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1. Introduction

Let N = {0, 1, 2, . . . }. The Bernoulli polynomials Bn(x) (n ∈ N) and the Euler
polynomials En(x) (n ∈ N) are defined by means of

zexz

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
and

2exz

ez + 1
=

∞∑
n=0

En(x)
zn

n!
.

Those Bn = Bn(0) and En = 2nEn(1/2) are called the Bernoulli numbers and the
Euler numbers respectively. From the definitions we can easily deduce the following
well known properties:

Bn(1− x) = (−1)nBn(x) and Bn(x + 1)−Bn(x) = nxn−1;

En(1− x) = (−1)nEn(x) and En(x + 1) + En(x) = 2xn.

In 1995 M. Kaneko [1] found that B2n can be computed in terms of those Bi

with n ≤ i < 2n, namely he proved the formula
n∑

i=0

(
n + 1

i

)
(n + i + 1)Bn+i = 0 for n = 1, 2, 3, . . . .

In 2001 H. Momiyama [2] extended the above result as follows: If m,n ∈ N and
m + n > 0, then

(−1)m
m∑

i=0

(
m + 1

i

)
(n+ i+1)Bn+i +(−1)n

n∑
j=0

(
n + 1

j

)
(m+ j +1)Bm+j = 0. (1)

In this paper we aim to make further extensions by a new method.
Now we state our main results.
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Theorem 1. Let {fk(x)}∞k=0 be a sequence of polynomials given by

∞∑
k=0

fk(x)
zk

k!
= e(x−1/2)zF (z) (2)

where F (z) is a formal power series. Let m,n ∈ N. If F is even, i.e. F (−z) = F (z),
then

(−1)m
m∑

i=0

(
m

i

)
fn+i(x) = (−1)n

n∑
j=0

(
n

j

)
fm+j(−x); (3)

if F is odd, i.e. F (−z) = −F (z), then

(−1)m
m∑

i=0

(
m

i

)
fn+i(x) = −(−1)n

n∑
j=0

(
n

j

)
fm+j(−x). (4)

This general theorem will be proved in Section 2. Now we give a consequence of
it.

Corollary 1. Let F (z) be an even or odd formal power series, and let fk(x) (k ∈ N)
be given by (2). Let m,n ∈ N and ε = 1 or −1 according to whether F (z) is even
or odd. Then

(−1)m
m+1∑
i=0

(
m + 1

i

)
(n + i + 1)fn+i(x)

=− ε(−1)n
n+1∑
j=0

(
n + 1

j

)
(m + j + 1)fm+j(−x).

(5)

Proof. Clearly −zF (−z) = −εzF (z) and

e(x−1/2)zzF (z) = z
∞∑

k=0

fk(x)
zk

k!
=

∞∑
k=1

f∗k (x)
zk

k!

where f∗k (x) = kfk−1(x). In view of Theorem 1, we have

(−1)m+1
m+1∑
i=0

(
m + 1

i

)
f∗n+1+i(x) = −ε(−1)n+1

n+1∑
j=0

(
n + 1

j

)
f∗m+1+j(−x)

which is equivalent to (5). �
Observe that

∞∑
n=0

Bn(x)
zn

n!
= e(x−1/2)z z

ez/2 − e−z/2
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and
∞∑

n=0

En(x)
zn

n!
= e(x−1/2)z 2

ez/2 + e−z/2
.

Also,

Bm+n+1(x) + (−1)m+nBm+n+1(−x)

=Bm+n+1(x)−Bm+n+1(1− (−x)) = −(m + n + 1)xm+n

and

Em+n+1(x) + (−1)m+nEm+n+1(−x)

=Em+n+1(x)− Em+n+1(1 + x) = 2Em+n+1(x)− 2xm+n+1.

So Theorem 1 and Corollary 1 imply the following result.

Theorem 2. Let m,n ∈ N. Then

(−1)m
m∑

i=0

(
m

i

)
Bn+i(x) = (−1)n

n∑
j=0

(
n

j

)
Bm+j(−x) (6)

and

(−1)m
m∑

i=0

(
m

i

)
En+i(x) = (−1)n

n∑
j=0

(
n

j

)
Em+j(−x); (7)

also

(−1)m
m∑

i=0

(
m + 1

i

)
(n + i + 1)Bn+i(x)

+ (−1)n
n∑

j=0

(
n + 1

j

)
(m + j + 1)Bm+j(−x)

=(−1)m(m + n + 2)(m + n + 1)xm+n

(8)

and

(−1)m
m∑

i=0

(
m + 1

i

)
(n + i + 1)En+i(x)

+ (−1)n
n∑

j=0

(
n + 1

j

)
(m + j + 1)Em+j(−x)

=(−1)m2(m + n + 2)
(
xm+n+1 − Em+n+1(x)

)
.

(9)

Clearly (8) in the case x = 0 yields Momiyama’s formula (1), and (9) provides a
recurrent formula for Euler polynomials.

Putting x = 0 in (6) and x = 1/2 in (7) we then get
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Corollary 2. For m,n ∈ N, we have

(−1)m
m∑

i=0

(
m

i

)
Bn+i = (−1)n

n∑
j=0

(
n

j

)
Bm+j (10)

and

(−1)m
m∑

i=0

(
m

i

)
En+i

2n+i
= (−1)n

n∑
j=0

(
n

j

)
Em+j

(
−1

2

)
. (11)

2. Proof of Theorem 1

Suppose that F (−z) = εF (z) for all z where ε ∈ {1,−1}. Consider the generat-
ing function

G(x, y, z) :=
∞∑

n=0

∞∑
m=0

(
(−1)m

m∑
i=0

(
m

i

)
fn+i(x)

)
ym

m!
· zn

n!
.

What we have to show is the identity G(x, y, z) = εG(−x, z, y). Changing the order
of summation, we obtain

G(x, y, z) =
∞∑

n=0

∞∑
i=0

∞∑
m=i

(−1)m

(
m

i

)
fn+i(x)

ym

m!
· zn

n!

=
∞∑

n=0

∞∑
i=0

fn+i(x)
zn

n!

∞∑
m=i

(−1)m

(
m

i

)
ym

m!

=
∞∑

n=0

∞∑
i=0

fn+i(x)
zn

n!
· (−y)i

i!
e−y

=e−y
∞∑

k=0

k∑
i=0

fk(x)
k!

(
k

i

)
zk−i(−y)i

=e−y
∞∑

k=0

fk(x)
(z − y)k

k!

=e−ye(x−1/2)(z−y)F (z − y)

=ex(z−y)−(y+z)/2F (z − y).

From this, we have

G(−x, z, y) = e−x(y−z)−(z+y)/2F (y − z) = ex(z−y)−(y+z)/2εF (z − y) = εG(x, y, z),

as desired.
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Added in Proof. The main results of this paper were further extended in [3]
by the second author.
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