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Abstract

We prove that the Hankel transformation of a sequence whose elements are the
sums of two adjacent Catalan numbers is a subsequence of the Fibonacci numbers.
This is done by finding the explicit form for the coefficients in the three-term recur-
rence relation that the corresponding orthogonal polynomials satisfy.

1. INTRODUCTION

Let A = {ao, a1, as, ...} be a sequence of real numbers. The Hankel matrix gener-
ated by A is the infinite matrix H = [h; |, where h; ; = a;4j_o, i.e.,
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The Hankel matriz H, of order n is the upper-left n x n submatrix of H and
the Hankel determinant of order n of A, denoted by h,,, is the determinant of the
corresponding Hankel matrix.

For a given sequence A = {ao, a1, as, ...}, the Hankel transform of A is the corre-
sponding sequence of Hankel determinants {hg, hy, he, ...} (see Layman [5]).

The elements of the sequence in which we are interested (A005807 of the On-Line
Encyclopedia of Integer Sequences (EIS) [10], also INRIA [3]) are the sums of two
adjacent Catalan numbers:

an = cn)+e(n+1) = — (2n)+ 1 (2n+2)

n+1\n n+2\n+1
(2n)!(5n+4)

= W (n:0,1,2,)

This sequence starts as follows:
2, 3, 7, 19, 56, 174...

In a comment stored with sequence A001906 Layman conjectured that the Han-
kel transformation of {a,},>o equals the sequence A001906, i.e., the bisection of
Fibonacci sequence. In this paper we shall prove a slight generalization of Layman’s
conjecture.

The generating function G(x) for the sequence {a,},>o is given by

G(l’):zan%n:i((1_\/1_2;lx)(1+x)—1) (1)

It is known (for example, see Krattenthaler [4]) that the Hankel determinant h,,
of order n of the sequence {a, },>0 equals

ho = ag B 8572+ B2 ofn1, (2)
where {f,, },>1 is the sequence given by:

[ele} . CZO
G(z) = z%anw = o (3)
n= 1 4+ apr —
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The sequences {a, }n>o and {5, },>1 are the coefficients in the recurrence relation

Pn+1(x) = (:I) - an)Pn(x) - ﬁnpn—l(x)

where {P,(z)},>0 is the monic polynomial sequence orthogonal with respect to the
functional L determined by

Liz"=a, (n=0,1,2,...). (4)

In the next section this functional is constructed and a theorem concerning the
polynomials {P,(z)},>0 and the sequences {ay, }n>o and {5, }n>1 is proved.

2. MAIN THEOREM

We would like to express L[f] in the form:

Lif () = /R f(@)di(z),

where 1(x) is a distribution, or, even more, to find the weight function w(x) such
that w(x) = ¢'(z).

Denote by F'(z) the function

F(z)= Z apz F
k=0

From the generating function (1), we have:

F(z):z_lG(z_l):%{2—1—(z+1)\/1—§}. (5)

From the theory of distribution functions (see Chihara [1]), we have Stieltjes inver-
sion function

P(t) —Y(s) = —%/g SF(x +iy)d. (6)
Since F(2) = F(z), it can be written in the form
1 t
v(t) = ¥(0) = —5 lm | Flo+iy) — F(z — iy)] dz. (7)

Knowing that

! 1 4 4
F dr==q9a*\/1———2t+2at +1* — )2y /1 —
/0 (x +a)dz 4{@ - + 2at + (a+1) P
4 4
—210g<—2+a+a 1——)+21og(—2—|—a+t+(a+t) 1- ),
a a+t
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we find the distribution function

Lt t(4—t)—8<7r—arctan ”;{tt)t)}, 0<t<2;
P(t) =
L twﬂ4—w—8mmm1%tm}; 2<t <4

After differentiation of ¢(¢) and simplification of the resulting expression, we
finally have:

M@=%@+D %_L v € (0,4). (8)

In this way, we obtained the positive-definite L that satisfies (4) and proved that
the corresponding orthogonal polynomial sequence exists. We have

Theorem 1. The monic polynomial sequence { P,(z)} orthogonal with respect to the

linear functional
I 4
L) =5 [ @)+ 12— 1, ©Q

satisfies the three-term recurrence relation

Pn—i—l(x) - (I - an)Pn(x) - ﬁnPn—l(x)7 (10)
with
5 L B =14 — k>0 (11)
Ap =424 — n — ) =
F2n+1F2n+3 F22n+1

where F; is the i-th Fibonacci number.

