to be unique.

The Catalan numbers C(n), n =0,1,2,..., defined by

()
n+1

are among the most ubiquitous sequences in enumerative combinatorics. Stanley [13] cites no less than 66

C(n) = ; (1)

different combinatorial settings where these numbers appear. The first few Catalan numbers are
1,1,2,5,14,42,132,429, 1430, 4862

forn =0...9. A plethora of information about the C(n)’s can be found in [1 1], under sequence no. A000108.
In this note we derive an integral representation of C'(n) as the n-th power moment of a certain non-
negative function We () on the positive half-axis. We also study the ramifications of this representation for
other integer sequences involving C'(n).
To this end we seek a function We (z) such that

/OOO:L‘"WC(:B)CZ:E = C(n) (2)
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=0,1,...
V0 (n +2) ’ n=01

Replacing n by a complex variable s — 1, we rewrite Eq.(3) as

e 45717 (s — 1/2)
2" We(2)de = —————FL2  , Res>1
/0 c(2) Val(s+ 1)
which implies that

eI (s 1/2)
We(z) = M ! [m,l‘]a
where M1 [f*(s); 2] = f(z) is the inverse Mellin transform [12], with f*(s) = M [f(z); s]

=[x f(x)dx
the Mellin transform of f(z). We note the following property of M [12] :
1 3 b
M[xbf(axh);s]:za___}{_bf* (8; >, bec R, h>0,

which, when specialized to a = %, b= —% and h = 1, implies that

-1 T A8 pE _ ‘ c
Me75f (3) ] =47 (s - 1/2)/2 (7)
Adopting the standard notation (y)§ = y* if y > 0, (y)§ = 0 otherwise, and using the formula 2.2(1), p.151
of [5] :

_ T'(s)
— a—1, — 7
M[(1—2)57" 5] F(Q)F(a—i—s) , a>0, s>0,
we can apply Eq.(7) with f(z) = (1 — :L‘)j‘__l and a = % This yields

(8)

We(z) = IF (1 - %); 9)

The function We(z) is displayed on Fig.(1). The desired integral representation of C'(n) is then

4 4—c
C(n):/ z" i dx
0

27

=

(10)

This is the solution of the Hausdorff moment problem on [0,4], which is always unique [1], and so the
representation of Eq.(10) is also unique.

By the same token we can find the solution of

/ "Wep(z)de=C(n+p), n=012..., p=12..., (11)
0

i.e. the unique representation of the shifted Catalan numbers C'(n + p), as the Hausdorff moments of

Wep(2) = x:% (1- 2); (12)

The Mellin convolution property for products of Mellin transforms, in its simplest incarnation, states ([12],

[5]) that if M [Wy 2(2);s] = p1,2(s) then

(0]

M py(5)pa(s): 2] = Wia(z) = o (%) Wa(t)dt

(13)

Observe that Wy 2(z) > 0 implies Wya(z) > 0.
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Figure 1: : The function W (z), s. Eq.(9). This function diverges at z = 0.

As an application of Eq.(13) we look for an integral representation of the sequence n!- C(n) whose
initial terms are 1,1,4,30,336,5040,95040,2162160, 57657600, 1764322560, for n = 0...9; compare [11],
no. A001761. Using Eq.(9) and performing the Mellin convolution in Eq.(13) with Wi(z) = ¢™* and
Wa(z) = We(z), one ends up with the following Stieltjes moment problem :

/OO 2"Wic(z)de =n!-C(n) = (2n)! n=20,1 (14)
o 1C — fe. _(n—l—l)' 9 — Us Ly
with the solution
1 & VAt —
Wic(z) = et “dt (15)

t

27z

1 _e 1 Nz
—5 \/ﬁe + Eerf (T) s (16)

where erf(y) is the error function. The function Wi (z) is shown in Fig.(2). As Wic(z) > 0, the (sufficient)
%1%)_% = o0o) (cf. Ref.[1]) indicates that the solution Wic(z) of Eq.(16) is
also unique. Similar results are obtained by using We () instead of We () in Eq.(13).

Another use of Eq.(13) is illustrated by considering the sequence C(n) - B(n), where B(n) are the Bell
numbers ( see [11], no. A000110, and [2] ). The initial terms of this sequence are 1, 1, 4, 25, 210, 2184,
26796, 376233, 5920200, 102816714, for n = 0...9. For this last sequence see [11], no. A064299. The weight

function whose n-th moment is equal to B(n) is

—_ s

Carleman condition (37, (

Wile) = L3 2T an

which is a consequence of Dobiriski formula, B(n) %Ezozl %, see [2]. In Eq.(17), d(y) is Dirac’s delta

function. By Mellin convolution of Wg(z) with W (z) one obtains

1 = 1 [dk—= T
Wae(z) = — S — H(4-Z= 1
Be(#) 2me kz_:l kEk! x ( k) ’ (18)
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Figure 2: : The function Wi¢(z), s. Eq.(16). This function diverges at = 0.

which, via Carleman’s criterion, is the only positive function such that its n-th moment is equal to C'(n)-B(n)
In Eq.(18) H(y) is the Heaviside function. The function Wpc () is displayed on Fig.(3).
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Figure 3: : The function Wpc (), s. Eq.(18). This function diverges at # = 0.

The last sequence that will concern us here is (n!)2C(n) = % Its initial terms are

1,1, 8,180, 8064, 604800, 68428800, 10897286400, 2324754432000

for n = 0...9; compare [11], no. A060593. Proceeding as in Egs.(3) and (4), we are looking for Ws5(z)
satisfying

/000 2 T IWy(z)de = S I:/(;F_(Sl_{_?; () , Res>1 . (19)

It appears that when studying Eq.(19) it is possible to avoid using W (). As the first step we observe from
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Figure 4: : The function W3(z), s. Eq.(24). This function diverges at z = 0.

Eq.(6) that

1 e 7
-1 T T ) :
M [F (5 2) ,r] NG (20)
In addition, the following relation holds :

Mt [%x] = —Fi(—x) : (21)

which is the formula 8.1(1), p.182 of [5]. In Eq.(21) Ei(y) is the exponential integral function. Combining
Eqgs.(20) and (21) in the Mellin convolution we obtain

L [Ts—1/2r%s) 1 1 [
e [P

= 2\/56—2%%\/%&(—2\/5) , z>0 . (23)
X

In writing Eq.(23) we have used the formula 2.5.4.2, p.72 of [6]. Finally, we use Eq.(6) again (with a = 1,
b=0and h = 1) and from Eq.(19) we get the solution
1

Wa(z) = ﬁe—ﬁ + Ei(—/x) , (24)

which is plotted in Fig.(4). As W3(z) > 0, by Carleman’s criterion the solution is again unique.

Remark: E. P.Wigner [14] has demonstrated that Eq.(10), under a suitable parametrization, describes
the distribution function of eigenvalues of an ensemble of random, symmetric, real matrices.

Integral representations of other combinatorial numbers can be found in [3]. For further applications of
Mellin convolution formula Eq.(13), one may consult [5], [10], [7], [8] , [4] and [9].
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