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a b s t r a c t

In this paper we present the sequence of linear Bernstein-type operators defined for
f ∈ C[0, 1] by Bn(f ◦ τ−1) ◦ τ , Bn being the classical Bernstein operators and τ being
any function that is continuously differentiable ∞ times on [0, 1], such that τ(0) = 0,
τ(1) = 1 and τ ′(x) > 0 for x ∈ [0, 1]. We investigate its shape preserving and convergence
properties, as well as its asymptotic behavior and saturation. Moreover, these operators
and others of King type are compared with each other and with Bn. We present as an
interesting byproduct sequences of positive linear operators of polynomial type with nice
geometric shape preserving properties, which converge to the identity, which in a certain
sense improve Bn in approximating a number of increasing functions, and which, apart
from the constant functions, fix suitable polynomials of a prescribed degree. The notion of
convexity with respect to τ plays an important role.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Starting from the classical Bernstein operators Bn and from a sequence rn of continuous functions defined on [0, 1] with
0 ≤ rn(x) ≤ 1 for each x ∈ [0, 1] and n ∈ N = {1, 2, . . .}, King introduced in [1] a sequence of positive linear operators
defined for f ∈ C[0, 1] as

f −→ (Bnf ) ◦ rn. (1)
In fact, even more general operators were considered as early as 1969 in [2], where the corresponding degree of
approximation was investigated in terms of the first modulus of continuity. King focused on the particular case where

rn(x) =


x2 n = 1,

−
1

2(n − 1)
+


n

n − 1


x2 +

1
4(n − 1)2

n = 2, 3, . . .

and proved that the corresponding operators hold fixed the functions ei(x) = xi for i = 0, 2 and approximate each
continuous function on [0, 1] with an order of approximation at least as good as that of Bnf (x) whenever 0 ≤ x < 1/3.
This case was slightly extended in [3] by considering a family of sequences of operators Bn,α that preserve e0 and e2 + αe1
with α ∈ [0,+∞) (Bn,0 is the aforesaid King’s sequence). Moreover, a further extension appeared in [4]; here the authors
considered (1) with rn = τn := (Bnτ)

−1
◦ τ , τ being any continuous strictly increasing function defined on [0, 1] with

τ(0) = 0 and τ(1) = 1, that is to say, they studied the sequence V τn : C[0, 1] → C[0, 1] defined by

V τn f := (Bnf ) ◦ τn = (Bnf ) ◦ (Bnτ)
−1

◦ τ . (2)
Note that each V τn fixes e0 and τ . Note also that if τ = (e2 + αe1)/(1 + α), then V τn = Bn,α .
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On the other hand, in [5] Gonska and Piţul remarked that it is impossible to find polynomial operators of the form (1) that
fix e2, and raised the question of whether it is possible to find another type of positive linear polynomial operator fulfilling
this property.While the reader can find an answer to amore ambitious question in the up-to-date paper [6] via the sequence
Bn,0,j (which fixes e0 and ej) defined, for f ∈ C[0, 1] and x ∈ [0, 1], as

Bn,0,jf (x) =

n−
k=0

n
k


xk(1 − x)n−kf


k(k − 1) · · · (k − j + 1)
n(n − 1) · · · (n − j + 1)

1/j

, n ≥ j,

a much simpler one is given by the sequence of operators defined by
n−

k=0

n
k


x2k(1 − x2)n−kf


k
n


, f ∈ C[0, 1], 0 ≤ x ≤ 1,

which turns out to be a particular case (after taking τ = e2) of the sequence

Bτn f := Bn(f ◦ τ−1) ◦ τ . (3)
In this note we study this sequence Bτn under certain general assumptions on the τ to be fixed. We investigate its shape

preserving and convergence properties, as well as its asymptotic behavior and saturation. Moreover, these operators and
those described in (2) are compared with each other and with Bn. We present as an interesting byproduct, according to the
thread of this introduction, sequences of positive linear operators of polynomial type with nice geometric shape preserving
properties, which converge to the identity, which in certain sense improve Bn in approximating a number of increasing
functions, and which, apart from the constant functions, fix suitable polynomials of a prescribed degree.

Throughout the paper we shall assume that τ is any function on [0, 1] continuously differentiable ∞ times, such that
τ(0) = 0, τ(1) = 1 and τ ′(x) > 0 for x ∈ [0, 1]. We shall also make use of the following usual notation: Ck

[0, 1] denotes
the space of all functions continuously differentiable k times defined on [0, 1], and Dk denotes the usual kth differential
operators, though we keep on using also the classical notation f ′, f ′′, . . . for low order derivatives of f .

