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Abstract

Recently, by making use of the familiar group-theoretic (Lie algebraic) method, a
certain mixed trilateral finite-series relationship was proven for the generalized Bessel
polynomials. The main object of this paper is to derive several substantially more
general families of bilinear, bilateral, and mixed multilateral finite-series relationships
and generating functions for these and other related classes of hypergeometric poly-
nomials. A duly corrected and modified analogue of the aforementioned trilateral finite-
series relationship is shown to follow by suitably specializing one of the general results
presented here. Several closely related (presumably new) finite-series relationships and
generating functions, some of which also involve (for example) the Stirling numbers of
the second kind, are onsidered rather briefly.
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1. Introduction, definitions, and preliminaries

The simple Bessel polynomials y,(x) defined by

(1)1 )etey

k=0

yn(x) :

and the generalized Bessel polynomials y,(x; o, f) or Y*(x) defined by

Gt O R R

are known to arise naturally in a number of seemingly diverse contexts (see, for
details [5,6,8,14]). Clearly, the definitions (1.1) and (1.2) immediately imply the
relationship:

Yu(xX) = 3(x;2,2) = Y (x)  (n€ Ng:={0,1,2,...}). (1.3)

Furthermore, in terms of a generalized hypergeometric function ,F,(z) with p
numerator and ¢ denominator parameters, it is easily seen from the definition
(1.2) that

2x
yn(x;ouﬁ)=zFo(—n;oc+n+1;-;—£>ZK,“(—)- (1.4)
B i
Indeed, by reversal of the order of terms of the hypergeometric polynomials
in (1.4), it is also observed that

Yulx; 00, B) n!<%>nLi““‘2")(§> (1.5)
or, equivalently,
LY(x) = (_n’f)" y,,(f;l —a—zn,ﬁ), (1.6)

where L") (x) denotes the classical Laguerre polynomials defined by (cf., e.g.
[17, p. 101])

=3 (05 Cf ("3 )ritma 152 (17)

k=0

Recently, by making use of the familiar group-theoretic (Lie algebraic)
method, which is described fairly adequately by (for example) Miller [10],
McBride [9], and Srivastava and Manocha [16], Mukherjee [11] proved a cer-
tain mixed trilateral finite-series relationship for the generalized Bessel poly-
nomials y,(x; a, f) defined by (1.2). We choose first to recall here the main result
of Mukherjee [11] in the following (corrected as well as modified) form:
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Theorem 1 (cf. Mukherjee [11, p. 87]). If there exists a generating relation of
the form:

G(x,u,w) = Zak Vuk(x; 0+ k, B) gr(u)wh, (1.8)
=0
then
X t :
1=0"G(——u,—) = a ¢ P(x, 1) ge(w)?, (1.9)
(1 -t 71— z) s g
where
@iy e S (7 . !
o) = 30 (" oot 1) ()’ (110)
=0

Theorem 1 is actually stated and proved by Mukherjee [11] not only with the
parameter o unnecessarily constrained to be a nonnegative integer, but also
with n replaced trivially by n — k for an obviously redundant parameter
(o, n,k,n — Kk € Ny). As a matter of fact, Theorem 1 would follow rather simply
as an immediate consequence of the known result (cf., e.g., [15, p. 106, Eq.

(1.26)]):

> <Z>)’n—k(x;oz+k,ﬁ)t" = (1+1) yn(l%t;a,ﬁ) (1.11)

k=0
which, in view of the relationship (1.5) or (1.6), is essentially the same as the

relatively more familiar classical result (cf., e.g., [4, p. 348, Eq. (27)], [1, p. 142,
Eq. (18)], and [7, p. 319, Entry (48.19.2)]):

Sy (x)g = L9(x —1), (1.12)
k=0 :

which, in turn, is the Taylor expansion of L* (x — ¢) in powers of ¢, since

o ["Hx—1) (k=0,1
o= I Lo =1 ( J1,.00,n), 1.13
o (=0} {0 kentlnt2nts,.. ) 13

By applying the known result (1.11), we find from the definition (1.10) that

o (rt) = (1= 0" (=32 8) (1€ No) (1.14)
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so that, in view of the hypothesis (1.8), we have

n n k
> a0 ) et = (=0 D S (7Bt ()
= (1-0'6( ;i) (115)

which is precisely the left-hand side of the assertion (1.9) of Theorem 1.

