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Here presented a generalization of Catalan numbers and Catalan

triangles associated with two parameters based on the sequence

characterization of Bell-type Riordan arrays. Among the general-

ized Catalan numbers, a class of large generalized Catalan num-

bers and a class of small generalized Catalan numbers are defined,

which can be considered as an extension of large Schröder num-

bers and small Schröder numbers, respectively. Using the character-

ization sequences of Bell-type Riordan arrays, some properties and

expressions including the Taylor expansions of generalized Catalan

numbers are given. A few combinatorial interpretations of the gen-

eralized Catalan numbers are also provided. Finally, a generalized

Motzkin numbers and Motzkin triangles are defined similarly. An

interrelationship among parametrical Catalan triangle, Pascal trian-

gle, and Motzkin triangle is presented based on the sequence char-

acterization of Bell-type Riordan arrays.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Catalan numbers, Cn =
(
2n

n

)
/(n + 1), form a sequence of integers that occur in the solutions of

many counting problems. The book Enumerative Combinatorics: Volume 2 [30] by Stanley contains a

set of exercises of Chapter 6whichdescribe 66different interpretations of the Catalannumbers. A com-

plementary materials of the exercises of Chapter 6 are collected in [31]. The small and large Schröder

numbers are definedby {1, 1, 3, 11, 45, 197, . . .} and {1, 2, 6, 22, 90, 394, . . .}, respectively. A survey

regarding those numbers can be found in [32] by Stanley. Like Catalan numbers, Schröder numbers
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occur in various counting problems, often involving recursively defined objects, such as dissections of a

convex polygon, certain polyominoes, various lattice paths, Lukasiewiczwords, permutations avoiding

given patterns, and, in particular, plane trees (see, for example [11,23]). Our intention is to consider

the Catalan numbers and Schröder numbers not only as sequences, but also as belonging to infinite

(lower) triangles, called the Riordan arrays, in which they form the first columns. Then, we use the se-

quence characterization of the arrays to extend the Catalan numbers, Schröder numbers, andMotzkin

numbers in a more general setting associate with parameters and to present some expressions and

properties of those numbers.

Riordan arrays are infinite, lower triangular matrices defined by the generating functions of their

columns. They formagroup, called the Riordan group (see [27]). Someof themain results on theRiordan

group and its application to combinatorial sums and identities can be found in Sprugnoli [28,29], on

subgroups of the Riordan group in Peart andWoan [21] and Shapiro [24], on some characterizations of

Riordan matrices in Rogers [22], Merlini et al. [18], and He et al. [17], and on many interesting related

results in Cheon et al. [3,4], Gould et al. [12], He [13,14], He et al. [15,16], Nkwanta [20], Shapiro [25,26],

and so forth.

More formally, let us consider the set of formal power series (f.p.s.) F = R[[t]]; the order of

f (t) ∈ F , f (t) = ∑∞
k=0 fkt

k (fk ∈ R), is the minimal number r ∈ N such that fr �= 0; F r is the set

of formal power series of order r. It is known that F0 is the set of invertible f.p.s. and F1 is the set

of compositionally invertible f.p.s., that is, the f.p.s. f (t) for which the compositional inverse f̄ (t) exists
such that f (f̄ (t)) = f̄ (f (t)) = t. Let d(t) ∈ F 0 and h(t) ∈ F1; the pair (d(t), h(t)) defines the

(proper) Riordan array D = (dn,k)n,k∈N = (d(t), h(t)) having

dn,k = [tn]d(t)h(t)k (1)

or, in other words, having d(t)h(t)k as the generating functionwhose coefficients make-up the entries

of column k.

It is immediate to show that the usual row-by-column product of two Riordan arrays is also a

Riordan array:

(d1(t), h1(t))∗(d2(t), h2(t)) = (d1(t)d2(h1(t)), h2(h1(t))). (2)

The Riordan array I = (1, t) is everywhere 0 except that it contains all 1’s on the main diagonal; it is

easily seen that I acts as an identity for thisproduct, that is, (1, t)∗(d(t), h(t)) = (d(t), h(t))∗(1, t) =
(d(t), h(t)). From these facts, we deduce a formula for the inverse Riordan array:

(d(t), h(t))−1 =
(

1

d(h̄(t))
, h̄(t)

)
, (3)

where h̄(t) is the compositional inverse of h(t). In this way, the set R of proper Riordan arrays is a

group.

Several subgroups ofR are important: (1) the setA of Appell arrays, that is the set of Riordan arrays

D = (d(t), h(t)) for which h(t) = t; it is an invariant subgroup and is isomorphic to the group of

f.p.s.’s of order 0, with the usual product as group operation; (2) the set L of Lagrange arrays, that is

the set of Riordan arrays D = (d(t), h(t)) for which d(t) = 1; it is also called the associated subgroup;

it is isomorphic with the group of f.p.s.’s of order 1, with composition as group operation. In particular,

a subgroup denoted by B is the set of Bell-type arrays or renewal arrays, that is the Riordan arrays

D = (d(z), h(z)) for which h(z) = zd(z), which was considered in the literature [22]. It is clear that

there exists a semidirect product decomposition for Riordan group R.