2. Properties of Bτ
n

Firstly we detail the definition of the operators that we are concerned with, already defined in (3):

Bτn f (x) =

n−
k=0

n
k


τ(x)k(1 − τ(x))n−k(f ◦ τ−1)(k/n), f ∈ C[0, 1], x ∈ [0, 1].

Nowwe are listing some basic properties of these operators which can be easily derived from well-known properties of Bn.
Actually, if τ = e1, then Bτn = Bn.

We begin with some easy to obtain identities:

Bτne0 = e0, Bτnτ = τ , Bτnτ
2

=


1 −

1
n


τ 2 +

τ

n
. (4)

As for shape preserving properties, one can check that the Bτn are k-convex for k = 0, 1, i.e. whenever this makes sense,
Dkf ≥ 0 implies DkBτn f ≥ 0 for k = 0, 1; roughly speaking they are positive and increasing. Note that in general they are
not convex: take for instance τ = (e2 + e1)/2 and calculate the image of e1 for low values of n.

Besides the previous classical k-convexity, we can consider the notion of τ -convexity: a function f ∈ Ck
[0, 1] is said to

be τ -convex of order k ∈ N whenever
Dk
τ f := Dk(f ◦ τ−1) ◦ τ ≥ 0

(for further details see for instance [7,8]). Obviously, the operators Bτn map τ -convex functions of order k onto τ -convex
functions of order k, so they are said to be τ -convex of order k. As a direct consequence of this fact, the operators Bτn do not
increase the degree of the so called τ -polynomials. To be more specific, if we use the notation Pτ ,k = ⟨τ i : i = 0, 1, . . . , k⟩,
then

Bτn(Pτ ,k) ⊂ Pτ ,k.

Passing on to convergence properties, if we use (4) and the basic fact that {e0, τ , τ 2} is an extended complete Tchebychev
system on [0, 1], then the famous Korovkin theorem (see [9] or the excellent monograph [10]) tells us that Bτn f converges
uniformly to f ∈ C[0, 1]. Moreover, the next proposition contains a quantitative version that can be derived from
[11, Theorem 4]. We make use of the following τ -polynomial considered in that paper:

F(t, x) =


1 τ(x) τ 2(x)
0 τ ′(x) (τ 2)′(x)
1 τ(t) τ 2(t)

 = τ ′(x)(τ (t)− τ(x))2.

We also point out that in [12] Freud proved the existence of a constant K > 0 such that

K(t − x)2 ≤ F(t, x) for all t, x ∈ [0, 1]. (5)
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Proposition 1. Let K > 0 be a constant satisfying (5). Suppose that f ∈ C[0, 1] with modulus of continuity ω(f , ·), that
x ∈ [0, 1] and that δ > 0; then

|Bτn f (x)f (x)| ≤ ω(f , δ)

1 +

τ ′(x)τ (x)(1 − τ(x))
nKδ2


. (6)

Note that if we apply the previous proposition with τ = e1, then (6) becomes the well-known estimate for the Bernstein
operators, namely,

|Bnf (x)− f (x)| ≤ ω(f , δ)

1 +

x(1 − x)
nδ2


.

The following propositions provide us with further information about this approximation process. Specifically, they deal
with some aspects of the asymptotic behavior, monotonic convergence, and saturation of the sequence Bτn .

The propositions are stated without proofs as they are more or less direct consequences of the corresponding results for
the Bernstein operators Bn, that the reader may recover just by taking τ = e1 in these propositions, and that can be seen
for instance by consulting [13–15] (these last two papers as regards Propositions 4 and 5 respectively). We merely mention
that an important role is played here by the notion of convexity with respect to a function. In this respect, it is important to
recall that f ∈ C[0, 1] is said to be convex with respect to τ whenever 1 1 1

τ(x0) τ (x1) τ (x2)
f (x0) f (x1) f (x2)

 ≥ 0, 0 ≤ x0 < x1 < x2 ≤ 1.

We also observe that a function f is convex with respect to τ if and only if f ◦ τ−1 is convex in the classical sense.