In this paper, we first derive a much deeper application of the known result
(1.11). We then present a similar application of another known result (cf., e.g.,
[15, p. 104, Eq. (1.19))):

kz:): (Z) (0 +n—1)-x(x;0 + 24, ﬁ)(é)k =nx+ 60, p), (1.16)

which, in view of the relationship (1.5) or (1.6), is essentially the same as a fairly
well-known (rather classical) result (cf. [18, p. 85, Eq. (9)] and [9, p. 35, Eq.
(DD:

Sl AEIATICERYES npe X
;( . )L”k(x)t = (1+1)"L! (1+z>’ (1.17)

which, in turn, is an obvious special case of the familiar generating function (cf.
[16, p. 132, Eq. 2.5(5) et seq.]):

kf; (a(f';)k@@(x)ﬂf — - A (- ) (<)

(1.18)

when 2 = —n (n € Ny), (A), :=T'(A+x)/I'(1) being the Pochhammer symbol
(or the shifted factorial, since (1), = k! for k € Ny).

2. Generating functions based upon the formulas (1.11) and (1.16)
By applying the formula (1.11), we first prove

Theorem 2. Corresponding to an identically nonvanishing function Q,(¢,,. .., &)
of s (real or complex) variables &, ..., ¢ (s € N:= Ny \ {0}) and of (complex)
order u, let

[n/q)
Ai,?;yq[x; 617 ey és;z} = Zak ynqu(x; o+ (p + l)qk7 ﬁ)Q;Hrpk(ila ceey és)zk

k=0

(ax #0; n,k € No; p,q € N), (2.1)
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where p is a suitable complex parameter. Suppose also that

[k/q]

2, —ql

OFIn (s &y, G = (Z _ Zl>azynk(x; o+ pql +k, B)
=0

: Q/Hrpl(éla R és)nl' (22)
Then

~ g, " x nt?
; @k‘Z;()ﬁ 617 DRI éw ”I)tk = (1 + t) A;(z%;yq |:1—_’_t7 él? sy 5?,7

provided that each member of (2.3) exists.

Proof. For convenience, let A(x,¢) denote the first member of the assertion
(2.3). Then, upon substituting for the polynomials

from the definition (2.2) into the left-hand side of (2.3), we obtain

n [k/q] _ l
A =3"¢Y (" 1 )al Yuk (504 pql + b B) Qe (G ENT

= = \k—ql
[n/q) nql s n gl
q
= § a Q;H»pl(éla"’aés)(r’tq)l § : ( )
1=0 k=0 k

Vueq-k (i@t (p + Vgl + k, )L,
which, in view of (1.11) with
n—n—ql and a—a+(p+1)gl (I €Ny),
yields

[n/q]
n X
Mxi) = (10" S e (i (o Datop)
1=0

nt '
'Q;L-%—pl(élv"wél)((l+t)q> )

and the assertion (2.3) follows immediately by means of the definition
2.1). O

In a similar manner, by appealing to the formula (1.16), we are led fairly
easily to

Theorem 3. Corresponding to an identically nonvanishing function Q,(&,,. .., &)
of s (real or complex) variables &\, ..., & (s € N) and of (complex) order u, let
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[n/q]

npq[ 517 ceey és’ } = Zak J’nqu(?ﬁ o+ ka AB)Q#erk(éla ceey is)zk
k=0
(ax #0; n,k € Ny; p,q € N), (2.4)

where p is a suitable complex parameter. Suppose also that

W [ gl
ZZ[’;( él7"'7év7 )—Z< )(och(p—l)qlJrn—l)k_ql
=

k—ql
) yﬂ*k(x; o+ (:0 - 2)ql + 2k7 ﬁ)gﬂ+pl(éla ) fs)”ll-
(2.5)
Then
(DZZI@(X, 611 teey 53" ”)tk = AE,%I);q[x + ﬁta 517 R éw ﬂqu (26)
k=0

provided that each member of (2.6) exists.