R � A � B since (d(t), h(t)) =
(
td(t)

h(t)
, t

) (
h(t)

t
, h(t)

)
.
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Table 1

The Catalan triangle C of L-path.

k

n 0 1 2 3 4 5 6

0 1

1 1 1

2 2 2 1

3 5 5 3 1

4 14 14 9 4 1

5 42 42 28 14 5 1

From [22], an infinite lower triangular array [dn,k]n,k∈N0
= (d(t), h(t)) is a Riordan array if and

only if a sequence A = (a0 �= 0, a1, a2, . . .) exists such that for every n, k ∈ N0 there holds

dn+1,k+1 = a0dn,k + a1dn,k+1 + · · · + andn,n, (4)

which is shown to be equivalent to

h(t) = tA(h(t)) (5)

in He and Sprugnoli [17]. Here, A(t) is the generating function of A-sequence. [17,18] also shows that

a unique sequence Z = (z0, z1, z2, . . .) exists such that every element in column 0 can be expressed

as the linear combination

dn+1,0 = z0dn,0 + z1dn,1 + · · · + zndn,n, (6)

or equivalently,

d(t) = d1,1

1 − tZ(h(t))
. (7)

From Theorem 2.5 of [17], a Riordan array is a Bell-type Riordan arrays; i.e., h(t) = td(t), if and only

if its A-sequence and Z-sequence satisfy A(t) = d0,0 + tZ(t). Thus, a sequence characterization of the

numbers of Lukasiewicz path (or abbreviated as L-path) including the Catalan and Motzkin numbers

is obtained by using the characterization of Bell-type Riordan arrays. Here, a L-path is a lattice path

that starts at the origin with steps (1, a) (a � 1) that cannot go below the x-axis. It is known (see, for

example [5]) that the number of L-paths from (0, 0) to (n, k) is the quasi-Catalan number

dn,k = k + 1

n + 1

(
2n − k

n

)
, 0 � k � n, (8)

which is the (n, k)-entry of a Bell-type Riordan array (C(t), tC(t)) shown in Table 1, where

C(t) = 1 − √
1 − 4t

2t
.

Formula (7) will be extended to a parametric form in Corollary 3.6.

Since the sum of nth row is nth Catalan number cn and the first column of the Catalan triangle is

Catalan number sequence, from the sequence characterization of Bell-type Riordan array (C(t), tC(t)),
we have Z(t) = 1/(1− t). Thus, the relation A(t) = d0,0+ tZ(t) = 1+ tZ(t) implies A(t) = 1/(1− t).

From Theorems 2.3 and 2.5 of [17], we immediately obtain

Proposition 1.1. Let (d(t), h(t)) be a Bell-type Riordan array satisfying h(t) = td(t), where d(0) �= 0.

Denote the compositional inverse of h(t) by h(t). If one of d(t) and h(t), i.e., the A- and Z-sequence char-

acterizations of (d(t), h(t)), is given, then other three among d(t), h(t), A(t), and Z(t) can be determined

uniquely from the relations h(t) = td(t),
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Z(t) = d(h̄(t))− d(0)

h̄(t)d(h̄(t))
and A(t) = d(0)+ tZ(t).

In particular, for any given d(t), there exist unique h(t), Z(t), and A(t) shown above such that (d(t), td(t))
is a Bell-type triangle.

Proof. One may gives a proof based on the definition of Bell-type Riordan arrays, Theorems 2.1, 2.3,

and 2.5 of [17]. Here, we omitted the details. �

Example 1.1. Let

C(t) = 1 − √
1 − 4t

2t

be the generating function of Catalan numbers {cn =
(
2n

n

)
/(n + 1)}n�0. Considering the Bell-type

Riordan array (d(t), h(t)) := (C(t), tC(t)), the Catalan triangle, we find the compositional inverse of

h(t) := tC(t) is

h̄(t) = t(1 − t),

which, from Proposition 1.1, implies the generating functions of A- and Z-sequences of (C(t), tC(t))
are

Z(t) = 1

1 − t
, A(t) = 1

1 − t
.

Similarly, for Motzkin function

M(t) = 1 − t − √
1 − 2t − 3t2

2t2
,

the generating function of Motzkin numbers {1, 1, 2, 4, 9, 21, 51, . . .}, we can find the Motzkin tri-

angle (M(t), tM(t))with characterization

Z(t) = 1 + t, A(t) = 1 + t + t2

by using the compositional inverse of tM(t) as t/(1 + t + t2) and Proposition 1.1. Hence, we may

evaluate the first few entries of the Motzkin triangle shown in the first column of Table 2.

As for the large Schröder numbers {1, 2, 6, 22, 90, . . .}, we have its generating function

G(t) = 1 − t − √
1 − 6t + t2

2t
.

Table 2

The Motzkin triangle M.

k

n 0 1 2 3 4 5 6

0 1

1 1 1

2 2 2 1

3 4 5 3 1

4 9 12 9 4 1

5 21 30 25 14 5 1

6 51 76 69 44 20 6 1
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Table 3

The Schröder triangle S.

k

n 0 1 2 3 4 5 6

0 1

1 2 1

2 6 4 1

3 22 16 6 1

4 90 68 30 8 1

5 394 304 146 48 10 1

Thus, the Schröder triangle (G(t), tG(t)) has the generating functions of its A- and Z-sequences

Z(t) = 2

1 − t
, A(t) = 1 + t

1 − t
,

respectively, since the compositional inverse of tG(t) is t(1 − t)/(1 + t). Therefore Z = {2, 2, 2, . . .}
and A = {1, 2, 2, . . .}. We may evaluate the first few entries of the large Schröder triangle as those

shown in the first column of Table 3.