Proposition 2. Suppose that we have f ∈ C[0, 1] and x ∈ (0, 1) such that f ′′(x) exists. Then

lim
n→+∞

2n(Bτn f (x)− f (x)) = τ(x)(1 − τ(x))D2
τ f (x),

or equivalently

lim
n→+∞

2n(Bτn f (x)− f (x)) = τ(x)(1 − τ(x))


−
τ ′′(x)f ′(x)
τ ′(x)3

+
f ′′(x)
τ ′(x)2


. (7)

Proposition 3. Suppose that f ∈ C[0, 1]. Then f is convex with respect to τ if and only if

lim sup
n→+∞

2n(Bτn f (x)− f (x)) ≥ 0, x ∈ (0, 1).

Proposition 4. Suppose that f ∈ C[0, 1]. Then the following items are equivalent:

(i) f is convex with respect to τ ,
(ii) Bτn f ≥ f for n ∈ N,
(iii) Bτn f ≥ Bτn+1f for n ∈ N.

Proposition 5. Suppose that f ∈ C[0, 1] and let ψ be a finitely valued Lebesgue-integrable function on (0, 1) such that for each
x ∈ (0, 1)

lim inf
n→∞

2n(Bτn f (x)− f (x)) ≤ ψ(x) ≤ lim sup
n→∞

2n(Bτn f (x)− f (x)).

Then, almost everywhere on [0, 1],

ψ = τ(1 − τ)


−
τ ′′

(τ ′)3
f ′

+
1

(τ ′)2
f ′′


.

Proposition 6. Suppose that f ∈ C[0, 1]. Then

2n(Bτn f (x)− f (x)) = o(1), x ∈ (0, 1),

if and only if f ∈ Pτ ,1.

Proposition 7. Suppose that f ∈ C[0, 1]. Then

2n|Bτn f (x)− f (x)| ≤ M, x ∈ (0, 1),
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if and only, almost everywhere on [0, 1],τ(1 − τ)


−
τ ′′

(τ ′)3
f ′

+
1

(τ ′)2
f ′′

 ≤ M.

We end this section by going into the aforementioned question raised in [5] related to the existence of polynomial
operators that fix polynomials.

Let us fix an integer numberm ≥ 2, a real number α > 0 and consider the function τ defined as

τ(x) =
xm + αx
1 + α

. (8)

Then the corresponding operators V τn and Bτn fix e0 and the polynomial τ , but only the Bτn are of polynomial type.

3. Comparing Bn, V τ
n and Bτ

n

We devote this section to a comparative study of the approximation of functions which are increasing and fulfill certain
additional convexity assumptions, by means of the sequences of operators Bn, V τn and Bτn . We shall see that in a certain sense
some improvements of the classical approximation by Bernstein polynomials are obtained. Note that if f ∈ C1

[0, 1], then
the convexity of f with respect to τ amounts to the fact that f ′/τ ′ is increasing.

Theorem 8. Let f ∈ C[0, 1] be increasing and convex with respect to τ . Assume also that τ is convex. Then

f (x) ≤ V τn f (x) ≤ Bnf (x), 0 ≤ x ≤ 1.

Proof. The fact that f (x) ≤ V τn f (x), 0 ≤ x ≤ 1, follows from [14, Theorem 2]. For the other inequality, from the convexity
of τ , Bnτ ≥ τ . Now, (Bnτ)

−1 is increasing, so

(Bnτ)
−1

◦ Bnτ ≥ (Bnτ)
−1

◦ τ .

This implies that for x ∈ [0, 1], x ≥ ((Bnτ)
−1

◦ τ)(x) and directly

V τn f (x) ≤ Bnf (x). �

Theorem 9. Suppose that f ∈ C2
[0, 1]. Suppose that there exists n0 ∈ N such that

f (x) ≤ Bτn f (x) ≤ Bnf (x), for all n ≥ n0, x ∈ (0, 1). (9)

Then

f ′′(x) ≥
τ ′′(x)
τ ′(x)

f ′(x) ≥


1 −

x(1 − x)τ ′(x)2

τ(x)(1 − τ(x))


f ′′(x), x ∈ (0, 1). (10)

In particular, f ′′(x) ≥ 0.
Conversely, if (10) holds with strict inequalities at a given point x0 ∈ (0, 1), then there exists n0 ∈ N such that for n ≥ n0

f (x0) < Bτn f (x0) < Bnf (x0).

Proof. From (9) we have that

0 ≤ 2n

Bτn f (x)− f (x)


≤ 2n (Bnf (x)− f (x)) , n ≥ n0, x ∈ (0, 1).

