
ar
X

iv
:1

00
8.

45
47

v1
  [

m
at

h.
N

T
] 

 2
6 

A
ug

 2
01

0

q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli

polynomials

T. Kim

Division of General Education-Mathematics,

Kwangwoon University, Seoul 139-701, Korea

Abstract : In this paper, we give new identities involving Phillips q-Bernstein polynomials

and we derive some interesting properties of q-Bernstein polynomials associated with q-

Stirling numbers and q-Bernoulli polynomials.

2000 Mathematics Subject Classification : 11B68, 11S40, 11S80

Key words : q-Bernoulli polynomials, q-Bernstein polynomials, q-Stirling numbers

1. Introduction

When one talks of q-extension, q is variously considered as an indeterminate, a complex

number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C, then we always assume that |q| < 1. If

q ∈ Cp, we usually assume that |1 − q|p < 1. Here, the symbol | · |p stands for the p-adic

absolute value on Cp with |p|p ≤ 1/p. For each x, the q-basic numbers are defined by

[x]q =
1− qx

1− q
, and [n]q! = [n]q[n− 1]q · · · [2]q[1]q, n ∈ N, (see [1-17]).

Throughout this paper we assume that q ∈ C with |q| < 1 and we use the notation of

Gaussian binomial coefficient in the form
(

n

k

)

q

=
[n]q!

[k]q![n − k]q!
=

[n]q[n − 1]q · · · [n− k + 1]q
[k]q!

, n, k ∈ N.

Note that

lim
q→1

(

n

k

)

q

=

(

n

k

)

=
n(n− 1) · · · (n − k + 1)

k!
, (see [4-12]).

The Gaussian binomial coefficient satisfies the following recursion formula:

(

n+ 1

k

)

q

=

(

n

k − 1

)

q

+ qk
(

n

k

)

q

= qn−k

(

n

k − 1

)

q

+

(

n

k

)

q

, (see [7, 8]). (1)

The q-binomial formulae are known as

(1− b)nq = (b : q)n =

n
∏

i=1

(1− bqi−1) =

n
∑

i=0

(

n

i

)

q

q(
i

2
)(−1)ibi, (2)

and
1

(1− b)nq
=

1

(b : q)n
=

1
∏n

i=1(1− bqi−1)
=

∞
∑

i=0

(

n+ i− 1

i

)

q

bi, (see [7, 8]).
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Now, we define the q-exponential function as follows:

lim
n→∞

1

(x : q)n
= lim

n→∞

∞
∑

k=0

(

n+ k − 1

k

)

q

xk =

∞
∑

k=0

xk(1− q)k

[k]q!
= eq(x(1 − q)). (3)

A Bernoulli trial involves performing an experiment once and noting whether a particular

event A occurs. The outcome of Bernoulli trial is said to be “success” if A occurs and a

“failure” otherwise. Let k be the number of successes in n independent Bernoulli trials, the

probabilities of k are given by the binomial probability law:

pn(k) =

(

n

k

)

pk(1− p)n−k, for k = 0, 1, · · · , n,

where pn(k) is the probability of k successes in n trials. For example, a communication

system transmit binary information over channel that introduces random bit errors with

probability ξ = 10−3. The transmitter transmits each information bit three times, an a

decoder takes a majority vote of the received bits to decide on what the transmitted bit

was. The receiver can correct a single error, but it will make the wrong decision if the

channel introduces two or more errors. If we view each transmission as a Bernoulli trial in

which a “success” corresponds to the introduction of an error, then the probability of two

or more errors in three Bernoulli trial is

p(k ≥ 2) =

(

3

2

)

(0.001)2(0.999) +

(

3

3

)

(0.001)3 ≈ 3(10−6), see [18].

Let C[0, 1] denote the set of continuous function on [0, 1]. For f ∈ C[0, 1], Bernstein

introduced the following well known linear operator in [2]:

Bn(f |x) =

n
∑

k=0

f(
k

n
)

(

n

k

)

xk(1− x)n−k =

n
∑

k=0

f(
k

n
)Bk,n(x).

