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Abstract

We give a systematic view of the asymptotic expansion of two well-known sequences,

the central binomial coefficients and the Catalan numbers. The main point is explana-

tion of the nature of the best shift in variable n, in order to obtain “nice” asymptotic

expansions. We also give a complete asymptotic expansion of partial sums of these

sequences.

1 Introduction

One of the most beautiful formulas in mathematics is the classical Stirling approximation of
the factorial function:

n! ≈
√
2πn

(

n

e

)n

.

This is the beginning of the following full asymptotic expansions [1, 3], Laplace expansion:

n! ∼
√
2πn

(

n

e

)n(

1 +
1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+ . . .

)

(1)
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and Stirling series

n! ∼
√
2πn

(

n

e

)n

exp

(

1

12n
− 1

360n3
+

1

1260n5
+ . . .

)

. (2)

The central binomial coefficient has a well-known asymptotic approximation; see e.g., [3,
p. 35]:

(

2n

n

)

∼ 22n√
nπ

[

1− 1

8n
+

1

128n2
+

5

1024n3
− 21

32768n4
+ . . .

]

. (3)

Luschny [9] gives the following nice expansions:

(

2n

n

)

∼ 4n
√

Nπ/2

(

2− 2

N2
+

21

N4
− 671

N6
+

45081

N8

)

(4)

where N = 8n+ 2, and for the Catalan numbers

1

n+ 1

(

2n

n

)

∼ 4n−2

M
√
Mπ

(

128 +
160

M2
+

84

M4
+

715

M6
− 10180

M8

)

(5)

where M = 4n + 3. Here, for the sake of the beauty, the exact value 450803
4
is replaced by

45081, and 1017913
16

is replaced by 10180.
We would like to thank the anonymous referee who brought to our attention the existence

of the manuscript [10] where similar problems are treated. D. Kessler and J. Schiff proved
that expansion mentioned above contains only odd powers of n+ 1

4
(for the central binomial

coefficient) and n+ 3
4
(for Catalan numbers). In this paper we explain why this happens.

The main subject of this paper is to explain why N = 8n+2 and M = 4n+3 are the best
choices in such expansions, and also to obtain general form of these expansions, especially
in the case of the Laplace expansions. In the last section, the asymptotic expansion of the
partial sums of binomial coefficients and Catalan numbers are derived, using a simple and
efficient recursive algorithm.

2 Central binomial coefficients

Although the central binomial coefficient is expressed as Γ(2n+1)/Γ(n+1)2, expansions (1)
or (2) cannot be used for direct derivation of (3). Instead, one should use the asymptotic
expansion of the ratio of two gamma functions. In the standard reference [3], the connection
with generalized Bernoulli polynomials is used. This approach is improved in a series of
recent papers [4]–[7]. Namely, from the duplication formula for the gamma function we have

(

2n

n

)

=
Γ(2n+ 1)

Γ(n+ 1)2
=

4n√
π
·
Γ(n+ 1

2
)

Γ(n+ 1)
. (6)
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In [6], the following general asymptotic expansion of the quotient of two gamma functions
is given:

Γ(x+ t)

Γ(x+ s)
∼ xt−s

(

∞
∑

m=0

Pm(t, s, r)x
−m

)1/r

. (7)

Here, s, t and r 6= 0 are real numbers. Coefficients Pm = Pm(t, s, r) are polynomials defined
by

P0(t, s, r) = 1, (8)

Pm(t, s, r) =
r

m

m
∑

k=1

(−1)k+1Bk+1(t)−Bk+1(s)

k + 1
Pm−k(t, s, r) (9)

and Bk(t) stands for the Bernoulli polynomials.
In the sequel, we shall use the following properties of Bernoulli polynomials and Bernoulli

numbers:
(−1)nBn(−x) = Bn(x) + nxn−1,

Bn(1 + x) = Bn(x) + nxn−1,

B2n+1 = 0, (n ≥ 1),

Bn(0) = (−1)nBn(1) = Bn,

Bn(
1
2
) = −(1− 21−n)Bn,

Bn(−1
2
) = −(1− 21−n)Bn + (−1)n

n

2n−1
,

Bn(
1
4
) = −2−n(1− 21−n)Bn − n4−nEn−1,

Bn(
3
4
) = (−1)n+12−n(1− 21−n)Bn + n4−nEn−1.

(10)

Denote x = n+ α, t = 1/2− α, s = 1− α. Applying (6), we have

(

2n

n

)

∼ 22n√
xπ

(

∞
∑

k=0

Pk

xk

)1/r

(11)

where sequence (Pn) is defined by P0 = 1 and

Pm =
r

m

m
∑

k=1

Bk+1(
1
2
+ α)−Bk+1(α)

k + 1
Pm−k, m ≥ 1.