3. Finite-series relationships involving the Stirling numbers of the second kind

We follow the work of Riordan [12, p. 90 ef seq.] and denote by S(n, k) the
Stirling numbers of the second kind, defined by

sty o= -0 (45)7, (1)

so that
S(1,0)=0,0 (neNy), Sn1)=Sm,n) =1, and S(nk)=0 (k >n),
(3.2)

where §,,, denotes the Kronecker delta.

Starting from the generating functions (1.11) and (1.16), and making use of
the definition (3.1), it is not difficult to derive the following (presumably new)
finite-series relationships (associated with the Stirling numbers S(n, k) of the
second kind) for the generalized Bessel polynomials:

m

3 <’Z >k” i+ k, )2

k=0
min(m,n) X z k
m k m— T ka
=0 ( ) (b k<1+z * ﬁ>(1+z)

(m,n € Ny); (3.3)
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(3w D+ 26,92

min(m,n)

Z ( )k‘ S, k) ymi(x + Pzio+ 2k, B (moneNy).  (3.4)

k=

Equivalently, for the classical Laguerre polynomials, the finite-series relation-
ships (1.12) and (1.17) would readily yield

m min(m,n)
kn
L (x) S(n k)LD (x — 225 (m,n € Ny) (3.5)
= K k=0
and
m o+ m @ min(m,n
( i )k”Lmk(x)zk " ( ) S(n, k)
k=0 k=0
( X z k
L N
m_k<1—|—z><l—|—z) (m,m € No)
(3.6)
respectively.

In their special cases when n = 0, the finite-series relationships (3.3) to (3.6),
associated with the Stirling numbers S(n,k) defined by (3.1), would reduce
immediately to the known results (1.11), (1.16), (1.12), and (1.17), respectively.

4. Further remarks and observations

First of all, a duly corrected and modified analogue of the main result of
Mukherjee [11, p. 87] can be deduced from Theorem 2 by first setting

p:q:s:l

and then making some obvious notational changes.

Each of our results (Theorems 2 and 3) can easily be restated in terms of the
classical Laguerre polynomials by using the relationship (1.5) or (alternatively)
by applying the known results (1.12) and (1.17) directly. For the sake of
completeness, however, we merely state these variants of Theorems 2 and 3 as
Theorems 4 and 5.

Theorem 4. Corresponding to an identically nonvanishing function Q,(&,,. .., &)
of s (real or complex) variables £, ..., & (s € N) and of (complex) order p, let
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[n/q]
AD) e Eg2 =) a L (0@ (E, L E)2
k=0
(ar # 0; n,k € No; p,g € N), (4.1)

where p is a suitable complex parameter. Suppose also that

[k/q]
\’Z a o
kzﬁ( 617 ceey 6?7 ’I) = Z ﬁLij;cpqlJrk)(x)Q#wLpl(él» teey fs)ﬂl-
= (k—ql)!
(4.2)
Then
quzzéj 517"-;és;n)tk:Ail?;,q[x—t; 515"'7és;n[q]a (43)
provided that each member of (4.3) exists.
Theorem 5. Corresponding to an identically nonvanishing function Q,(&,,. .., &)

of s (real or complex) variables &\, ..., & (s € N) and of (complex) order u, let

[n/q]
npq[ 517 ey és’ } = Za LnZZiqk)(x)Qqupk(ih ey és)zk
k=0
(ar # 0; n,k € No; p,g € N), (4.4)

where p is a suitable complex parameter. Suppose also that

Y fo+(p—1)gl +n
Ek‘ZZ( 617"'555‘7 ):Z( k—ql )61[

=0
'LEECMZ) (X)prl(éla cee gs)ﬂl- (4.5)
Then

n

S S s G = (400 [ iy
“k.n, S PRy n $CLy -5 Cygs ,
= PO+ ¢ (1+12)?

(4.6)

provided that each member of (4.6) exists.