Here Bn(f |x) is called the Bernstein operator of order n for f . For k, n ∈ Z+, the Bernstein

polynomials of degree n is defined by

Bk,n(x) =

(

n

k

)

xk(1− x)n−k.

By the definition of Bernstein polynomials, we can see that Bernstein basis is the probability

mass function of binomial distribution. Based on the q-integers Phillips introduced the q-

analogue of well known Bernstein polynomials (see [15, 16]). For f ∈ C[0, 1], Phillips

introduced the q-extension of Bn(f |x) as follows:

Bn,q(f | x) =
n
∑

k=0

Bk,n(x, q)f

(

[k]q
[n]q

)

=
n
∑

k=0

f

(

[k]q
[n]q

)(

n

k

)

q

xk(1− x)n−k
q . (4)

Here Bn,q(f | x) is called the q-Bernstein operator of order n for f . For k, n ∈ Z+, the

q-Bernstein polynomial of degree n is defined by

Bk,n(x, q) =

(

n

k

)

q

xk(1− x)n−k
q , x ∈ [0, 1]. (5)



For example, B0,1(x, q) = 1 − x,B1,1(x, q) = x, and B0,2(x, q) = 1 − [2]qx + qx2, · · · . Also

Bk,n(x, q) = 0 for k > n, because
(

n
k

)

q
= 0. The q-binomial distribution associated with the

q-boson oscillator are introduced in [19, 20]. For n, k ∈ Z+, its probabilities are given by

p(X = k) =

(

n

k

)

q

xk(1− x)n−k
q , where x ∈ [0, 1].

This distributions are studied by several authors and has applications in physics as well as in

approximation theory due to the q-Bernstein polynomials and the q-Bernstein operators (see

[16, 19, 20]). From the definition of q-Bernstein polynomials, we note that the q-Bernstein

basis is the probability mass function of q-binomial distribution. Recently, several authors

have studied the analogs of Bernstein polynomials (see [1, 2, 5, 8, 9, 10, 15, 16, 17]). In [5],

Gupta-Kim-Choi-Kim gave the generating function of Phillips q-Bernstein polynomials as

follows:
xktk

[k]q!
eq((1− x)qt) =

xktk

[k]q!

∞
∑

n=0

(1− x)nq t
n

[n]q!

=
∞
∑

n=k

(

n

k

)

q

xk(1− x)n−k
q

[n]q!
tn

=
∞
∑

n=k

Bk,n(x, q)
tn

[n]q!
.

Because Bk,0(x, q) = Bk,1(x, q) = Bk,2(x, q) = · · · = Bk,k−1(x, q) = 0, we obtain the

generating function for Bk,n(x, q) as follows:

F (k)
q (t, x) =

xktk

[k]q!
eq((1− x)qt) =

∞
∑

n=0

Bk,n(x, q)
tn

[n]q!
, see [5],

where n, k ∈ Z+ and x ∈ [0, 1].

Notice that

Bk,n(x, q) =

{

(

n
k

)

q
xk(1− x)n−k

q , if n ≥ k

0, if n < k,

for n, k ∈ Z+ (see [5, 15, 16]).

In this paper we study the generating function of Phillips q-Bernstein polynomial and

give some identities on the Phillips q-Bernstein polynomials. From the generating function

of q-Bernstein polynomial, we derive recurrence relation and derivative of the Phillips q-

Bernstein polynomials. Finally, we investigate some interesting properties of q-Bernstein

polynomials related to q-Stirling numbers and q-Bernoulli polynomials.

2. q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli polynomials

Let

F (k)
q (t, x) =

∞
∑

n=0

Bk,n(x, q)
tn

[n]q!
.

From (5) and (3), we note that



F (k)
q (t, x) =

∞
∑

n=0

(

n

k

)

q

xk(1− x)n−k
q

tn

[n]q!