In order to obtain a useful formula, the parameter α should be chosen in such a way
that the values of Bernoulli polynomials can be (easily) calculated. Some simplifications are
also possible if these coefficients are connected in a way which reduces complexity of this
expression. Therefore, the following choices are indicated:

1) α = 0: this gives “natural” expansion in terms of powers of n. Although natural, this
choice usually is not the best one.
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2) α = 1
2
: this value leads to easily computable coefficients.

3) 1
2
− α = 1 − (1 − α): wherefrom it follows α = 1

4
. Here, the symmetry property of

Bernoulli polynomials is used, and this is the best choice for α.
4) 1

2
− α = −(1− α), i.e., α = 3

4
: This choice will also reduce computation.

The value of the Bernoulli polynomials may be calculated explicitly (in terms of Bernoulli
and Euler numbers) for some other constants α, for example α = 1

6
, but the values will be

“complicated” compared to the ones chosen above.
The expansions of the central binomial coefficients are given in the following theorem.

Theorem 1. The following asymptotic expansion is valid:

(

2n

n

)

∼ 4n
√

π(n+ α)

(

∞
∑

m=0

Pm(α)(n+ α)−m

)1/r

, (12)

where P0 = 1 and

1. for α = 0

Pm =
r

m

⌊(m+1)/2⌋
∑

k=1

(2−2k − 1)B2k

k
Pm−2k+1; (13)

2. for α = 1
4

Pm =
r

m

⌊m/2⌋
∑

k=1

2−2k−1EkPm−2k; (14)

3. for α = 1
2

Pm =
r

m

⌊(m+1)/2⌋
∑

k=1

(1− 2−2k)B2k

k
Pm−2k+1; (15)

4. for α = 3
4

Pm =
r

m

⌊m/2⌋
∑

k=1

2−2k−1(2− Ek)Pm−2k; (16)

Proof. Let us write
bk(α) = [Bk+1(

1
2
+ α)− Bk+1(α)].

We have
bk(0) = Bk+1(

1
2
)− Bk+1.

This value is equal to 0 for even k, and equal to (2−k − 2)Bk+1 for odd k, and hence (13)
follows.

For α = 1
4
,

bk(
1
4
) = Bk+1(

1
4
)[(−1)k+1 − 1]
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This is equal to 0 for odd k, and equal to (k + 1)2−2k−1Ek for even k.
Further,

bk(
1
2
) = (−1)k+1[Bk+1(0)− Bk+1(

1
2
)]

and (15) follows similarly as in the first case.
Finally,

bk(
3
4
) = Bk+1(

1
4
)[1− (−1)k+1] + (k + 1)4−k

As before, this is equal to 0 for odd k, and equal to (k + 1)2−2k−1(2− Ek) for even k. Thus
(16) follows, completing the proof of the theorem.

It is obvious that the choice α = 1
4
is superior to others. In fact, the equation

Bk+1(1/2− α) = Bk+1(1− α)

is an identity for each odd k only if α = 1
4
. Hence, this value of α is unique with the property

that the asymptotic expansion reduces to even terms.
We shall give the first few terms of asymptotic expansions of Pm(α) for the values of the

shift α observed in Theorem 1. Using r = 1 we get:

(

2n

n

)

∼ 4n√
πn

[

1− 1

8n
+

1

128n2
+

5

1024n3
− 21

32768n4

− 399

262144n5
+

869

4194304n6
+ · · ·

]

, (17)

(

2n

n

)

∼ 4n
√

π(n+ 1
4
)

[

1− 1

64
(

n+ 1
4

)2 +
21

8192
(

n+ 1
4

)4 − 671

524288
(

n+ 1
4

)6

+
180323

134217728
(

n+ 1
4

)8 − 20898423

8589934592
(

n+ 1
4

)10 + · · ·
]

, (18)

(

2n

n

)

∼ 4n
√

π(n+ 1
2
)

[

1 +
1

8
(

n+ 1
2

) +
1

128
(

n+ 1
2

)2 − 5

1024
(

n+ 1
2

)3

− 21

32768
(

n+ 1
2

)4 +
399

262144
(

n+ 1
2

)5 +
869

4194304
(

n+ 1
2

)6 + · · ·
]

, (19)

(

2n

n

)

∼ 4n
√

π(n+ 3
4
)

[

1 +
1

4
(

n+ 3
4

) +
5

64
(

n+ 3
4

)2 +
5

256
(

n+ 3
4

)3

+
21

8192
(

n+ 3
4

)4 +
21

32768
(

n+ 3
4

)5 +
715

524288
(

n+ 3
4

)6 + · · ·
]

, (20)
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3 The role of exponent r

The coefficients Pm(t, s, r) are polynomials in r of degree m, which follows directly from the
recursive formula (9).