It is known that Catalan numbers and Motzkin numbers have the generating equations

C(t) = 1 + tC(t)2 and M(t) = 1 + tM(t)+ t2M(t)2,

respectively.

This paper will use the sequence characterization of Riordan arrays to give a unify approach to

generalize Catalan numbers and Catalan triangles. In the next section, we will use the sequence char-

acterization of Bell-type Riordan array shown in Proposition 1.1 to define (c, r)-(generalized or para-

metric) Catalan numbers with a parameters c and e, and we call such Bell-type Riordan arrays the

(c, r)-(generalized or parametric) Catalan triangles. The Taylor expansion and some properties of the

generalized Catalan numbers and generalized Catalan triangles will be presented. In addition, we will

give some combinatorial interpretations for the Bell-type Riordan arrays including the generalized

Catalan triangles. Furthermore, a similar argument is used to extend classical Motzkin numbers to a

parametricalMotzkin numbers. In Section 3,we shall discuss the inverse of the generalized Catalan tri-

angles and inverse Motzkin triangles, from which the expressions of the parametric Catalan numbers

and triangles and parametric Motzkin numbers in terms of classical Catalan numbers are given.

2. Generalized Catalan numbers and their Taylor expansion

In this section, we will develop a type of numbers that generates Catalan numbers and Schröder

numbers.Wewill also give their generating functions and present thematrices related to the numbers.

Let d(t) be the generating function of a type of numbers {dn}n�0 defined by

d(t) = 1

1 − tZ(td(t))
,

where Z(t) = c
∑

n�0 r
ntn is an infinite series c/(1 − rt) or Z(t) = c/(1 − rt), we obtain the

corresponding d(t) as

dc,r(t) = 1 − rtdc,r(t)

1 − ct − rtdc,r(t)
,

or equivalently,

dc,r(t) = 1 + tdc,r(t)(c − r + rdc,r(t)), (9)
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Table 4

The (c, 1)-Catalan number triangle C .

k

n 0 1 2 3 4

0 1

1 c 1

2 c2 + c 2c 1

3 c3 + 3c2 + c 3c2 + 2c 3c 1

4 c4 + 6c3 + 6c2 + c 4c3 + 8c2 + 2c 6c2 + 3c 4c 1

which is the generating equation of dc,r(t). From the above equation we solve

dc,r(t) = 1 − (c − r)t −
√
1 − 2(c + r)t + (c − r)2t2

2rt
. (10)

In particular, when (c, r) = (1, 1), (2, 1), and (1, 2), we obtain d1,1(t) = C(t), the classical Catalan

function, d2,1(t) = G(t), the large Schröder function, and

d1,2(t) = 1 + t − √
1 − 6t + t2

4t
,

the small Schröder function, respectively. From Proposition 1.1, the generating function of A-sequence

of (dc,r(t), tdc,r(t)) is A(t) = 1 + tZ(t) = 1 + ct/(1 − rt).

Definition 2.1. For any (c, r) ∈ Z
2, c, r �= 0, we call the coefficients, {cn}n�0, of dc,r(t) defined by

(9) or (10) the generalized Catalan numbers associated with (c, r), or simply, (c, r)-Catalan numbers.

In particular, (c, 1) and (1, r)-Catalan numbers are called the large and small generalized Catalan

numbers, respectively. ThecorrespondingBell-typeRiordanarrays, fromwhich thegeneralizedCatalan

numbers are defined, are called the generalized Catalan triangles, or (c, r)-Catalan triangles.

Remark 2.1. The series inverse of dc,1(t), c ∈ N, is studied in [2] using a different approach. Constants

c and r in Definition 2.1 can be extended to non-zero real numbers. In that setting, (c, r)-Catalan
numbers become functions, which will be studied in another paper.

From Proposition 1.1, we obtain the following recurrence relations of entries dn,k of generalized

Catalan triangle (dc,r(t), tdc,r(t)) by using its Z and A-sequences

dn,0 = c

n−1∑
k=0

rkdn−1,k (11)

and for k � 1

dn,k = dn−1,k−1 + c

n−k−1∑
j=0

rjdn−1,k+j. (12)

Based on (11) and (12), the first few (c, 1), (1, r), and (c, r)-Catalan numbers are shown in the first

column of the (c, 1), (1, r), and (c, r)-Catalan triangle in Tables 4–6, respectively.

(c, r)-Catalan triangles can bring many properties of (c, r)-Catalan numbers and functions. In the

following, wewill present an expansion and a combinatorial interpretation of (c, r)-Catalan numbers.

Generating equation (9) can be considered as the zeroth order Taylor expansion of dc,r(t), i.e., the
generalized Catalan numbers {cn}n�0. We now give the nth Taylor expansion of generalized Catalan

numbers using Riordan arrays.
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Table 5

The (1, r)-Catalan number triangle C .

k

n 0 1 2 3 4

0 1

1 1 1

2 r + 1 2 1

3 r2 + 3r + 1 2r + 3 3 1

4 r3 + 6r2 + 6r + 1 2r2 + 8r + 4 3r + 6 4 1

Table 6

The (c, r)-Catalan number triangle C .

k

n 0 1 2 3 4

0 1

1 c 1

2 c2 + cr 2c 1

3 c3 + 3c2r + cr2 3c2 + 2cr 3c 1

4 c4 + 6c3r + 6c2r2 + cr3 4c3 + 8c2r + 2cr2 6c2 + 3cr 4c 1

Theorem 2.2. Let cr �= 0. Denote by (dn,k)n�k�0 the Riordan array of (dc,r(t), tdc,r(t)) and {cn =
dn,0}n�0 the coefficients of dc,r(t). Then there holds the following Taylor’s expansion of the generating

function of (c, r)-Catalan numbers, {cn}n�0,

dc,r(t) =
n−1∑
j=0

dj,0t
j + tn

n+1∑
k=1

rk−1(dn,k−1 − rdn,k)(dc,r(t))
k, (13)

where dj,0 = cj.