Other linear generating functions for the Bessel polynomials, which have
already been exploited extensively in deriving the corresponding substantially
general families of bilinear, bilateral, and mixed multilateral generating func-
tions, include (for example) the following results:
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Zka — 2x) 1P ey (x’l{l -V —2xz})
: (L> ( eN-|t|<l) (4.7)
MVvicae) \"T 0 EIRL) '

which yields Corollary 2 of Srivastava [13, Part I, p. 229] (see also [16, p. 421,
Corollary 2]), given by

Theorem 6. Corresponding to an identically nonvanishing function Q,(&,,. .., &)
of s (real or complex) variables &\, ... & (s € N) and of (complex) order u, let

zZ
mpq[ El?"'a x4 Zan ym+qr1 /1+pn( ~--7és) (qn)'
(an #0; me Ng; p,geN). (4.8)

Suppose also that

[n/q]
M;f};l(él P ésv ’7) = Z <an)ak Ql“rpk(é] 3oy 55)’1k~ (49)
k=0

Then
tn

Zym+n M ”51,---7@;7])5
= (1 = 2xt) V20 exp (x*I{I —V1- th})

1 1
R e N (L]
mp,q \/1——2)(?1‘ él é n \/1_—2)“ || |x|

(4.10)
provided that each member of (4.10) exists.
o t* xt\ " Px
yn+k ) = <1_> etyn<;a7ﬁ)
2 i B B
(n € No; ] < |B/x]), (4.11)
which yields Theorem 3 of Chen and Srivastava [3, p. 154], that is,
Theorem 7. Corresponding to an identically nonvanishing function Q,(&,,. .., &)

of s (real or complex) variables &\, ..., & (s € N) and of (complex) order u, let
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AiﬁL,q[x; 617 ceey éS;Z} = Zan merqn(x; o+ (P - l)ql’l, ﬁ)
n=0

n

z
-Q n sty bs
HA-pi (51 é ) (qn)!
(an # 0; m € No; p,g € N), (4.12)
where p is a suitable complex parameter. Suppose also that
[/q] n
N:;;;f(xv 515 R is; ’7) ::Z <qk)ak ym+n(x; o—n+ qu7 ﬁ)
=0
. Q;Hr[)k(il)"'aés)nk' (413)
Then
N NP (x: & o v
ZO np,q ()C, 1s KR ’7) |
l—o—m —pq
(. 0 | P (M
_<1 ﬂ) eAmAp,q|:ﬁ_xt7élv'"aéwnt 1 ﬁ
(el <1B/x), (4.14)
provided that each member of (4.14) exists.
> <“+nzk_2)yn(xm+k,ﬁ)t"
k=0
J— — ]—O(—n x . .
= (1-1) y,,(—l_t,oc,ﬂ) (neNg; [f] < 1), (4.15)
which yields Theorem 5 of Chen et al. [2, p. 363], given by
Theorem 8. Corresponding to an identically nonvanishing function Q,(&,,. .., &)
of s (real or complex) variables &\, ..., & (s € N) and of (complex) order u, let

Ag;[x? 617 . ',és;z] = Zak yn(X;OC + (p + 1)‘]"» ﬁ)QH+pk(élv ey éa)Zk

k=0
(ar #0; ne Ng; p,geN),

where p is a suitable complex parameter. Suppose also that

L) <a+n+k+pql—2

IAACISRRNNSTEDS k—ql
1=0

. Q;H»pl(élv LR és)n['

(4.16)

)azyn(xa a+k+ pql, p)

(4.17)
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Then

ZP,:;; (:&p,. . Eamt = (1 — t)”“*”AM

(If] < 1), (4.18)

tq
— aéh '7557W‘|

provided that each member of (4.18) exists.

o] k n
S nlwa—k Bz = (1 _%) ¢ yn<%;a,ﬁ> (neNy), (4.19)

k=0

which yields Theorem 6 of Chen et al. [2, p. 364], that is,

Theorem 9. Corresponding to an identically nonvanishing function Q,,(¢,,. .., &)
of s (real or complex) variables &\, ..., & (s € N) and of (complex) order u, let
2k
AI(;S;[x7 617"'7 Y4 Zak yn OC+ - l)qk7ﬁ)Qﬂ+pk(f]7'"76?)@
(o #0; n € No; p,g €N), (4.20)

where p is a suitable complex parameter. Suppose also that

[k/q]
Q;z(f;(x gla"'vés;”]) ::Z <q1>az y,,(x;oc—k—f—pql,ﬁ)

=0
Quip(&ry . EM (4.21)
Then

k n
(4.22)

provided that each member of (4.22) exists.