Example 1. The first members of this sequence are:

3
17 8
Py(x) = 2%~ Ea

70, 95 21

Py(z) = 2%~ 1—3x2+ TERARETY
951 . 290 . 435 55

p e B A 29
1(7) Y R R N T B VI Y]

Notice that Pn(O) = (-1)”F2n+2/F2n+1.
Proof of Theorem 1. Denoting by W, (z) = (1/2-1/2) () (n > 0) a special

Jacobi polynomial, which is also known as the Chebyshev polynomial of the fourth
kind.

The sequence of these polynomials is orthogonal with respect to pt/2=1/2)(z) =
(1 — 2)2(1 + x)~/2 on the interval (—1,1). These polynomials can be expressed



(Szegd [9]) by
. l 0
W, (cos ) = w
2" sin 50

and satisfy the three-term recurrence relation (Chihara [1]):

Wi (z) = (. — ay) Wi(z) = BiWyoi(z) (n=0,1,...),
W— ( ) = 0 WO(‘T = ]-7
where
O‘O__§7 o, =Y, ﬁozﬂv n_i (nZl)

If we use the weight function p(t) = (t — ¢)p*/2~1/2)(t), then the corresponding
coefficients &, and [3,, can be evaluated as follows (see, for example, Gautschi [2])

A Wi1(c) . Walo)

Gp =cC— M :

Wa(c) Wi (c)
5 e Was1(0)Waii (o)
ST e
Here, we use ¢ = —3/2 and p(x) = (z + 3/2)(1 — 2)Y/2(1 + z)~1/2.

(12)

n € N. (13)

If we write A, = W, (—3/2) then, using the three-term recurrence relation for
W, (z), we have
4>\n+1 + 6)‘71 + )‘n—l =0,

with initial values \p =1, M\ = —1.
So, we find

An:w@psm):;;2;{m@44x3+v%W+wv%—1x3—vgw}.

Denoting by

1+v5 - 1-45
p=—95— bo=— (14)
the golden section numbers, we can write:
D™ o —2n+1 1"
A= Wa(-3/2) = S g gy g )

V5 2 2"

In order to simplify further algebraic manipulations we shall use
Fon1Fonys = F, 0 +1 (16)
This formula is a special case of the identity (Vajda [12]):
Gn+i)Hn+k)—Gn)H(n+1i—k)=(-1)"(G()H (k) — G(O)H(i + k)) (17)

where GG and H are sequences that satisfy the same recurrence relation as the Fi-
bonacci numbers with possibly different initial conditions. However, we take both
G and H to be the Fibonacci numbers and n — 2n+ 1, =2k = —2.



Now
5, = lAn—l)\n—FlleQn—lFQn—H’)
! 4 A 4 F22n+1
1 1
il e s
and
~ 3 )\nJrl 1 )\n
&, = —=—

2 A A
—3Fon1Fonys + F3 s+ F3 iy
2Fon11Fonys
F3 o — Fons1Fonys
2F2n+1F2n+3
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If a new weight function p(z) is introduced by
p(x) = plaz +b)

then we have X
Gp — b -
an = 5 ﬁn = /8—2
a a
Now, by using = — z/2 — 1, i.e., a = 1/2 and b = —1, we have the wanted weight
function

(n>0).

1 4 —
wi@) = (5 —1) = Flo+ 1)/ —=
Thus
5 1
4 DR 19
@ (g2nt1 — 52”+1)<¢2n+3 _ 52“3) Fopi1Fongs (19)
and
5
571 + (¢2n+1 . 52n+1)2 + F22n+1 ( O)

finishing the proof of (1) .00

3. LAYMAN’S CONJECTURE

By making use of (2) we have that:

n—1 n—2
By = ap (14— 14 14— (21)




Using (16) we can write (21) as:

o (F1F5)"1(F3F7>“<F5F9>"3_ B3P 22)
T\ Fy F7 F
Since ag = 2 = F3 the corresponding factors cancel, therefore:
hn = F2n+1 (Tl > 0)7

thus proving that Hankel transform of A005807 equals A001519 -sequence of Fi-
bonacci numbers with odd indices.

As we have mentioned in the introduction, Layman observed that the Hankel
transform of A005807 equals A001906 -sequence of Fibonacci numbers with even
indices. This sequence is obtained if we start the Hankel matrix from a; = 3, i.e.,
determinants will have a; on the position (1,1).

The proof of this fact is almost identical with the proof presented here, and
so we do not include it. Notice that now we construct L[z"] = a,y; and that
ap = 3 = Fy; in (17) we take n — 2n. We also use the easily provable fact

P,(0) = (—1)"Fopio/Foni1 (see Example 1).

Finally we mention that, following Layman [5], it is known that the Hankel trans-
form is invariant with the respect to the Binomial and Invert transform, so all the
sequences obtained from A005807 using these two transformations have the Hankel
transform shown here.
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