=

∞
∑

n=0

(

n+ k

k

)

q

xk(1− x)nq
[n+ k]q!

tn+k

=
xktk

[k]q!

∞
∑

n=0

(1− x)nq
[n]q!

tn

=
xktk

[k]q!
eq((1− x)qt),

where n, k ∈ Z+ and x ∈ [0, 1].

Note that

lim
q→1

F (k)
q (t, x) =

xktk

k!
e(1−x)t =

∞
∑

n=0

Bk,n(x)
tn

n!
,

where Bk,n(x) are the Bernstein polynomial of degree n.

The q-derivative Dqf of function f is defined by

(Dqf)(x) =
df(x)

dqx
=

f(x)− f(qx)

(1− q)x
, (see [6]). (7)

From (7), we note that

Dq(fg)(x) = g(x)Dqf(x) + f(qx)Dqg(x), (see [6]). (8)

The q-Bernstein operator is given by

Bn,q(f | x) =

n
∑

k=0

Bk,n(x, q)f

(

[k]q
[n]q

)

, (see Eq. (4)).

Thus, we have

Bn,q(1 | x) =

n
∑

k=0

Bk,n(x, q) =

n
∑

k=0

(

n

k

)

q

xk(1− x)n−k
q = 1,

and

Bn,q(x | x) =

n
∑

k=0

(

[k]q
[n]q

)

Bk,n(x, q) = x

n−1
∑

k=0

(

n− 1

k

)

q

xk(1− x)n−k
q = x,

where x ∈ [0, 1] and n, k ∈ Z+.

For f ∈ C[0, 1], we have

Bn,q(f | x) =
n
∑

k=0

f

(

[k]q
[n]q

)

Bk,n(x, q)

=
n
∑

k=0

f

(

[k]q
[n]q

)(

n

k

)

q

xk(1− x)n−k
q

=

n
∑

k=0

f

(

[k]q
[n]q

)

xk
(

n

k

)

q

n−k
∑

j=0

(

n− k

j

)

q

(−1)jq(
j

2
)xj .



It is easy to show that

(

n

k

)

q

(

n− k

j

)

q

=

(

n

k + j

)

q

(

k + j

k

)

q

.

Let k + j = m. Then we have

(

n

k

)

q

(

n− k

j

)

q

=

(

n

m

)

q

(

m

k

)

q

. (10)

By (9) and (10), we easily get

Bn,q(f | x) =

n
∑

m=0

(

n

m

)

q

xm
m
∑

k=0

(

m

k

)

q

q(
m−k

2
)(−1)m−kf

(

[k]q
[n]q

)

. (11)

Therefore, we obtain the following proposition.

Proposition 1. For f ∈ C[0, 1] and n ∈ Z+, we have

Bn,q(f | x) =

n
∑

m=0

(

n

m

)

q

xm
m
∑

k=0

(

m

k

)

q

q(
m−k

2
)(−1)m−kf

(

[k]q
[n]q

)

. (11)

It is well known that the second kind Stirling numbers are defined by

(et − 1)k

k!
=

1

k!

k
∑

l=0

(

k

l

)

(−1)k−lelt =
∞
∑

n=0

S(n, k)
tn

n!
, (12)

where k ∈ N (see [7, 8, 9, 10, 17]).

Let ∆ be the shift difference operator with ∆f(x) = f(x + 1) − f(x). By iterative

process, we see that

∆nf(0) =

n
∑

k=0

(

n

k

)

(−1)n−kf(k), for n ∈ N. (13)

From (12) and (13), we have

∞
∑

n=0

S(n, k)
tn

n!
=

1

k!

k
∑

l=0

(

k

l

)

(−1)k−lelt

=
∞
∑

n=0

(

1

k!

k
∑

l=0

(

k

l

)

(−1)k−lln

)

tn

n!

=

∞
∑

n=0

∆k0n

k!

tn

n!
, (see [7, 8, 9]).