Theorem 2. Let α = 0. Then

Pm(t, s,−r) = (−1)mPm(t, s, r). (21)

Proof. By induction. (21) holds for m = 0 and m = 1. The rest is obvious from (13).

As a corollary, we get that the coefficients of the expansion for r = −1 are identical, up
to the sign of odd powers, to the coefficients of the expansion for r = 1. Therefore, from
(17) it follows immediately that

(

2n

n

)−1

∼
√
πn

4n

[

1 +
1

8n
+

1

128n2
− 5

1024n3
− 21

32768n4

+
399

262144n5
+

869

4194304n6
+ · · ·

]

. (22)

Various choices of r may give useful expansions. For example, r = 4 and N = 4n leads
to a good approximation with the first two terms:

(

2n

n

)

∼ 22n+1

√
πN

4

√

1− 2

N
+

2

N2
− 2

N4
− 4

N5
− 12

N6
+ . . .

while r = 2 and N = 8n+ 2 gives a good square root analogue of the formula (4):

(

2n

n

)

∼ 4n+1

√
πN

√

1

2
− 1

N2
+

11

N4
− 346

N6
+

22931

N8
+ . . ..

4 Catalan numbers

The standard definition of Catalan numbers is given by a recurrence relation, C0 = 1 and

Cn+1 =
n
∑

k=1

CkCn−k.

Catalan numbers occur in various situations. For instance, Stanley [12, p. 219] explains 66
such situations.

The starting point for us will be the following explicit formula:

Cn =
1

n+ 1

(

2n

n

)

=
Γ(2n+ 1)

Γ(n+ 1)Γ(n+ 2)
(23)
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Hence, Catalan numbers can be expressed as a ratio of two gamma functions

Cn =
4n√
π
·
Γ(n+ 1

2
)

Γ(n+ 2)
. (24)

Putting x = n+ α, t = 1
2
− α, s = 2− α, from (9) we get

Cn ∼ 4n√
π
x−3/2

(

∞
∑

m=0

Pmx
−m

)1/r

, (25)

with P0 = 1 and

Pm =
r

m

m
∑

k=1

ck(α)Pm−k, (26)

where we denote

ck(α) =
Bn+1(α + 1

2
)− Bk+1(α− 1)

k + 1
. (27)

As before, 0 and 1
2
are the natural choice for α. Two other good values follow from

α+ 1
2
= 1− (α−1) and α+ 1

2
= −(α−1), wherefrom one gets α = 3

4
and α = 1

4
, respectively.

Theorem 3. The following asymptotic expansion holds:

Cn ∼ 4n√
π
(n+ α)−3/2

(

∞
∑

m=0

Pm(α)(n+ α)−m

)1/r

, (28)

where P0 = 1 and

1. for α = 0

Pm =
r

m

m
∑

k=1

[

(2−k − 2)Bk+1

k + 1
+ (−1)k

]

Pm−k; (29)

2. for α = 1
2

Pm =
r

m

m
∑

k=1

[

(2− 2−k)Bk+1

k + 1
+

(−1)k+1

2k

]

Pm−k; (30)

3. for α = 3
4

Pm =
r

m

⌊m/2⌋
∑

k=1

2 · 4−2k−1(4− E2k)Pm−2k; (31)

4. for α = 1
4

Pm =
r

m

m
∑

k=1

[2−2k−1Ek + (−3
4
)k]Pm−k. (32)
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Proof. We need to compute explicit coefficients in formula (25).
1) α = 0:

ck(0) =
Bk+1(

1
2
)−Bk+1(−1)

k + 1

Using (10), we have

ck(0) =
−(2− 2−k)Bk+1

k + 1
− (−1)k+1

and (29) follows.
2) α = 1

2
:

ck(
1
2
) =

Bk+1(1)−Bk+1(−1
2
)

k + 1

Using (10), we have

ck(
1
2
) =

(2− 2−k)Bk+1

k + 1
+

(−1)k

2k
.

3) α = 3
4
:

ck(
3
4
) =

Bk+1(
5
4
)−Bk+1(−1

4
)

k + 1

Since

Bk+1(
5
4
) = Bk+1(

1
4
) + (k + 1)

1

4k
,

Bk+1(−1
4
) = (−1)k+1

[

Bk+1(
1
4
) +

k + 1

4k

]

it follows

ck(
3
4
) =

1 + (−1)k

k + 1

[

Bk+1(
1
4
) +

k + 1

4k
.