Proof. We prove (13) by using the sequence characterization of Riordan array C . First, we establish

an expression of power of dc,r(t),

(dc,r(t))
k = 1 + t

⎛
⎝(c − r)dc,r(t)+ c

k∑
j=2

(dc,r(t))
j + r(dc,r(t))

k+1

⎞
⎠ (14)

for k � 2. (14) is obvious for k = 2. In deed, from (9), we have

(dc,r(t))
2 = dc,r(t)

(
1 + tdc,r(t)(c − r + rdc,r(t)

)
= 1 + tdc,r(t)(c − r + rdc,r(t))+ t(dc,r(t))

2(c − r + rdc,r(t))

= 1 + t
(
(c − r)dc,r(t)+ c(dc,r(t))

2 + r(dc,r(t))
3
)
.

Assume (14) holds for k − 1. Then

(dc,r(t))
k = dc,r(t)(dc,r(t))

k−1

= dc,r(t)+ t

⎛
⎝(c − r)(dc,r(t))

2 + c

k−1∑
j=2

(dc,r(t))
j+1 + r(dc,r(t))

k+1

⎞
⎠
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= 1 + t
(
(c − r)dc,r(t)+ r(dc,r(t))

2
)

+t

⎛
⎝(c − r)(dc,r(t))

2 + c

k∑
j=3

(dc,r(t))
j + r(dc,r(t))

k+1

⎞
⎠

= 1 + t

⎛
⎝(c − r)dc,r(t)+ c

k∑
j=2

(dc,r(t))
j + r(dc,r(t))

k+1

⎞
⎠ .

Secondly, we prove (13) using mathematical induction. Noting d0,0 = 1, d1,0 = c, d1,1 = 1 and

dn,k = 0 for all k � n, we know (13) holds for n = 1. To prove the induction step, we need to show

n∑
k=1

rk−1 (
dn−1,k−1 − rdn−1,k

) = dn−1,0. (15)

In fact, from the recurrence relations (11) and (12) we obtain

dn−1,0 − rdn−1,1 = (c − r)dn−2,0

and

dn−1,k−1 − rdn−1,k = dn−2,k−2 + (c − r)dn−2,k−1

for all k � 2. Thus

n∑
k=1

rk−1 (
dn−1,k−1 − rdn−1,k

)

= (c − r)dn−2,0 +
n∑

k=2

rk−1 (
dn−1,k−1 − rdn−1,k

)

=
n∑

k=2

rk−1dn−2,k−2 + (c − r)
n−1∑
k=1

rk−1dn−2,k−1

= c

n−1∑
k=1

rk−1dn−2,k−1,

which implies (15).

Substituting (14) into the (n − 1)th remainder of (13) and noting (15), we obtain

n∑
k=1

rk−1(dn−1,k−1 − rdn−1,k)(dc,r(t))
k

=
n∑

k=1

rk−1(dn−1,k−1 − rdn−1,k)

⎡
⎣1 + t

⎛
⎝−rdc,r(t)+ c

k∑
j=1

(dc,r(t))
j + r(dc,r(t))

k+1

⎞
⎠

⎤
⎦

= dn−1,0 + t

⎡
⎣−rdn−1,0dc,r(t)+ c

n∑
k=1

k∑
j=1

rk−1(dn−1,k−1 − rdn−1,k)(dc,r(t))
j
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+
n∑

k=1

rk(dn−1,k−1 − rdn−1,k)(dc,r(t))
k+1

⎤
⎦

= dn−1,0 + t

⎡
⎣−rdn−1,0dc,r(t)+ c

n∑
j=1

⎛
⎝ n∑

k=j

rk−1(dn−1,k−1 − rdn−1,k)

⎞
⎠ (dc,r(t))j

+
n+1∑
k=2

rk−1(dn−1,k−2 − rdn−1,k−1)(dc,r(t))
k

⎤
⎦

= dn−1,0 + t

⎡
⎣−rdn−1,0dc,r(t)+ c

n∑
k=1

rk−1dn−1,k−1(dc,r(t))
k

+
n+1∑
k=2

rk−1(dn−1,k−2 − rdn−1,k−1)(dc,r(t))
k

⎤
⎦

= dn−1,0 + t

⎡
⎣(c − r)dn−1,0dc,r(t)+

n∑
k=2

rk−1 (
dn−1,k−2

+(c − r)dn−1,k−1

)
(dc,r(t))

k + rn(dc,r(t))
n+1

⎤
⎦

= dn−1,0 + t

⎡
⎣(dn,0 − rdn,1)dc,r(t)+

n+1∑
k=2

rk−1(dn,k−1 − rdn,k)(dc,r(t))
k

⎤
⎦ ,

where the last step is due to the following facts coming from the sequence characterization of (c, r)-
Catalan triangle.

dn,0 − rdn,1 = c

n−1∑
j=0

rjdn−1,j − r

⎛
⎝dn−1,0 + c

n−1∑
j=1

rj−1dn−1,j

⎞
⎠ = (c − r)dn−1,0.