(14)

By comparing the coefficients on the both sides of (14), we get

S(n, k) =
∆k0n

k!
, for n, k ∈ Z+. (15)



Now, we consider the q-extension of (13). Let (Eh)(x) = h(x + 1) be the shift operator.

Then the q-difference operator is defined by

∆n
q := (E − I)nq =

n
∏

i=1

(E − Iqi−1), (see [7]),

where I is an identity operator.

For f ∈ C[0, 1] and n ∈ N, we have

∆n
q f(0) =

n
∑

k=0

(

n

k

)

q

(−1)kq(
k

2
)f(n− k) =

n
∑

k=0

(

n

k

)

q

(−1)n−kq(
n−k

2
)f(k). (16)

Note that (16) is exactly q-extension of (13). That is, limq→1∆
n
q f(0) = ∆nf(0).

As the q-extension of (12), the second kind q-Stirling numbers are defined by

q−(
k

2
)

[k]q!

k
∑

j=0

(−1)k−j

(

k

j

)

q

q(
k−j

2
)e[j]qt =

∞
∑

n=0

S(n, k : q)
tn

n!
, (see [7, 8]). (17).

By (16), we obtain the following theorem.

Theorem 2. For f ∈ C[0, 1] and n ∈ Z+, we have

Bn,q(f | x) =

n
∑

k=0

(

n

k

)

q

xk∆k
qf

(

0

[n]q

)

.

In the special case, f(x) = xm(m ∈ Z+), we obtain the following corollary.

Corollary 3. For x ∈ [0, 1] and m,n ∈ Z+, we have

[n]mq Bn,q(x
m | x) =

n
∑

k=0

(

n

k

)

q

xk∆k
q0

m.

By (17), we easily get

S(n, k : q) =
q−(

k

2
)

[k]q!

k
∑

j=0

(−1)jq(
j

2
)
(

k

j

)

q

[k − j]nq

=
q−(

k

2
)

[k]q!

k
∑

j=0

(−1)k−jq(
k−j

2
)
(

k

j

)

q

[j]nq

=
q−(

k

2
)

[k]q!
∆k

q0
m.

(18)

The equation (18) seems to be the q-extension of the equation (15). That is, limq→1 S(n, k :

q) = S(n, k).

By Corollary 3 and (18), we obtain the following corollary.



Corollary 4. For x ∈ [0, 1] and m,n ∈ Z+, we have

[n]mq Bn,q(x
m | x) =

n
∑

k=0

(

n

k

)

q

xk[k]q!q
(k
2
)S(m,k : q).

From (1) and (5), for 0 ≤ k ≤ n, we have

qk(1− qn−k−1x)Bk,n−1(x, q) + xBk−1,n−1(x, q)

= qk(1− qn−k−1x)

(

n− 1

k

)

q

xk(1− x)n−1−k
q + x

(

n− 1

k − 1

)

q

xk−1(1− x)n−k
q

= qk
(

n− 1

k

)

q

xk(1− x)n−k
q +

(

n− 1

k − 1

)

q

xk(1− x)n−k
q

=

(

n

k

)

q

xk(1− x)n−k
q .

(19)

By (2), (7) and (8), we get

dBk,n(x, q)

dqx
= −

(

n

k

)

q

xk[n− k]q(1− qx)n−k−1
q +

(

n

k

)

q

[k]qx
k−1(1− qx)n−k

q . (20)

From the definition of Gaussian binomial coefficient (= q-binomials coefficient) and (2),

we note that
(

n

k

)

q

[k]qx
k−1(1− qx)n−k

q = q−(k−1)[n]qBk−1,n−1(qx, q), (21)

and
(

n

k

)

q

xk[n− k]q(1− qx)n−k−1
q = [n]qq

−kBk,n−1(qx, q).