Then, using (7) (recall the classical Voronovskaya formula for Bn and the fact that Bτn = Bn if τ = e1),

0 ≤ τ(x)(1 − τ(x))


−
τ ′′(x)f ′(x)
τ ′(x)3

+
f ′′(x)
τ ′(x)2


≤ x(1 − x)f ′′(x)

from which (10) follows directly.
Conversely, if (10) holds with strict inequalities for a given x0 ∈ (0, 1), then directly

0 < τ(x0)(1 − τ(x0))


−
τ ′′(x0)f ′(x0)
τ ′(x0)3

+
f ′′(x0)
τ ′(x0)2


< x0(1 − x0)f ′′(x0),

and using (7) again, the proof follows. �
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The next result is stated without proof since it follows the pattern given in the proof of Theorem 9. It suffices to use the
asymptotic formula for the operators V τn stated in [4, Theorem 5.1] which reads as follows:

lim
n→∞

n

V τn f (x)− f (x)


=

x(1 − x)
2

τ ′(x)

f ′

τ ′

′

(x).

Theorem 10. Suppose that f ∈ C2
[0, 1]. Suppose that there exists n0 ∈ N such that

V τn f (x) ≤ Bτn f (x), n ≥ n0, x ∈ (0, 1).

Then for all x ∈ (0, 1) the following inequality holds:
1 −

x(1 − x)τ ′(x)2

τ(x)(1 − τ(x))


f ′′(x) ≤


τ ′′(x)
τ ′(x)

−
τ ′(x)τ ′′(x)x(1 − x)
τ (x)(1 − τ(x))


f ′(x). (11)

Conversely, if (11) holds with strict inequalities at a given point x0 ∈ (0, 1), then there exists n0 ∈ N such that for n ≥ n0

V τn f (x0) < Bτn f (x0).

4. A particular case: τ = (em + αe1)/(1 + α)

Let us take an integerm ≥ 2, a real α > 0 and τ as in (8), i.e.

τ(x) =
xm + αx
1 + α

.

This takes us to the setting in which the operators Bτn , V
τ
n fix polynomials of degreem.

Let us also assume that a function f ∈ C2
[0, 1] satisfies the hypothesis of Theorem 8, namely, f is increasing and convex

with respect to τ (note that τ is obviously convex in the classical sense), which amounts to the fact that f ′/τ ′ is increasing
as well, which is equivalent to

f ′′(x) ≥
m(m − 1)xm−2

mxm−1 + α
f ′(x), 0 ≤ x ≤ 1. (12)

Thus the first inequality in (10) is satisfied and it is easy to see that the inequality (11) holds as well.
The second inequality in (10) is obviously true for those x for which the factor accompanying f ′′(x) is non-positive, which

after some calculations is equivalent to
w(x) := (xm + αx)(1 + α − xm − αx)− x(1 − x)(mxm−1

+ α)2 ≤ 0.
By elementary considerations, it can be proved thatw has a single root θ = θ(m, α) ∈ (0, 1),w > 0 in [0, θ) andw(x) < 0
for each x ∈ (θ, 1]. If we further restrict our attention to the casem = 2, then

θ = θ(2, α) =
1 − 2α +

√
4α2 + 8α + 1
6

,

which increases with α and satisfies θ(2, α) −→ 1/3 as α → 0 and θ(2, α) −→ 1/2 as α → +∞.
Finally, we are going a bit further with the following result, which should be compared with [3, Theorem 1]:

Corollary 11. Let f ∈ C2
[0, 1] be increasing and strictly convex. Then there exists α > 0 such that the operators Bτn and V τn for

the function

τ(x) =
x2 + αx
1 + α

satisfy the following properties:
(i) For each x ∈ [0, 1]

f (x) ≤ V τn f (x) ≤ Bnf (x).
(ii) For each x ∈ (0, 1) there exists n0 ∈ N such that

V τn f (x) < Bτn f (x), n ≥ n0.

(iii) For each

x ∈


1 − 2α +

√
4α2 + 8α + 1
6

, 1


,

there exists n0 ∈ N such that

f (x) < Bτn f (x) < Bnf (x), n ≥ n0.
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Proof. LetM be a lower bound of f ′′ on [0, 1] and let us take α > 2f ′(1)/M . Thus,

α >
2f ′(x)
f ′′(x)

− 2x, 0 < x < 1,

or equivalently

f ′′(x)−
2

2x + α
f ′(x) > 0, 0 < x < 1,

which allows to end the proof after considering the results and remarks of the present section. �
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