Similarly, there hold

dn,k−1 − rdn,k = dn−1,k−2 + c

n−1∑
j=k−1

rj−k+1dn−1,j − r

⎛
⎝dn−1,k−1 + c

n−1∑
j=k

rj−kdn−1,j

⎞
⎠

= dn−1,k−2 + (c − r)dn−1,k−1

for n � k � 2 and dn,k−1 − dn,k = 1 for k = n + 1, which completes the proof of the theorem. �

For the case of c = r = 1, the Taylor expansion of d1,1(t) is given in [10] using a sequence approach.

Remark 2.2. Eq. (13) gives a sequence of identities of dc,r(t) in terms of n.

Inspired by [5], we give a combinatorial interpretation of the entries dn,k of (dc,r(t), tdc,r(t)), the
c-(generalized) Catalan triangle. First, we consider a lattice path that starts at the origin, cannot go

below the x-axis and above y = x, and has a possible steps Sr = (1, r)with r � −1, which is called a

Lukasiewicz path (or simply L-path). Thenumbers of L-paths from (0, 0) to (n, k) is (k+1)
(
2n−k

n

)
/(n+

1), which is the entry of the Catalan triangle shown in Table 1. Secondly, we associate a weight to each

step Sr of an L-path, which is denoted by ω(Sr). The weight of an L-path, is defined as the product of
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weights of its steps. In Theorem 2.2 of [5], by setting a0 = 1, ai = zi for i � 1, and k = z0 − 1 wemay

obtain the following result.

Theorem 2.3. (d(t), h(t)) = {dn,k}0�k�n, d(0) = 1, is a Riordan array with sequence characterizations

Z = (z0, z1, . . . , ) and A = (1, z1, z2 . . . , ) if and only if dn,k is the sum of weights of weighted L-paths

from the origin to the point (n, k) using the weights

ω(Sr) =
⎧⎨
⎩ zr, if Sr touches the x-axis,

zr+1, otherwise,
(16)

where r � 0 and ω(S−1) = 1.

FromTheorem2.3weobtain a combinatorial interpretation of the entries of the generalized Catalan

triangles.

Corollary 2.4. Let cr �= 0. The entry dn,k of a (c, r)-Catalan triangle (dc,r(t), tdc,r(t)) is the sum of

weights of weighted L-paths from the origin to the point (n, k) with the weights defined in Theorem 2.3,

where zj = crj for all j � 0.

Proof. Noting the A-sequence and Z-sequence have the generating functions A(t) = 1+ (ct/(1− rt))
and Z(t) = c/(1 − rt), one my use Theorem 2.3 to establish Corollary 2.4. �

The entries of a (c, r)-Catalan triangle (dc,r(t), tdc,r(t))will be given in Corollary 3.6.

The combinatorial interpretations of some special cases of generalized Catalan numbers, i.e., the

first columns of the corresponding generalized Catalan triangle,were studied individually. For instance

[7] presents the first column sequence {dn,0} of the generalized Catalan triangle (d4,1(t), td4,1(t)) are
the numbers of lattice paths from (0, 0) to (n + 1, n + 1) that consist of steps (i, 0) and (0, j) with

i, j � 1 and that stay strictly below the diagonal line y=x except at the endpoints.

Another interesting combinatorial interpretation of (c, r)-Catalan numbers is related to rooted and

labeled generating tree with the property that any two nodes v1 and v2 in the same label have exactly

the same number of children in label n for each label n. Those trees can be generated by using the ECO

method, which roots can be traced back to [6] and developed successively in [33,1]. More precisely, by

using the following two conditions wemay specify a generating tree: (a) the label of root of the tree is

indicated as α and (b) a set of rules explaining how to derive the labels of all of the children from the

label of a parent is given. Associated with a rooted and labeled generating tree satisfying (a) and (b),

an infinite matrix (dn,k) can be defined by dn,k := the numbers of nodes at level n with label k + α. For
instance, if (a) the root label is (2) and (b) the rule is (k) −→ (2) · · · (k)(k+1), then the entries of the

corresponding matrix are d0,0 = 1 because the number of nodes at level 0 is 1, d1,0 = 1 and d1,1 = 1

that representing the numbers of nodes at level 1 with labels 2 and 3 are both 1, similarly, d2,0 = 2,

d2,1 = 1, and d2,2 = 1. In addition, the maximum label’s value at each level increases by one from

the previous level, which implies dn,k = 0 for k > n. It can be seen that dn,0 = [tn]d1,1(t), i.e., {dn,0}
is the sequence of Catalan numbers. Let α ∈ N and aj ∈ N for all j � 0. From Theorem 3.9 of [19] and

noting Proposition 1.1, (dn,k) is a Bell-type Riordan array if and only if it is associated with the rooted

and labeled generating tree satisfying: (a)′ its root is labeled as (α) and (b)′ the constructing rule is

(k) −→ �
k+1−c
j=0 (k + 1 − j)aj . Thus, the (c, r)-Catalan triangle is associated with a generating tree

with root (c) and satisfying the rule (k) −→ (k + 1)�k+1−α
j=1 (k + 1 − j)c/r

j−1

.