By (20) and (21), we see that

dBk,n(x, q)

dqx
= [n]qq

−k(qBk−1,n−1(qx, q)−Bk,n−1(qx, q)). (22)

Thus, we note that the q-derivative of the q- Bernstein polynomials of degree n are also

polynomial of degree n− 1. Therefore, by (19) and (22), we obtain the following recurrence

formulae:

Theorem 5(Recurrence formulae for Bk,n(x, q)). For k, n ∈ Z+ and x ∈ [0, 1], we have

qk(1− qn−k−1x)Bk,n−1(x, q) + xBk−1,n−1(x, q) = Bk,n(x, q),

and
dBk,n(x, q)

dqx
= [n]qq

−k(qBk−1,n−1(qx, q)−Bk,n−1(qx, q)).

We also get from (5) and (6) that



[n− k]q
[n]q

Bk,n(x, q) +
[k + 1]q
[n]q

Bk+1,n(x, q)

= (1− xqn−k−1)

(

n− 1

k

)

q

xk(1− x)n−k−1
q + x

(

n− 1

k

)

q

xk(1− x)n−k−1
q

= (1− xqn−k−1)Bk,n−1(x, q) + xBk,n−1(x, q)

= Bk,n−1(x, q) + x[n− k − 1]q(1− q)Bk,n−1(x, q).

(23)

By (23), we obtain the following theorem.

Theorem 6. For k, n ∈ Z+ and x ∈ [0, 1], we have

[n− k]q
[n]q

Bk,n(x, q) +
[k + 1]q
[n]q

Bk+1,n(x, q) = Bk,n−1(x, q) + x[n− k − 1]q(1− q)Bk,n−1(x, q).

From Theorem 6 we note that q-Bernstein polynomials can be written as a linear

combination of polynomials of higher order.

For k, n ∈ N, we easily get from (5) that q-Bernstein polynomials can be expressed in

the form
[n− k + 1]q

[k]q

(

x

1− xqn−k

)

xk−1(1− x)n−k+1
q

(

n

k − 1

)

q

=
[n]q!

[k]q![n− k]q!
xk(1− x)n−k

q

=

(

n

k

)

q

xk(1− x)n−k
q

= Bk,n(x, q).

(24)

By (24), we obtain the following proposition.

Proposition 7. For n, k ∈ N and x ∈ [0, 1], we have

Bk,n(x, q) =
[n− k + 1]q

[k]q

(

x

1− xqn−k

)

Bk−1,n(x, q).

The q-Bernstein polynomials of degree n can be written in terms of power basis

{1, x, x2, · · · , xn}. By using the definition of q-Bernstein polynomial and q-binomial the-

orem, we get

Bk,n(x, q) =

(

n

k

)

q

xk(1− x)n−k
q =

(

n

k

)

q

xk
n−k
∑

i=0

(

n− k

i

)

q

(−1)iq(
i

2
)xi

=

n−k
∑

i=0

(

n− k

i

)

q

(

n

k

)

q

(−1)iq(
i

2
)xi+k

=

n
∑

i=k

(

n− k

i− k

)

q

(

n

k

)

q

(−1)i−kq(
i−k

2
)xi.

(25)



By simple calculation, we easily see that

(

n

k

)

q

(

n− k

i− k

)

q

=

(

n

i

)

q

(

i

k

)

q

. (26)

Therefore, by (25) and (26), we obtain the following theorem.

Theorem 8. For k, n ∈ Z+ and x ∈ [0, 1], we have

Bk,n(x, q) =
n
∑

i=k

(

n

i

)

q

(

i

k

)

q

(−1)i−kq(
i−k

2
)xi.

We get from the properties of q-Bernstein polynomials that

n
∑

k=1

(

k
1

)

q
(

n
1

)

q

Bk,n(x, q) =

n
∑

k=1

[k]q
[n]q

(

n

k

)

q

xk(1− x)n−k
q

=

n
∑

k=1

(

n− 1

k − 1

)

q

xk(1− x)n−k
q

= x

n−1
∑

k=0

(

n− 1

k

)

q

xk(1− x)n−k−1
q = x,

and that
n
∑

k=2

(

k
2

)

q
(

n
2

)

q

Bk,n(x, q) =

n
∑

k=2

(

n− 2

k − 2

)

q

xk(1− x)n−k
q

= x2
n−2
∑

k=0

(

n− 2

k

)

q

xk(1− x)n−k−2
q = x2.