Therefore, for odd k we have ck(
3
4
) = 0. For even k it follows

ck(
3
4
) =

2Bk+1(
1
4
)

k + 1
+

2

4k

= −2 · 4−k−1Ek + 2 · 4−k.

This proves (31).
4) α = 1

4
:

ck(
1
4
) =

Bk+1(
3
4
)−Bk+1(−3

4
)

k + 1

Since
Bk+1(−3

4
) = (−1)k+1

[

Bk+1(
3
4
) + (k + 1)(3

4
)k
]

8



it follows

ck(
5
4
) =

1

k + 1
Bk+1(

3
4
)[(−1)k + 1] + (−1)k(3

4
)k.

Therefore, for odd k it holds
ck(

1
4
) = (−3

4
)k.

For even k, after reducing in a similar way as before, we get

ck(
1
4
) = −2 · 4−k−1Ek + (−3

4
)k.

For odd k this values coincides with previous one, since E2n+1 = 0. Hence, (32) is proved.

For the convenience of the reader, here is the short list of the observed coefficients, for
r = 1:

Cn ∼ 4n√
πn3

[

1− 9

8n
+

145

128n2
− 1155

1024n3
+

36939

32768n4

− 295911

262144n5
+− 4735445

4194304n6
+ · · ·

]

, (33)

Cn ∼ 4n
√

π(n+ 1
2
)3

[

1− 3

8
(

n+ 1
2

) +
25

128
(

n+ 1
2

)2 − 105

1024
(

n+ 1
2

)3

+
1659

32768
(

n+ 1
2

)4 − 6237

262144
(

n+ 1
2

)5 +
50765

4194304
(

n+ 1
2

)6 + · · ·
]

. (34)

Cn ∼ 4n
√

π(n+ 3
4
)3

[

1 +
5

64
(

n+ 3
4

)2 +
21

8192
(

n+ 3
4

)4 +
715

524288
(

n+ 3
4

)6

− 162877

134217728
(

n+ 3
4

)8 +
19840275

8589934592
(

n+ 3
4

)10 + · · ·
]

. (35)

Cn ∼ 4n
√

π(n+ 1
4
)3

[

1− 3

4
(

n+ 1
4

) +
35

64
(

n+ 1
4

)2 − 105

256
(

n+ 1
4

)3

+
2541

8192
(

n+ 1
4

)4 − 7623

32768
(

n+ 1
4

)5 +
90805

524288
(

n+ 1
4

)6 + · · ·
]

. (36)

As one can see, the expansion in terms of n+ 3
4
has additional property that it contains

only odd terms.
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Corollary 4. The value α = 3
4
is the unique value for which asymptotic expansion of Catalan

numbers contains only odd terms.

Proof. If this is the case, then coefficient c1(α) from (27) must vanish:

B2(α + 1
2
)−B2(α− 1) = 0.

From this one obtain α = 3
4
.

5 Expansions of Stirling’s type

Stirling expansion of the factorial function (2) includes the exponential function. Using the
known asymptotic expansion

ln Γ(x+ t) = (x+ t− 1
2
) ln x− x+ 1

2
ln(2π) +

∞
∑

k=1

(−1)k+1Bk+1(t)

k(k + 1
x−k

we immediately get

Γ(x+ t)

Γ(x+ s)
∼ xt−s · exp

(

∞
∑

k=1

Qk(t, s)x
−k

)

(37)

where Qk(t, s) are polynomials of order k defined by

Qk(t, s) =
(−1)k+1Bk+1(t)−Bk+1(s)

k(k + 1)
. (38)

Hence, we obtain:

Theorem 5. The binomial coefficient has the following asymptotic expansions of Stirling’s

type:
(

2n

n

)

∼ 4n√
πn

exp

( ∞
∑

k=1

(2−2k − 1)B2k

k(2k − 1)
n−2k+1

)

(39)

(

2n

n

)

∼ 4n
√

π(n+ 1
4
)
exp

( ∞
∑

k=1

2−4k−2E2k

k
n−2k

)

. (40)

The proof is already carried out in the Theorem 1.

A similar result can be stated for Catalan numbers:

Theorem 6.