In the beginning of this section, the sequence characteristic of the Catalan triangle, a Bell-type

Riordan array, is presented by Z(t) = c/(1− rt). We now extend it to a more general form as follows,

using which a type of parametric Motzkin numbers and Motzkin triangles are defined. Denote

Z(t) = c
1 − (rt)n

1 − rt
, (17)
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Table 7

The (c, r)-Motzkin number triangle M.

k

n 0 1 2 3 4

0 1

1 c 1

2 c2 + cr 2c 1

3 c3 + 3c2r 3c2 + 2cr 3c 1

4 c4 + 6c3r + 2c2r2 4c3 + 8c2r 6c2 + 3cr 4c 1

where n ∈ N0. If n = 0, we have the generating function of the Z-sequence of Catalan triangle, which

has been discussed. If n = 1, then Z(t) = c, and the corresponding triangle is the parametric Pascal

triangle (1/(1 − ct), t/(1 − ct)) with parameter c. We now consider the case of n = 2, Z(t) =
c(1 + rt). Then the generating function of A-sequence for Bell-type Riordan array (d̃c,r(t), td̃c,r(t)) is

A(t) = 1 + ct(1 + rt), where d̃c,r(t) satisfies

d̃c,r(t) = 1

1 − tZ(td̃c,r(t))
,

or equivalently,

d̃c,r(t) = 1 + ctd̃c,r(t)(1 + rtd̃c,r(t)). (18)

Thus

d̃c,r(t) = 1 − ct −
√
1 − 2ct + c(c − 4r)t2

2crt2
(19)

for ce �= 0. Therefore, we have reason to establish the following definition.

Definition 2.5. The lower triangle (d̃c,r(t), td̃c,r(t))with cr �= 0 is called the (c, r)-Motzkin triangle,

where dc,r(t) presented in (19) is called (c, r)-Motzkin function. The coefficients of d̃c,r(t) are called

(c, r)-Motzkin numbers or simply generalized Motzkin numbers.

From Definition 2.5, when (c, r) = (1, 1), d̃1,1(t) = M(t), the generating function of classical

Motzkin numbers. The first four rows of the generalizedMotzkin triangle is shown in Table 7, in which

the first column gives first four generalized Motzkin numbers.

3. The inverses of Bell-type Riordan arrays

It is well-known that the inverse of a Riordan array D := (d(t), h(t)) is D−1 = (1/d(h̄(t)), h̄(t)),

where h̄(t) is the compositional inverse of h(t), i.e., h(h̄(t)) = h̄(h(t)) = t. From Theorems 4.1 and

4.2 of [17], we have

Theorem 3.1 [17]. The A- and Z-sequences, denoted by A∗- and Z∗, respectively, of the inverse Riordan

array D−1 are

A∗(y) = 1

A(t)
and Z∗(y) = d(0)− d(y)

d(0)t
, (20)

respectively, where y = t/A(t) = h̄(t).

From the proofs of Theorems 2.1, 2.3, 4.1, and 4.3 of [17], we also have the following corollary.
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Corollary 3.2. The A- and Z-sequences of (d(t), h(t)) and its inverse (1/(d(h̄(t))), h̄(t)) are

A(t) = t

h̄(t)
, Z(t) = d(h̄(t))− d(0)

h̄(t)d(h̄(t))
,

A∗(t) = t

h(t)
, Z∗(t) = d(0)− d(t)

d(0)h(t)
. (21)

In particular, for Appell arrays (d(t), t), we have

A(t) = 1, Z(t) = d(t)− d(0)

td(t)
, A∗(t) = 1, Z∗(t) = d(0)− d(t)

d(0)t
.

For Lagrange arrays,

A(t) = t

h̄(t)
, Z(t) = 0, A∗(t) = t

h(t)
, Z∗(t) = 0.

For Bell-type arrays, there hold h(t) = td(t), h̄(t) = t/d(h̄(t)), and

A(t) = d(h̄(t)), Z(t) = d(h̄(t))− d(0)

t
,

A∗(t) = 1

d(t)
, Z∗(t) = d(0)− d(t)

td(0)d(t)
. (22)

Proof. (22) is straightforward from Theorems 4.1 and 4.2 of [17]. Others are obvious from Theorem

3.1 and the definition of various subgroups. �

FromCorollary 3.2,wemayobtain the following formula to evaluate the entries of Bell-typeRiordan

arrays.

Corollary 3.3. Let (dn,k)n�k�0 = (d(t), td(t))beaBell-typeRiordanarray. Then its inverse is (d∗
n,k)n�k�0

= (1/d(h̄(t))), h̄(t)), where h̄(t) is the compositional inverse of h(t). Their entries satisfy

dn,k = k + 1

n + 1

[
tn−k

] (
h̄(t)

t

)−n−1

= k + 1

n + 1

[
tn−k

]
(A(t))n+1, (23)

d∗
n,k = k + 1

n + 1

[
tn−k

] (
h(t)

t

)−n−1

= k + 1

n + 1

[
tn−k

]
(A∗(t))n+1, (24)

where A(t) and A∗(t) are defined in Theorem 3.1.