Continuing this process, we obtain

n
∑

k=i

(

k
i

)

q
(

n
i

)

q

Bk,n(x, q) = xi.

Therefore, we obtain the following theorem.

Theorem 9. For k, i ∈ Z+ and x ∈ [0, 1], we have

n
∑

k=i

(

k
i

)

q
(

n
i

)

q

Bk,n(x, q) = xi.

Now we define q-Bernoulli polynomials of order k as follows:

(

z

ez − 1

)k

eq(zx) =

∞
∑

n=0

β(k)
n (x, q)

zn

[n]q!
, k ∈ N. (27)

From the generating function (27) of q-Bernoulli polynomials and (3), we derive



(

z

ez − 1

)k

eq(zx) =

(

∞
∑

m=0

B(k)
m

zm

m!

)(

∞
∑

l=0

xlzl

[l]q!

)

=

∞
∑

n=0

(

n
∑

m=0

B
(k)
m xn−m[n]q!

m![n−m]q!

)

zn

[n]q!

=
∞
∑

n=0

(

n
∑

m=0

[m]q!

m!
B(k)

m

(

n

m

)

q

xn−m

)

zn

[n]q!
,

(28)

where B
(k)
m are the n-th Bernoulli numbers of order k(see [6]).

From (27) and (28), we easily get

β(k)
n (x, q) =

n
∑

m=0

(

n

m

)

q

[m]q!

m!
xn−mB(k)

m , (29)

where B
(k)
m are the m-th ordinary Bernoulli numbers of order k.

From (26) and (27), we note that

(tx)k

[k]q!
eq((1 − x)qt) =

xk(et − 1)k

[k]q!

(

t

et − 1

)k

eq((1 − x)qt)

=
k!

[k]q!
xk

(

∞
∑

m=0

S(m,k)
tm

m!

)(

∞
∑

n=0

β(k)
n ((1− x)q, q)

tn

[n]q!

)

=
k!

[k]q!
xk

∞
∑

l=0

(

l
∑

m=0

[m]q!

m!
S(m,k)

(

l

m

)

q

β
(k)
l−m((1 − x)q, q)

)

tl

[l]q!
.

(30)

Therefore, by (6) and (30), we obtain the following theorem,

Theorem 10. For k, l ∈ Z+ and x ∈ [0, 1], we have

Bk,l(x, q) =
k!

[k]q!
xk

l
∑

m=0

[m]q!

m!
S(m,k)β

(k)
l−m((1− x)q, q)

(

l

m

)

q

,

where β
(k)
l ((1− x)q, q) are called the l-th q-Bernoulli polynomials.

From (15) and Theorem 10, we have the following corollary.

Corollary 11. For k, l ∈ Z+ and x ∈ [0, 1], we have

Bk,l(x, q) =
xk

[k]q!

l
∑

m=0

[m]q!

m!

(

l

m

)

q

β
(k)
l−m((1− x)q, q)∆

k0m.

It is well known that

xn =

n
∑

k=0

(

x

k

)

k!S(n, k), (see [7]). (31)



By (31) and Theorem 9, we easily see that

i
∑

k=0

(

x

k

)

k!S(i, k) =

n
∑

k=i

(

k
i

)

q
(

n
i

)

q

Bk,n(x, q).

3. A matrix representation for q-Bernstein polynomials

Given a polynomial is written as a linear combination of q-Bernstein basis functions:

Bq(x) = Cq
0B0,n(x, q) + Cq

1B1,n(x, q) + · · ·+ Cq
nBn,n(x, q). (32)

It is easy to write (32) as a dot product of two vectors:

Bq(x) =
(

B0,n(x, q), B1,n(x, q), . . . , Bn,n(x, q)
)















Cq
0

Cq
1
...