Zym 2k I — (e (-2

1 —xt

Jn(x(L=xt);o B) (n € Noj ] < ™),
(4.23)

which yields Srivastava’s theorem [15, p. 129]:
Theorem 10. Corresponding to an identically nonvanishing  function

Q,(&,..., &) of s (real or complex) variables &, ..., & (s € N) and of (complex)
order p, let
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A i én &2 = ) aw Ymegn (v 0+ (p — 2)gn, B)
n=0

'Quﬂm(gla"'aés)
(a, #0; m e Ng; p,g € N), (4.24)

where p is a suitable complex parameter. Suppose also that

n [n/q]
o1, . . ! _E .
Rny;,(/])(‘xa élv DR ésv ’7); L - <qk>ak ym+n(x5 o —2n + qu’ ﬁ)
: Q/Hrp]((éla (RS és)y]k' (425)

Then

0 ) p
ZRnﬁZ(xv 51; B ésa 17) ;
n=0 :

B xt\* pt
-(+3) =5
o xt (p—2)q
(145 )it tane (14 (1] < 18/,

(4.26)

-A®

m.p,q

provided that each member of (4.26) exists.

Just as in all of the aforementioned theorems on bilinear, bilateral, and
mixed multilateral generating functions, for each suitable choice of the coeffi-
cients a, (n € Ny), if we express the multivariable function

Qu(érr--5 &) (seN\{1}) (4.27)

as an appropriate product of several relatively simpler (known or new) func-
tions, each of the results (which we presented in Section 2) can be shown to
yield various families of mixed multilateral generating functions for the gen-
eralized Bessel polynomials. We choose to leave the detailed demonstration of
this observation as an exercise for the interested reader.

In the preceding section, we made use of the definition (3.1) in conjunction
with the generating functions (1.11) and (1.16) in order to derive the finite-
series relationships (3.3) and (3.4) associated with the Stirling numbers S(n, k).
As a matter of fact, we can similarly apply each of the generating functions
4.7), (4.11), (4.15), (4.19), and (4.23). Thus we obtain the following generating
functions (associated with the Stirling numbers S(n, k) of the second kind) for
the simple as well as generalized Bessel polynomials:
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S (i) (rise)
VT zz e (—x {1 - VIF2E}) 3 St k()

k=0
<n e No; |2 < ;|x|1), (4.28)
00 n - l—o n
Zk—, (v — k., B) ( —%) ¢ S(n,km( f kﬁ)
k=0 k=0
(n € No; |z] < [B/x]), (4.29)

i (a—'—N:k_z)k”yN(x;a—&-k,ﬁ)Zk

k=0

o “NZ< )k'yN< a+kﬁ)< iz>k

(neNp; N €Np; |z| < 1), (4.30)
i%y]\/(x;a—k,ﬁ)z]‘: <1—%>nez y S(n,k)yN( a—k,ﬁ)zk
=0 " =0

(}’l € N(]; N e No)7 (431)

and
i k— x; o — 2k, )2
=0 e 7
_ )E o—2 ﬁZ
~(1+5) e (552)
ok
Zs " kyk< <1 +%);o¢2k,ﬁ) z(l +%> ]

(n € No; |z < [B/x]), (4.32)

respectively.

Evidently, by appealing to the relationship (1.5), one can easily rewrite each
of the above generating functions in terms of the classical Laguerre polyno-
mials L* (x) defined by (1.7). In the cases of the generating function (4.28) and
Theorem 6 as well, one can make make use of the relationship:
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(o) =t~ ) g (g) (433)

X

which, in view of (1.3), follows from (1.5) with o« = = 2.
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