Proof. From the definition of dn,k, we have

dn,k = [tn]d(t)(h(t))k = [tn+1](h(t))k+1

= k + 1

n + 1
[tn−k]

(
h̄(t)

t

)−n−1

,

where the last step is an application of Lagrange inversion formula (see, for example, [8b] in [8]), which

gives the first formula of (23). The rightmost formula of (23) yields from the first formula of (21) in

Corollary 3.2. (24) can be proved similarly. �



T.X. He / Linear Algebra and its Applications 438 (2013) 1467–1484 1479

Remark 3.1. The first formula of (23) is given in [19] without a proof.

Proposition 3.4. Let (d(t), h(t)) be a Bell-type Riordan array satisfying h(t) = td(t), where d(0) �= 0.

If one of d(t), h(t), the A∗- and Z∗-sequence characterizations of D−1 is given, then other three can be

determined uniquely from the relations h(t) = td(t) and

Z∗(t) = d(0)− d(t)

d(0)td(t)
and A∗(t) = 1

d(0)
+ tZ∗(t). (25)

In addition, there hold the following relationships for evaluating d(t) or h̄(t) if one of them is given:

[
tn

]
d(t) = 1

n + 1

[
tn

] (
h̄(t)

t

)−n−1

= 1

n + 1

[
tn

]
(A(t))n+1 ,

[
tn

]
h̄(t) = 1

n

[
tn−1

]
(d(t))−n . (26)

Proof. The first equation has been proved in Corollary 3.2. Comparing two expressions of A∗ and Z∗
shown in (22), we immediately obtain the second equation of (25). The first formula of (26) can be

considered as the case of k = 0 of (23). To prove it directly, we only need to note

[
tn

]
d(t) = [

tn
] h(t)

t
=

[
tn+1

]
h(t)

and use the Lagrange inversion formula and the first formula of (21) in Corollary 3.2. Similarly, we have

the second formula of (26). �

We now use the generating function A(t) to find the expressions of (c, r)-Catalan numbers and the

entries of (c, r)-Catalan triangles.

Corollary 3.5. For the (c, r)-generalized Catalan number [tn] dc,r(t) defined by (9), there holds

[
tn

]
dc,r(t) =

n∑
j=0

(
2n − j

j

)
cn−jr

n−j(c − r)j, (27)

where cj =
(
2j

j

)
/(j + 1) is the jth Catalan number. In particular,

[
tn

]
dc,1(t)=

n∑
j=0

(
2n − j

j

)
cn−j(c − 1)j

=
n∑

j=0

(
2n − j

n − j

)
cj(c − 1)n−j

and

[
tn

]
d1,r(t)=

n∑
j=0

(
2n − j

j

)
cn−jr

n−j(1 − r)j

=
n∑

j=0

(
2n − j

n − j

)
cjr

j(1 − r)n−j.
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Proof. Consider Bell-type Riordan array (dc,r(t), h(t)) = (dc,r(t), tdc,r(t)), where dc,r(t) is defined
by (9), and find the compositional inverse of h(t) as

h̄(t) = t − rt2

1 + (c − r)t
.

Thus the corresponding sequence characteristic function

A(t) = t

h̄(t)
= 1 + (c − r)t

1 − rt
.

By using the above expression of h̄(t) and the first formula of (26), (27) can be proved as follows.

[
tn

]
dc,r(t)= 1

n + 1

[
tn

] (
1 + (c − r)t

1 − rt

)n+1

= 1

n + 1

[
tn

] n+1∑
k=0

∑
j�0

(
n + 1

k

)(
n + j

j

)
(c − r)n+1−krjtn−k+j+1

= 1

n + 1

∑
j�0

(
n + 1

j + 1

)(
n + j

j

)
rj(c − r)n−j

=
n∑

j=0

1

j + 1

(
n

j

)(
n + j

j

)
rj(c − r)n−j

=
n∑

j=0

1

n − j + 1

(
n

j

)(
2n − j

n

)
rn−j(c − r)j

=
n∑

j=0

1

n − j + 1

(
2n − j

j

)(
2n − 2j

n − j

)
rn−j(c − r)j

=
n∑

j=0

(
2n − j

j

)
cn−jr

n−j(c − r)j.

Substituting r = 1 into the rightmost equation,we obtain the special case, the (c, 1)-Catalan numbers.

Similarly, we have the expressions of (1, r)-Catalan numbers. �

If (c, r) = (2, 1), (27) gives thewell-knownexpression of large Schröder numbers (see, for example

[9])

[
tn

]
d2,1(t) =

n∑
j=0

(
2n − j

j

)
cn−j, j � 0.

Similarly, the small Schröder numbers have expression

[
tn

]
d1,2(t) =

n∑
j=0

(−1)j2n−j

(
2n − j

j

)
cn−j, j � 0.

A similar argument can be used to derive a formula of the entries dn,k of the (c, r)-Catalan triangle,

i.e., the entries dn,k of (dc,r(t), tdc,r(t)) for c, r ∈ N (Hence cr �= 0), which can be considered as the

parametric extension of the numbers of L-paths shown in (8).
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Corollary 3.6. For the generalized Catalan triangle (dn,k)n�k�0 = (dc,r(t), tdc,r(t)), where dc,r(t) is
defined by (9), there holds

dn,k =
n−k∑
j=0

k + 1

n − j + 1

(
n

j

)(
2n − k − j

n

)
rn−k−j(c − r)j, (28)

or equivalently,

dn,k = (k + 1)
n∑

j=0

[n − j]k
[2n − j]k

(
2n − j

j

)
cn−jr

n−k−j(c − r)j, (29)

where cj =
(
2j

j

)
/(j+1) is the jth Catalan number, [�]0 = 1, falling factorial and [�]k = �(�−1) · · · (�−

k + 1) for all k � 1.