Cn ∼ 4n

n
√
πn

exp

( ∞
∑

k=1

(−1)k+1 (2
−k − 2)Bk+1 − k − 1

k(k + 1)
n−k

)

(41)

Cn ∼ 4n
√

π(n+ 3
4
)3

exp

( ∞
∑

k=1

2−4k−2(4− E2k)

k
(n+ 3

4
)−2k

)

. (42)

Formulae (39)–(42) are derived in the manuscript [10].
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6 The sum of binomial coefficients and Catalan num-

bers

In a recent paper, Mattarei [11] proves the following asymptotic expansions:

n
∑

k=0

(

2k

k

)

=
4n+1

3
√
πn

(

1 +
1

24n
+

59

384n2
+

2425

9216n3
+O(n−4)

)

(43)

n
∑

k=0

Cn =
4n+1

3n
√
πn

(

1− 5

8n
+

475

384n2
+

1225

9216n3
+O(n−4)

)

(44)

The calculation was tedious. For example, it relies on a computer algebra system, since it is
based on the following formulas:

n
∑

k=0

(

2k

k

)

=
4

3

(

2n

n

) m
∑

j=0

3−j

(2n− 1)(2n/3− 1) · (2n/(2j − 1)− 1)
+O(4nn−m−3/2),

n
∑

k=0

Cn =
2

3

(

2n

n

) m
∑

j=0

(−3)j + 3−j

(2n− 1)(2n/3− 1) · (2n/(2j + 1)− 1)
+O(4nn−m−5/2)

The final calculation of the coefficients (43) and (44) was carried out using Maple, with
m = 4.

We shall derive an efficient algorithm for recursive calculations of asymptotic expansions
of this and similar sums, which enables an easy calculation of the arbitrary coefficient in
these expansions.

The theorem will be formulated in such a way that it may be easily applied to both
binomial and Catalan sums. It is evident that a similar statement is valid for the asymptotic
expansion of the sum of more general functions.

Theorem 7. Suppose that a(n) has the following expansion, P0(α) = 1 and

a(n) ∼ 4n√
π

∞
∑

k=0

Pk(α)(n+ α)−k−r, (45)

where r > 0 is a real number. Then

n
∑

k=0

a(k) ∼ 4

3
· 4

n+1

√
π

∞
∑

k=0

Sk(α)(n+ α)−k−r (46)

where the coefficients of this expansion satisfy S0(α) = 1 and

Sk(α) = Pk(α) +
1

3

k−1
∑

j=0

(−1)k−j

(

−j − r

k − j

)

Sj(α) (47)
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Proof. Denote Σ(n) =
∑n

k=0 a(k). Suppose that

Σ(n) ∼ C · 4n√
π
n−r +O(n−r−1).

Then

Σ(n) ∼ a(n) + Σ(n− 1)

∼ 4n√
π
n−r + C · 4

n−1

√
π

(n− 1)−r +O(n−r−1)

∼ 4n√
π
n−r + C · 4

n−1

√
π

n−r +O(n−r−1)

∼ C · 4n√
π
n−r +O(n−r−1)

and from here it follows that C = 4
3
. The fact that Σ(n) indeed has the asymptotic behavior

of this type may be proved in the same way as it is done for the case r = 1/2 in [11].
Hence, we obtain that Σ(n) has the asymptotic expansion of the following form:

Σ(n) =
4n+1

3
√
π

∞
∑

k=0

Sk(α)(n+ α)−k−r. (48)

Then, using the asymptotic expansion (45), we get

4n+1

3
√
π

∞
∑

k=0

Sk(α)(n+ α)−k−r

=
4n√
π

∞
∑

k=0

Pk(α)(n+ α)−k−r +
4n

3
√
π

∞
∑

k=0

Sk(α)(n+ α− 1)−k−r

=
4n√
π

∞
∑

k=0

Pk(α)(n+ α)−k−r

+
4n

3
√
π

∞
∑

k=0

Sk(α)(n+ α)−k−r

∞
∑

j=0

(−1)j
(

−k − r

j

)

(n+ α)−j.

Hence

4Sk(α) = 3Pk(α) +
k
∑

j=0

(−1)k−j

(

−j − r

k − j

)

Sj(α).

Extracting from the right side the member Sk, we get (47).
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Taking α = 0 and r = 1/2 or r = 3/2, it is easy to obtain the following asymptotics:

n
∑

k=0

(

2k

k

)

∼ 4n+1

3
√
πn

(

1 +
1

24n
+

59

384n2
+

2425

9216n3
+

576793

884736n4

+
5000317

2359296n5
+

953111599

113246208n6
+ . . .

)

n
∑

k=0

Cn ∼ 4n+1

3n
√
πn

(

1− 5

8n
+

475

384n2
+

1225

9216n3
+

395857

98304n4

+
27786605

2359296n5
+

6798801295

113246208n6

)

.

Here, there is no good value of α which would lead to the expansion similar to (18) or
(35), as it is evident from the formula (47).
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