Cq
n















. (33)

Now, we can convert (33) to

Bq(x) =
(

1, x, . . . , xn
)















bq0,0 0 . . . 0

bq1,0 bq1,1 . . . 0
...

...
. . .

...

bqn,0 bqn,1 . . . bqn,n





























Cq
0

Cq
1
...

Cq
n















,

where bqi,j are the coefficients of the power basis that are used to determine the respective

q-Bernstein polynomials.

From (5) and (6), we note that

B0,2(x, q) = (1− x)2q =

2
∑

l=0

(

2

l

)

q

(−1)lq(
l

2
) = 1− [2]qx+ qx2

B1,2(x, q) =

(

2

1

)

q

x(1− x)q = [2]qx(1− x) = [2]qx− [2]qx
2

B2,2(x, q) = x2.

In the quadratic case(n = 2), the matrix can be represented by

Bq(x) =
(

1, x, x2
)









1 0 0

−[2]q [2]q 0

q −[2]q 1

















Cq
0

Cq
1

Cq
2









.
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probabilities, Commun. Soc. Math, Kharkow (2), 13 (1912-1913), 1-2.

3. I. N. Cangul, V. Kurt, H. Ozden, Y. Simsek, On the higher-order w-q-Genocchi

numbers, Adv. Stud. Contemp. Math., 19 (2009), 39-57.

4. N. K. Govil, V. Gupta, Convergence of q-Meyer-König-Zeller-Durrmeyer operators,

Adv. Stud. Contemp. Math., 19 (2009), 97-108.

5. V. Gupta, T. Kim, J, Choi, Y.-H. Kim, Generating function for q-Bernstein, q-Meyer-

König-Zeller and q-Beta basis, Automation Computers Applied Mathematics, 19

(2010), 7-11.

6. T. Kim, q-extension of the Euler formulae and trigonometric functions, Russ. J.

Math. Phys., 14 (2007), 275-278.

7. T. Kim, q-Volkenborn integration, Russ. J. Math. Phys., 9 (2002), 288-299.

8. T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial

coefficients, Russ. J. Math. Phys., 15 (2008), 51-57.

9. T.Kim, L.C. Jang, H. Yi, Note on the modified q-Bernstein polynomials, Discrete

Dynamics in Nature and Society(in press), 2010.

10. T. Kim, J. Choi, Y.-H. Kim, Some identities on the q-Bernstein polynomials, q-

Stirling numbers and q-Bernoulli numbers, Adv. Stud. Contemp. Math., 20 (2010),

335-341.

11. T. Kim, Note on the Euler q-zeta functions, J. Number Theory, 129 (2009), 1798-

1804.

12. T. Kim, Barnes type multiple q-zeta function and q-Euler polynomials, J. Phys. A:

Math. Theor., 43 (2010) 255201, 11pp.

13. V. Kurt, A further symmetric relation on the analogue of the Apostol-Bernoulli and

the analogue of the Apostol-Genocchi polynomials, Appl. Math. Sci., 3 (2009), 53-56.

14. B. A. Kupershmidt, Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear

Math. Phys., 12 (2005), 412-422.

15. G. M. Phillips, Bernstein polynomials based on the q-integers, Annals of Numerical

Analysis, 4 (1997), 511-514.



16. G. M. Phillips, On generalized Bernstein polynomials, Griffiths, D. F., Watson, G.

A.(eds): Numerical Analysis, Singapore: World Scientific, 263-269, 1996.

17. Y. Simsek, M. Acikgoz, A new generating function of q-Bernstein-type polynomials

and their interpolation function, Abstract and Applied Analysis, Article ID 769095

(2010), 12 pp.

18. L. C. Alberto, Probability and Random Processes for Electrical Engineering, Addison

Wesley Longman, 1994.

19. L. C. Biedenharn, The quantum group SUq(2) and a q-analogue of the boson operator,

J. Phys. A, 22(1989), L873-L878.

20. S. C. Jing, The q-deformed binomial diftribution and its asymptotic behaviour, J.

Phys. A, 17(1994), 493-499.