Proof. From (23) in Corollary 3.3, we obtain

dn,k = k + 1

n + 1
[tn−k](A(t))n+1 = k + 1

n + 1

[
tn−k

] (
1 + (c − r)t

1 − rt

)n+1

= k + 1

n + 1

∑
j�0

(
n + 1

k + j + 1

)(
n + j

j

)
rj(c − r)n−k−j

=
n−k∑
j=0

k + 1

k + j + 1

(
n

k + j

)(
n + j

j

)
rj(c − r)n−k−j

=
n−k∑
j=0

k + 1

n − j + 1

(
n

j

)(
2n − k − j

n

)
rn−k−j(c − r)j

= (k + 1)
n−k∑
j=0

[n − j]k
[2n − j]k

1

n − j + 1

(
2n − j

j

)(
2n − 2j

n − j

)
rn−k−j(c − r)j,

which implies (29). �

It can be found that

(dc,r(t), tdc,r(t))
−1 =

(
1 − rt

1 + (c − r)t
,

t(1 − rt)

1 + (c − r)t

)
. (30)

Let (α(t), φ(t)) and (β(t), ψ(t)) be a pair of inverse matrices i.e.,

(α(t), φ(t))∗(β(t), ψ(t)) = (1, t).

Wedenote (α(t), φ(t)) and its inverse by (dn,k) and (d̄n,k), respectively. Then a pair of inversematrices

(dn,k) and (d̄n,k) can be used to generalize the combinatorial sum inversion

fn =
n∑

k=0

dn,kgk ⇔ gn =
n∑

k=0

d̄n,kfk, (31)

or equivalently,

F(t) = α(t)G(φ(t)) ⇔ G(t) = βF(ψ(t)),
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where F(t) and G(t) are the generating functions of sequences {fn} and {gn}, respectively. It is known

that

(dn,k)
−1 ≡ (d(t), h(t))−1 ≡ (d∗(t), h̄(t)) ≡ (d̄n,k), (32)

where h̄(t) is the compositional inverse of h(t) and

d∗(t) = 1

d(h̄(t))
. (33)

As an example, for the Pascal triangle (d(t), h(t)) = (1/(1 − t), t/(1 − t)) =
((

n

k

))
from (33) there

holds

(d∗(t), h̄(t)) =
(

1

1 + t
,

t

1 + t

)
=

(
(−1)n−k

(
n

k

))
,

which yields the well known sum inversion

fn =
n∑

k=0

(
n

k

)
gk ⇔ gn =

n∑
k=0

(−1)n−k

(
n

k

)
fk.

Another example can be found in Catalan matrix (C(t), tC(t)) = (dcn,k), where

C(t) = 1 − √
1 − 4t

2t

and the entries of the Catalan matrix are (see, for example [5])

dcn,k = [tn]tkC(t)k+1 = k + 1

n + 1

(
2n − k

n

)
, 0 � k � n.

It is easy to find

(C(t), tC(t))−1 = (1 − t, t(1 − t)) = (d̄cn,k),

where the matrix entries are

d̄cn,k = [tn]tk(1 − t)k+1 = (−1)n−k

(
k + 1

n − k

)
, 0 � k � n.

Thus we have the sum inversion

fn =
n∑

k=0

k + 1

n + 1

(
2n − k

n

)
gk ⇔ gn =

n∑
k=0

(−1)n−k

(
k + 1

n − k

)
fk.

Therefore, from (30), we have the sum inversion (need dn,k and d̄n,k .)

A similar argument can also be applied to give an expression of generalized Motzkin numbers in

terms of Classical Catalan numbers.
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Corollary 3.7. For the generalized Catalan number [tn] d̃c,r(t) defined by (19), there holds

[
tn

]
d̃c,r(t) =

n∑
j=0

(
n

2j − n

)
cn−jc

jrn−j, (34)

where cj =
(
2j

j

)
/(j + 1) is the jth Catalan number. In particular, for the Motzkin number Mn

Mn = [
tn

]
d̃1,1(t) =

n∑
j=0

(
n

2j − n

)
cn−j.

Proof. From Corollary 3.3 and noting the generating function of A-sequence of Motzkin triangle

(d̃c,r(t), td̃c,r(t)) is A(t) = 1 + ct(1 + rt), we have

[
tn

]
d̃c,r(t)= 1

n + 1

[
tn

]
(A(t))n+1 = 1

n + 1

[
tn

]
(1 + ct(1 + rt))n+1

= 1

n + 1

[
tn

] n+1∑
k=0

(
n + 1

k

)
cktk(1 + rt)k

= 1

n + 1

[
tn

] n+1∑
k=0

k∑
j=0

(
n + 1

k

)(
k

j

)
ckrjtk+j

= 1

n + 1

n+1∑
j=0

(
n + 1

n − j

)(
n − j

j

)
cn−jrj

=
n∑

j=0

1

n − j + 1

(
n

n − j

)(
j

n − j

)
cjrn−j

=
n∑

j=0

1

n − j + 1

(
n

2j − n

)(
2n − 2j

n − j

)
cjrn−j

=
n∑

j=0

(
n

2j − n

)
cn−jc

jrn−j,

completing the proof. �
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